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Foreword

These notes are an attempt to provide an entry into a subject that has not
been very accessible. The problems of exposition are twofold. It is important to
present motivation and background for the kind of problems that the trace formula
is designed to solve. However, it is also important to provide the means for acquiring
some of the basic techniques of the subject. I have tried to steer a middle course
between these two sometimes divergent objectives. The reader should refer to earlier
articles [Lab2], [Lan14], and the monographs [Sho], [Ge], for different treatments
of some of the topics in these notes.

I had originally intended to write fifteen sections, corresponding roughly to
fifteen lectures on the trace formula given at the Summer School. These sections
comprise what has become Part I of the notes. They include much introductory
material, and culminate in what we have called the coarse (or unrefined) trace for-
mula. The coarse trace formula applies to a general connected, reductive algebraic
group. However, its terms are too crude to be of much use as they stand.

Part II contains fifteen more sections. It has two purposes. One is to transform
the trace formula of Part I into a refined formula, capable of yielding interesting
information about automorphic representations. The other is to discuss some of
the applications of the refined formula. The sections of Part II are considerably
longer and more advanced. I hope that a familiarity with the concepts of Part I
will allow a reader to deal with the more difficult topics in Part II. In fact, the later
sections still include some introductory material. For example, §16, §22, and §27
contain heuristic discussions of three general problems, each of which requires a
further refinement of the trace formula. Section 26 contains a general introduction
to Langlands’ principle of functoriality, to which many of the applications of the
trace formula are directed.

We begin with a discussion of some constructions that are part of the founda-
tions of the subject. In §1 we review the Selberg trace formula for compact quotient.
In §2 we introduce the ring A = AF of adeles. We also try to illustrate why adelic
algebraic groups G(A), and their quotients G(F )\G(A), are more concrete objects
than they might appear at first sight. Section 3 is devoted to examples related to
§1 and §2. It includes a brief description of the Jacquet-Langlands correspondence
between quaternion algebras and GL(2). This correspondence is a striking example
of the kind of application of which the trace formula is capable. It also illustrates
the need for a trace formula for noncompact quotient.

In §4, we begin the study of noncompact quotient. We work with a general
algebraic group G, since this was a prerequisite for the Summer School. However,
we have tried to proceed gently, giving illustrations of a number of basic notions.
For example, §5 contains a discussion of roots and weights, and the related objects
needed for the study of noncompact quotient. To lend Part I an added appearance
of simplicity, we work over the ground field Q, instead of a general number field F .

The rest of Part I is devoted to the general theme of truncation. The problem is
to modify divergent integrals so that they converge. At the risk of oversimplifying
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matters, we have tried to center the techniques of Part I around one basic result,
Theorem 6.1. Corollary 10.1 and Theorem 11.1, for example, are direct corollaries
of Theorem 6.1, as well as essential steps in the overall construction. Other results
in Part I also depend in an essential way on either the statement of Theorem 6.1
or a key aspect of its proof. Theorem 6.1 itself asserts that a truncation of the
function

K(x, x) =
∑

γ∈G(Q)

f(x−1γx), f ∈ C∞
c

(
G(A)

)
,

is integrable. It is the integral of this function over G(Q)\G(A) that yields a trace
formula in the case of compact quotient. The integral of its truncation in the general
case is what leads eventually to the coarse trace formula at the end of Part I.

After stating Theorem 6.1 in §6, we summarize the steps required to convert
the truncated integral into some semblance of a trace formula. We sketch the proof
of Theorem 6.1 in §8. The arguments here, as well as in the rest of Part I, are
both geometric and combinatorial. We present them at varying levels of generality.
However, with the notable exception of the review of Eisenstein series in §7, we have
tried in all cases to give some feeling for what is the essential idea. For example,
we often illustrate geometric points with simple diagrams, usually for the special
case G = SL(3). The geometry for SL(3) is simple enough to visualize, but often
complicated enough to capture the essential point in a general argument. I am
indebted to Bill Casselman, and his flair for computer graphics, for the diagrams.
The combinatorial arguments are used in conjunction with the geometric arguments
to eliminate divergent terms from truncated functions. They rely ultimately on that
simplest of cancellation laws, the binomial identity

∑

F⊂S

(−1)|F | =

{
0, if S 6= ∅,
1, if S = ∅,

which holds for any finite set S (Identity 6.2).
The parallel sections §11 and §15 from the later stages of Part I anticipate the

general discussion of §16–21 in Part II. They provide refined formulas for “generic”
terms in the coarse trace formula. These formulas are explicit expressions, whose
local dependence on the given test function f is relatively transparent. The first
problem of refinement is to establish similar formulas for all of the terms. Because
the remaining terms are indexed by conjugacy classes and representations that are
singular, this problem is more difficult than any encountered in Part I. The solution
requires new analytic techniques, both local and global. It also requires extensions
of the combinatorial techniques of Part I, which are formulated in §17 as properties
of (G,M)-families. We refer the reader to §16–21 for descriptions of the various
results, as well as fairly substantial portions of their proofs.

The solution of the first problem yields a refined trace formula. We summarize
this new formula in §22, in order to examine why it is still not satisfactory. The
problem here is that its terms are not invariant under conjugation of f by elements
in G(A). They are in consequence not determined by the values taken by f at
irreducible characters. We describe the solution of this second problem in §23. It
yields an invariant trace formula, which we derive by modifying the terms in the
refined, noninvariant trace formula so that they become invariant in f .
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In §24–26 we pause to give three applications of the invariant trace formula.
They are, respectively, a finite closed formula for the traces of Hecke operators on
certain spaces, a term by term comparison of invariant trace formulas for general
linear groups and central simple algebras, and cyclic base change of prime order for
GL(n). It is our discussion of base change that provides the opportunity to review
Langlands’ principle of functoriality.

The comparisons of invariant trace formulas in §25 and §26 are directed at
special cases of functoriality. To study more general cases of functoriality, one
requires a third refinement of the trace formula.

The remaining problem is that the terms of the invariant trace formula are not
stable as linear forms in f . Stability is a subtler notion than invariance, and is
part of Langlands’ conjectural theory of endoscopy. We review it in §27. In §28
and §29 we describe the last of our three refinements. This gives rise to a stable
trace formula, each of whose terms is stable in f . Taken together, the results of
§29 can be regarded as a stabilization process, by which the invariant trace formula
is decomposed into a stable trace formula, and an error term composed of stable
trace formulas on smaller groups. The results are conditional upon the fundamental
lemma. The proofs, conditional as they may be, are still too difficult to permit more
than passing comment in §29.

The general theory of endoscopy includes a significant number of cases of func-
toriality. However, its avowed purpose is somewhat different. The principal aim of
the theory is to analyze the internal structure of representations of a given group.
Our last application is a broad illustration of what can be expected. In §30 we
describe a classification of representations of quasisplit classical groups, both local
and global, into packets. These results depend on the stable trace formula, and
the fundamental lemma in particular. They also presuppose an extension of the
stabilization of §29 to twisted groups.

As a means for investigating the general principle of functoriality, the theory
of endoscopy has very definite limitations. We have devoted a word after §30 to
some recent ideas of Langlands. The ideas are speculative, but they seem also to
represent the best hope for attacking the general problem. They entail using the
trace formula in ways that are completely new.

These notes are really somewhat of an experiment. The style varies from section
to section, ranging between the technical and the discursive. The more difficult
topics typically come in later sections. However, the progression is not always
linear, or even monotonic. For example, the material in §13–§15, §19–§21, §23, and
§25 is no doubt harder than much of the broader discussion in §16, §22, §26, and
§27. The last few sections of Part II tend to be more discursive, but they are also
highly compressed. This is the price we have had to pay for trying to get close to
the frontiers. The reader should feel free to bypass the more demanding passages,
at least initially, in order to develop an overall sense of the subject.

It would not have been possible to go very far by insisting on complete proofs.
On the other hand, a survey of the results might have left a reader no closer
to acquiring any of the basic techniques. The compromise has been to include
something representative of as many arguments as possible. It might be a sketch of
the general proof, a suggestive proof of some special case, or a geometric illustration
by a diagram. For obvious reasons, the usual heading “PROOF” does not appear
in the notes. However, each stated result is eventually followed by a small box
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�, when the discussion that passes for a proof has come to an end. This ought to
make the structure of each section more transparent. My hope is that a determined
reader will be able to learn the subject by reinforcing the partial arguments here,
when necessary, with the complete proofs in the given references.



Part I. The Unrefined Trace Formula

1. The Selberg trace formula for compact quotient

Suppose that H is a locally compact, unimodular topological group, and that Γ
is a discrete subgroup of H . The space Γ\H of right cosets has a right H-invariant
Borel measure. Let R be the unitary representation of H by right translation on
the corresponding Hilbert space L2(Γ\H). Thus,

(
R(y)φ

)
(x) = φ(xy), φ ∈ L2(Γ\H), x, y ∈ H.

It is a fundamental problem to decompose R explicitly into irreducible unitary
representations. This should be regarded as a theoretical guidepost rather than a
concrete goal, since one does not expect an explicit solution in general. In fact,
even to state the problem precisely requires the theory of direct integrals.

The problem has an obvious meaning when the decomposition of R is discrete.
Suppose for example that H is the additive group R, and that Γ is the subgroup
of integers. The irreducible unitary representations of R are the one dimensional
characters x→ eλx, where λ ranges over the imaginary axis iR. The representation
R decomposes as direct sum over such characters, as λ ranges over the subset 2πiZ

of iR. More precisely, let R̂ be the unitary representation of R on L2(Z) defined by

(
R̂(y)c

)
(n) = e2πinyc(n), c ∈ L2(Z).

The correspondence that maps φ ∈ L2(Z\R) to its set of Fourier coefficients

φ̂(n) =

∫

Z\R

φ(x)e−2πinxdx, n ∈ Z,

is then a unitary isomorphism from L2(Z\R) onto L2(Z), which intertwines the

representations R and R̂. This is of course the Plancherel theorem for Fourier
series.

The other basic example to keep in mind occurs where H = R and Γ = {1}.
In this case the decomposition of R is continuous, and is given by the Plancherel
theorem for Fourier transforms. The general intuition that can inform us is as
follows. For arbitrary H and Γ, there will be some parts of R that decompose
discretely, and therefore behave qualitatively like the theory of Fourier series, and
others that decompose continuously, and behave qualitatively like the theory of
Fourier transforms.

In the general case, we can study R by integrating it against a test function
f ∈ Cc(H). That is, we form the operator

R(f) =

∫

H

f(y)R(y)dy

7
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on L2(Γ\H). We obtain

(
R(f)φ

)
(x) =

∫

H

(
f(y)R(y)φ

)
(x)dy

=

∫

H

f(y)φ(xy)dy

=

∫

H

f(x−1y)φ(y)dy

=

∫

Γ\H

(∑

γ∈Γ

f(x−1γy)
)
φ(y)dy,

for any φ ∈ L2(Γ\H) and x ∈ H . It follows that R(f) is an integral operator with
kernel

(1.1) K(x, y) =
∑

γ∈Γ

f(x−1γy), x, y ∈ Γ\H.

The sum over γ is finite for any x and y, since it may be taken over the intersection
of the discrete group Γ with the compact subset

x supp(f)y−1

of H .
For the rest of the section, we consider the special case that Γ\H is compact.

The operator R(f) then acquires two properties that allow us to investigate it
further. The first is that R decomposes discretely into irreducible representations
π, with finite multiplicities m(π,R). This is not hard to deduce from the spectral
theorem for compact operators. Since the kernelK(x, y) is a continuous function on
the compact space (Γ\H)×(Γ\H), and is hence square integrable, the corresponding
operator R(f) is of Hilbert-Schmidt class. One applies the spectral theorem to the
compact self adjoint operators attached to functions of the form

f(x) = (g ∗ g∗)(x) =

∫

H

g(y)g(x−1y)dy, g ∈ Cc(H).

The second property is that for many functions, the operator R(f) is actually of
trace class, with

(1.2) trR(f) =

∫

Γ\H

K(x, x)dx.

If H is a Lie group, for example, one can require that f be smooth as well as
compactly supported. Then R(f) becomes an integral operator with smooth kernel
on the compact manifold Γ\H . It is well known that (1.2) holds for such operators.

Suppose that f is such that (1.2) holds. Let {Γ} be a set of representatives of
conjugacy classes in Γ. For any γ ∈ Γ and any subset Ω of H , we write Ωγ for the
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centralizer of γ in Ω. We can then write

tr
(
R(f)

)
=

∫

Γ\H

K(x, x)dx

=

∫

Γ\H

∑

γ∈Γ

f(x−1γx)dx

=

∫

Γ\H

∑

γ∈{Γ}

∑

δ∈Γγ\Γ

f(x−1δ−1γδx)dx

=
∑

γ∈{Γ}

∫

Γγ\H

f(x−1γx)dx

=
∑

γ∈{Γ}

∫

Hγ\H

∫

Γγ\Hγ

f(x−1u−1γux)du dx

=
∑

γ∈{Γ}

vol(Γγ\Hγ)

∫

Hγ\H

f(x−1γx)dx.

These manipulations follow from Fubini’s theorem, and the fact that for any se-
quence H1 ⊂ H2 ⊂ H of unimodular groups, a right invariant measure on H1\H
can be written as the product of right invariant measures on H2\H and H1\H2

respectively. We have obtained what may be regarded as a geometric expansion
of tr

(
R(f)

)
in terms of conjugacy classes γ in Γ. By restricting R(f) to the irre-

ducible subspaces of L2(Γ\H), we obtain a spectral expansion of R(f) in terms of
irreducible unitary representations π of H .

The two expansions tr
(
R(f)

)
provide an identity of linear forms

(1.3)
∑

γ

aHΓ (γ)fH(γ) =
∑

π

aHΓ (π)fH(π),

where γ is summed over (a set of representatives of) conjugacy classes in Γ, and
π is summed over (equivalence classes of) irreducible unitary representatives of H .
The linear forms on the geometric side are invariant orbital integrals

(1.4) fH(γ) =

∫

Hγ\H

f(x−1γx)dx,

with coefficients
aHΓ (γ) = vol(Γγ\Hγ),

while the linear forms on the spectral side are irreducible characters

(1.5) fH(π) = tr
(
π(f)

)
= tr

( ∫

H

f(y)π(y)dy
)
,

with coefficients
aHΓ (π) = m(π,R).

This is the Selberg trace formula for compact quotient.
We note that if H = R and Γ = Z, the trace formula (1.3) reduces to the

Poisson summation formula. For another example, we could take H to be a finite
group and f(x) to be the character tr π(x) of an irreducible representation π of H .
In this case, (1.3) reduces to a special case of the Frobenius reciprocity theorem,
which applies to the trivial one dimensional representation of the subgroup Γ of H .
(A minor extension of (1.3) specializes to the general form of Frobenius reciprocity.)
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Some of Selberg’s most striking applications of (1.3) were to the group H =
SL(2,R) of real, (2×2)-matrices of determinant one. Suppose that X is a compact
Riemann surface of genus greater than 1. The universal covering surface of X
is then the upper half plane, which we identify as usual with the space of cosets
SL(2,R)/SO(2,R). (Recall that the compact orthogonal group K = SO(2,R) is
the stabilizer of

√
−1 under the transitive action of SL(2,R) on the upper half

plane by linear fractional transformations.) The Riemann surface becomes a space
of double cosets

X = Γ\H/K,

where Γ is the fundamental group of X , embedding in SL(2,R) as a discrete sub-
group with compact quotient. By choosing left and right K-invariant functions
f ∈ C∞

c (H), Selberg was able to apply (1.3) to both the geometry and analysis of
X .

For example, closed geodesics on X are easily seen to be bijective with conju-
gacy classes in Γ. Given a large positive integer N , Selberg chose f so that the left
hand side of (1.3) approximated the number g(N) of closed geodesics of length less
than N . An analysis of the corresponding right hand side gave him an asymptotic
formula for g(N), with a sharp error term. Another example concerns the Laplace-
Beltrami operator ∆ attached to X . In this case, Selberg chose f so that the right
hand side of (1.3) approximated the number h(N) of eigenvalues of ∆ less than N .
An analysis of the corresponding left hand side then provided a sharp asymptotic
estimate for h(N).

The best known discrete subgroup of H = SL(2,R) is the group Γ = SL(2,Z)
of unimodular integral matrices. In this case, the quotient Γ\H is not compact.
The example of Γ = SL(2,Z) is of special significance because it comes with the
supplementary operators introduced by Hecke. Hecke operators include a family of
commuting operators {Tp} on L2(Γ\H), parametrized by prime numbers p, which
commute also with the action of the group H = SL(2,R). The families {cp}
of simultaneous eigenvalues of Hecke operators on L2(Γ\H) are known to be of
fundamental arithmetic significance. Selberg was able to extend his trace formula
(1.3) to this example, and indeed to many other quotients of rank 1. He also
included traces of Hecke operators in his formulation. In particular, he obtained a
finite closed formula for the trace of Tp on any space of classical modular forms.

Selberg worked directly with Riemann surfaces and more general locally sym-
metric spaces, so the role of group theory in his papers is less explicit. We can
refer the reader to the basic articles [Sel1] and [Sel2]. However, many of Selberg’s
results remain unpublished. The later articles [DL] and [JL, §16] used the language
of group theory to formulate and extend Selberg’s results for the upper half plane.

In the next section, we shall see how to incorporate the theory of Hecke oper-
ators into the general framework of (1.1). The connection is through adele groups,
where Hecke operators arise in a most natural way. Our ultimate goal is to describe
a general trace formula that applies to any adele group. The modern role of such
a trace formula has changed somewhat from the original focus of Selberg. Rather
than studying geometric and spectral data attached to a given group in isolation,
one tries to compare such data for different groups. In particular, one would like
to establish reciprocity laws among the fundamental arithmetic data associated to
Hecke operators on different groups.
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2. Algebraic groups and adeles

Suppose that G is a connected reductive algebraic group over a number field
F . For example, we could take G to be the multiplicative group GL(n) of invertible
(n × n)-matrices, and F to be the rational field Q. Our interest is in the general
setting of the last section, with Γ equal to G(F ). It is easy to imagine that this
group could have arithmetic significance. However, it might not be at all clear
how to embed Γ discretely into a locally compact group H . To do so, we have to
introduce the adele ring of F .

Suppose for simplicity that F equals the rational field Q. We have the usual
absolute value v∞(·) = | · |∞ on Q, and its corresponding completion Qv∞ = Q∞ =
R. For each prime number p, there is also a p-adic absolute value vp(·) = | · |p on
Q, defined by

|t|p = p−r, t = prab−1,

for integers r, a and b with (a, p) = (b, p) = 1. One constructs its completion
Qvp = Qp by a process identical to that of R. As a matter of fact, | · |p satisfies an
enhanced form of the triangle inequality

|t1 + t2|p ≤ max
{
|t1|p, |t2|p

}
, t1, t2 ∈ Q.

This has the effect of giving the compact “unit ball”

Zp =
{
tp ∈ Qp : |tp|p ≤ 1

}

in Qp the structure of a subring of Qp. The completions Qv are all locally compact
fields. However, there are infinitely many of them, so their direct product is not
locally compact. One forms instead the restricted direct product

A =

rest∏

v

Qv = R×
rest∏

p

Qp = R× Afin

=
{
t = (tv) : tp = tvp ∈ Zp for almost all p

}
.

Endowed with the natural direct limit topology, A = AQ becomes a locally compact
ring, called the adele ring of Q. The diagonal image of Q in A is easily seen to be
discrete. It follows that H = G(A) is a locally compact group, in which Γ = G(Q)
embeds as a discrete subgroup. (See [Tam2].)

A similar construction applies to a general number field F , and gives rise to a
locally compact ring AF . The diagonal embedding

Γ = G(F ) ⊂ G(AF ) = H

exhibits G(F ) as a discrete subgroup of the locally compact groupG(AF ). However,
we may as well continue to assume that F = Q. This represents no loss of generality,
since one can pass from F to Q by restriction of scalars. To be precise, if G1 is
the algebraic group over Q obtained by restriction of scalars from F to Q, then
Γ = G(F ) = G1(Q), and H = G(AF ) = G1(A).

We can define an automorphic representation π of G(A) informally to be an
irreducible representation of G(A) that “occurs in” the decomposition of R. This
definition is not precise for the reason mentioned in §1, namely that there could be
a part of R that decomposes continuously. The formal definition [Lan6] is in fact
quite broad. It includes not only irreducible unitary representations of G(A) in the
continuous spectrum, but also analytic continuations of such representations.
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The introduction of adele groups appears to have imposed a new and perhaps
unwelcome level of abstraction onto the subject. The appearance is illusory. Sup-
pose for example that G is a simple group over Q. There are two possibilities:
either G(R) is noncompact (as in the case G = SL(2)), or it is not. If G(R) is
noncompact, the adelic theory for G may be reduced to the study of of arithmetic
quotients of G(R). As in the case G = SL(2) discussed at the end of §1, this is
closely related to the theory of Laplace-Beltrami operators on locally symmetric
Riemannian spaces attached to G(R). If G(R) is compact, the adelic theory re-
duces to the study of arithmetic quotients of a p-adic group G(Qp). This in turn is
closely related to the spectral theory of combinatorial Laplace operators on locally
symmetric hypergraphs attached to the Bruhat-Tits building of G(Qp).

These remarks are consequences of the theorem of strong approximation. Sup-
pose that S is a finite set of valuations of Q that contains the archimedean valuation
v∞. For any G, the product

G(QS) =
∏

v∈S

G(Qv)

is a locally compact group. Let KS be an open compact subgroup of G(AS), where

AS =
{
t ∈ A : tv = 0, v ∈ S

}

is the ring theoretic complement of QS in A. Then G(FS)KS is an open subgroup
of G(A).

Theorem 2.1. (a) (Strong approximation) Suppose that G is simply connected,
in the sense that the topological space G(C) is simply connected, and that G′(QS)
is noncompact for every simple factor G′ of G over Q. Then

G(A) = G(Q) ·G(QS)KS.

(b) Assume only that G′(QS) is noncompact for every simple quotient G′ of G
over Q. Then the set of double cosets

G(Q)\G(A)/G(QS)KS

is finite.

For a proof of (a) in the special case G = SL(2) and S = {v∞}, see [Shim,
Lemma 6.15]. The reader might then refer to [Kne] for a sketch of the general
argument, and to [P] for a comprehensive treatment. Part (b) is essentially a
corollary of (a). �

According to (b), we can write G(A) as a disjoint union

G(A) =
n∐

i=1

G(Q) · xi ·G(QS)KS ,

for elements x1 = 1, x2, . . . , xn in G(AS). We can therefore write

G(Q)\G(A)/KS =

n∐

i=1

(
G(Q)\G(Q) · xi ·G(QS)KS/KS

)

∼=
n∐

i=1

(
ΓiS\G(QS)

)
,
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for discrete subgroups

ΓiS = G(QS) ∩
(
G(Q) · xiKS(xi)−1

)

of G(QS). We obtain a G(QS)-isomorphism of Hilbert spaces

(2.1) L2
(
G(Q)\G(A)/KS

) ∼=
n⊕

i=1

L2
(
ΓiS\G(QS)

)
.

The action of G(QS) on the two spaces on each side of (2.1) is of course by right
translation. It corresponds to the action by right convolution on either space by
functions in the algebra Cc

(
G(QS)

)
. There is a supplementary convolution algebra,

the Hecke algebra H
(
G(AS),KS

)
of compactly supported functions on G(AS) that

are left and right invariant under translation by KS. This algebra acts by right
convolution on the left hand side of (2.1), in a way that clearly commutes with the
action ofG(QS). The corresponding action ofH

(
G(AS),KS

)
on the right hand side

of (2.1) includes general analogues of the operators defined by Hecke on classical
modular forms.

This becomes more concrete if S = {v∞}. Then AS equals the subring Afin =
{t ∈ A : t∞ = 0} of “finite adeles” in A. If G satisfies the associated noncompact-
ness criterion of Theorem 2.1(b), and K0 is an open compact subgroup of G(Afin),
we have a G(R)-isomorphism of Hilbert spaces

L2
(
G(Q)\G(A)/K0

) ∼=
n⊕

i=1

L2
(
Γi\G(R)

)
,

for discrete subgroups Γ1, . . . ,Γn of G(R). The Hecke algebra H
(
G(Afin),K0

)
acts

by convolution on the left hand side, and hence also on the right hand side.
Hecke operators are really at the heart of the theory. Their properties can be

formulated in representation theoretic terms. Any automorphic representation π of
G(A) can be decomposed as a restricted tensor product

(2.2) π =
⊗

v

πv,

where πv is an irreducible representation of the group G(Qv). Moreover, for every
valuation v = vp outside some finite set S, the representation πp = πvp is unramified,
in the sense that its restriction to a suitable maximal compact subgroup Kp of
G(Qp) contains the trivial representation. (See [F]. It is known that the trivial
representation of Kp occurs in πp with multiplicity at most one.) This gives rise to
a maximal compact subgroup KS =

∏
p/∈S

Kp, a Hecke algebra

HS =
⊗

p/∈S

Hp =
⊗

p/∈S

H
(
G(Qp),Kp

)

that is actually abelian, and an algebra homomorphism

(2.3) c(πS) =
⊗

p/∈S

c(πp) : HS =
⊗

p/∈S

Hp −→ C.
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Indeed, if vS =
⊗
p/∈S

vp belongs to the one-dimensional space of KS-fixed vectors for

the representation πS =
⊗
p/∈S

πp, and hS =
⊗
p/∈S

hp belongs to HS , the vector

πS(hS)vS =
⊗

p/∈S

(
πp(hp)vp

)

equals

c(πS , hS)vS =
⊗

p/∈S

(
c(πp, hp)vp

)
.

This formula defines the homomorphism (2.3) in terms of the unramified represen-
tation πS . Conversely, for any homomorphism HS → C, it is easy to see that there
is a unique unramified representation πS of G(AS) for which the formula holds.

The decomposition (2.2) actually holds for general irreducible representations
π of G(A). In this case, the components can be arbitrary. However, the condition
that π be automorphic is highly rigid. It imposes deep relationships among the
different unramified components πp, or equivalently, the different homomorphisms
c(πp) : Hp → C. These relationships are expected to be of fundamental arithmetic
significance. They are summarized by Langlands’s principle of functoriality [Lan3],
and his conjecture that relates automorphic representations to motives [Lan7].
(For an elementary introduction to these conjectures, see [A28]. We shall review
the principle of functoriality and its relationship with unramified representations
in §26.) The general trace formula provides a means for analyzing some of the
relationships.

The group G(A) can be written as a direct product of the real group G(R) with
the totally disconnected group G(Afin). We define

C∞
c

(
G(A)

)
= C∞

c

(
G(R)

)
⊗ C∞

c

(
G(Afin)

)
,

where C∞
c

(
G(R)

)
is the usual space of smooth, compactly supported functions on

the Lie group G(R), and C∞
c

(
G(Afin)

)
is the space of locally constant, compactly

supported, complex valued functions on the totally disconnected group G(Afin).
The vector space C∞

c

(
G(A)

)
is an algebra under convolution, which is of course

contained in the algebra Cc
(
G(A)

)
of continuous, compactly supported functions

on G(A).
Suppose that f belongs to C∞

c

(
G(A)

)
. We can choose a finite set of valuations

S satisfying the condition of Theorem 2.1(b), an open compact subgroup KS of
G(AS), and an open compact subgroup K0,S of the product

G(Q∞
S ) =

∏

v∈S−{v∞}

G(Qv)

such that f is bi-invariant under the open compact subgroup K0 = K0,SK
S of

G(Afin). In particular, the operator R(f) vanishes on the orthogonal complement
of L2

(
G(Q)\G(A)/KS

)
in L2

(
G(Q)\G(A)

)
. We leave the reader the exercise of

using (1.1) and (2.1) to identify R(f) with an integral operator with smooth kernel
on a finite disjoint union of quotients of G(R).

Suppose, in particular, that G(Q)\G(A) happens to be compact. Then R(f)
may be identified with an integral operator with smooth kernel on a compact man-
ifold. It follows that R(f) is an operator of trace class, whose trace is given by
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(1.2). The Selberg trace formula (1.3) is therefore valid for f , with Γ = G(Q) and
H = G(A). (See [Tam1].)

3. Simple examples

We have tried to introduce adele groups as gently as possible, using the re-
lations between Hecke operators and automorphic representations as motivation.
Nevertheless, for a reader unfamiliar with such matters, it might take some time to
feel comfortable with the general theory. To supplement the discussion of §2, and
to acquire some sense of what one might hope to obtain in general, we shall look
at a few concrete examples.

Consider first the simplest example of all, the case that G equals the multi-
plicative group GL(1). Then G(Q) = Q∗, while

G(A) = A∗ =
{
x ∈ A : |x| 6= 0, |xp|p = 1 for almost all p

}

is the multiplicative group of ideles for Q. If N is a positive integer with prime
factorization N =

∏
p
pep(N), we write

KN =
{
k ∈ G(Afin) = A∗

fin : |kp − 1|p ≤ p−ep(N) for all p
}
.

A simple exercise for a reader unfamiliar with adeles is to check directly that KN

is an open compact subgroup of A∗
fin, that any open compact subgroup K0 contains

KN for some N , and that the abelian group

G(Q)\G(A)/G(R)KN = Q∗\A∗/R∗KN

is finite. The quotient G(Q)\G(A) = Q∗\A∗ is not compact. This is because the
mapping

x −→ |x| =
∏

v

|xv|v, x ∈ A∗,

is a continuous surjective homomorphism from A∗ to the multiplicative group (R∗)0

of positive real numbers, whose kernel

A1 =
{
x ∈ A : |x| = 1

}

contains Q∗. The quotient Q∗\A1 is compact. Moreover, we can write the group
A∗ as a canonical direct product of A1 with the group (R∗)0. The failure of Q∗\A∗

to be compact is therefore entirely governed by the multiplicative group (R∗)0 of
positive real numbers.

An irreducible unitary representation of the abelian group GL(1,A) = A∗ is a
homomorphism

π : A∗ −→ U(1) =
{
z ∈ C∗ : |z| = 1

}
.

There is a free action

s : π −→ πs(x) = π(x)|x|s, s ∈ iR,
of the additive group iR on the set of such π. The orbits of iR are bijective
under the restriction mapping from A∗ to A1 with the set of irreducible unitary
representations of A1. A similar statement applies to the larger set of irreducible
(not necessarily unitary) representations of A∗, except that one has to replace iR
with the additive group C.

Returning to the case of a general group over Q, we write AG for the largest cen-
tral subgroup ofG over Q that is a Q-split torus. In other words, AG is Q-isomorphic
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to a direct product GL(1)k of several copies of GL(1). The connected component

AG(R)0 of 1 in AG(R) is isomorphic to the multiplicative group
(
(R∗)0

)k
, which

in turn is isomorphic to the additive group Rk. We write X(G)Q for the additive
group of homomorphisms χ : g → gχ from G to GL(1) that are defined over Q.
Then X(G)Q is a free abelian group of rank k. We also form the real vector space

aG = HomZ

(
X(G)Q,R

)

of dimension k. There is then a surjective homomorphism

HG : G(A) −→ aG,

defined by
〈
HG(x), χ

〉
=
∣∣ log(xχ)

∣∣, x ∈ G(A), χ ∈ X(G)Q.

The group G(A) is a direct product of the normal subgroup

G(A)1 =
{
x ∈ G(A) : HG(x) = 0

}

with AG(R)0.
We also have the dual vector space a∗G = X(G)Q⊗Z R, and its complexification

a∗G,C = X(G)Q ⊗ C. If π is an irreducible unitary representation of G(A) and λ
belongs to ia∗G, the product

πλ(x) = π(x)eλ(HG(x)), x ∈ G(A),

is another irreducible unitary representation of G(A). The set of associated ia∗G-
orbits is in bijective correspondence under the restriction mapping from G(A) to
G(A)1 with the set of irreducible unitary representations of G(A)1. A similar as-
sertion applies the larger set of irreducible (not necessary unitary) representations,
except that one has to replace ia∗G with the complex vector space a∗G,C.

In the case G = GL(n), for example, we have

AGL(n) =







z 0

. . .

0 z


 : z ∈ GL(1)




∼= GL(1).

The abelian group X
(
GL(n)

)
Q

is isomorphic to Z, with canonical generator given

by the determinant mapping from GL(n) to GL(1). The adelic group GL(n,A) is
a direct product of the two groups

GL(n,A)1 =
{
x ∈ GL(n,A) : | det(x)| = 1

}

and

AGL(n)(R)0 =







r 0

. . .

0 r


 : r ∈ (R∗)0




.

In general, G(Q) is contained in the subgroup G(A)1 of G(A). The group
AG(R)0 is therefore an immediate obstruction to G(Q)\G(A) being compact, as
indeed it was in the simplest example of G = GL(1). The real question is then
whether the quotient G(Q)\G(A)1 is compact. When the answer is affirmative, the
discussion above tells us that the trace formula (1.3) can be applied. It holds for
Γ = G(Q) and H = G(A)1, with f being the restriction to G(A)1 of a function in
C∞
c

(
G(A)

)
.
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The simplest nonabelian example that gives compact quotient is the multiplica-
tive group

G = {x ∈ A : x 6= 0}
of a quaternion algebra over Q. By definition, A is a four dimensional division
algebra over Q, with center Q. It can be written in the form

A =
{
x = x0 + x1i+ x2j + x3k : xα ∈ Q

}
,

where the basis elements 1, i, j and k satisfy

ij = −ji = k, i2 = a, j2 = b,

for nonzero elements a, b ∈ Q∗. Conversely, for any pair a, b ∈ Q∗, the Q-algebra
defined in this way is either a quaternion algebra or is isomorphic to the matrix
algebra M2(Q). For example, if a = b = −1, A is a quaternion algebra, since
A⊗Q R is the classical Hamiltonian quaternion algebra over R. On the other hand,
if a = b = 1, the mapping

x −→ x0

(
1 0
0 1

)
+ x1

(
1 0
0 −1

)
+ x2

(
0 1
1 0

)
+ x3

(
0 1
−1 0

)

is an isomorphism from A onto M2(Q). For any A, one defines an automorphism

x −→ x̄ = x0 − x1i− x2j − x3k

of A, and a multiplicative mapping

x −→ N(x) = xx̄ = x0 − ax2
1 − bx2

2 + abx2
3

from A to Q. If N(x) 6= 0, x−1 equals N(x)−1x̄. It follows that x ∈ A is a unit if
and only if N(x) 6= 0.

The description of a quaternion algebraA in terms of rational numbers a, b ∈ Q∗

has the obvious attraction of being explicit. However, it is ultimately unsatisfactory.
Among other things, different pairs a and b can yield the same algebra A. There
is a more canonical characterization in terms of the completions Av = A⊗Q Qv at
valuations v of Q. If v = v∞, we know that Av is isomorphic to either the matrix
ring M2(R) or the Hamiltonian quaternion algebra over R. A similar property
holds for any other v. Namely, there is exactly one isomorphism class of quaternion
algebras over Qv, so there are again two possibilities for Av. Let V be the set of
valuations v such that Av is a quaternion algebra. It is then known that V is a
finite set of even order. Conversely, for any nonempty set V of even order, there
is a unique isomorphism class of quaternion algebras A over Q such that Av is a
quaternion algebra for each v ∈ V and a matrix algebra M2(Qv) for each v outside
V .

We digress for a moment to note that this characterization of quaternion al-
gebras is part of a larger classification of reductive algebraic groups. The general
classification over a number field F , and its completions Fv, is a beautiful union of
class field theory with the structure theory of reductive groups. One begins with a
group G∗

s over F that is split, in the sense that it has a maximal torus that splits
over F . By a basic theorem of Chevalley, the groups G∗

s are in bijective correspon-
dence with reductive groups over an algebraic closure F of F , the classification
of which reduces largely to that of complex semisimple Lie algebras. The general
group G over F is obtained from G∗

s by twisting the action of the Galois group
Gal(F/F ) by automorphisms of G∗

s . It is a two stage process. One first constructs
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an “outer twist” G∗ of G∗
s that is quasisplit, in the sense that it has a Borel sub-

group that is defined over F . This is the easier step. It reduces to a knowledge
of the group of outer automorphisms of G∗

s, something that is easy to describe in
terms of the general structure of reductive groups. One then constructs an “inner

twist” G
ψ−→ G∗, where ψ is an isomorphism such that for each σ ∈ Gal(F/F ), the

composition
α(σ) = ψ ◦ σ(ψ)−1

belongs to the group Int(G∗) of inner automorphisms of G∗. The role of class field
theory is to classify the functions σ → α(σ). More precisely, class field theory
allows us to characterize the equivalence classes of such functions defined by the
Galois cohomology set

H1
(
F, Int(G∗)

)
= H1

(
Gal(F/F ), Int(G)∗(F )

)
.

It provides a classification of the finite sets of local inner twists H1
(
Fv, Int(G∗

v)
)
,

and a characterization of the image of the map

H1
(
F, Int(G∗)

)
→֒
∏

v

H1
(
F, Int(G∗

v)
)

in terms of an explicit generalization of the parity condition for quaternion algebras.
The map is injective, by the Hasse principle for the adjoint group Int(G∗). Its image
therefore classifies the isomorphism classes of inner twists G of G∗ over F .

In the special case above, the classification of quaternion algebras A is equiva-
lent to that of the algebraic groups A∗. In this case, G∗ = G∗

s = GL(2). In general,
the theory is not especially well known, and goes beyond what we are assuming for
this course. However, as a structural foundation for the Langlands program, it is
well worth learning. A concise reference for a part of the theory is [Ko5, §1-2].

Let G be the multiplicative group of a quaternion algebra A over Q, as above.
The restriction of the norm mapping N to G is a generator of the group X(G)Q.
In particular,

G(A)1 =
{
x ∈ G(A) : |N(x)| = 1

}
.

It is then not hard to see that the quotient G(Q)\G(A)1 is compact. (The reason
is that G has no proper parabolic subgroup over Q, a point we shall discuss in
the next section.) The Selberg trace formula (1.3) therefore holds for Γ = G(Q),
H = G(A)1, and f the restriction to G(A)1 of a function in C∞

c

(
G(A)

)
. If Γ(G)

denotes the set of conjugacy classes in G(Q), and Π(G) is the set of equivalence
classes of automorphic representations of G (or more properly, restrictions to G(A)1

of automorphic representations of G(A)), we have

(3.1)
∑

γ∈Γ(G)

aG(γ)fG(γ) =
∑

π∈Π(G)

aG(π)fG(π), f ∈ C∞
c

(
G(A)

)
,

for the volume aG(γ) = aHΓ (γ), the multiplicity aG(π) = aHΓ (π), the orbital integral
fG(γ) = fH(γ), and the character fG(π) = fH(π). Jacquet and Langlands gave a
striking application of this formula in §16 of their monograph [JL].

Any function in C∞
c

(
G(A)

)
is a finite linear combination of products

f =
∏

v

fv, fv ∈ C∞
c

(
G(Qv)

)
.

Assume that f is of this form. Then fG(γ) is a product of local orbital integrals
fv,G(γv), where γv is the image of γ in the set Γ(Gv) of conjugacy classes in G(Qv),
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and fG(π) is a product of local characters fv,G(πv), where πv is the component of
π in the set Π(Gv) of equivalence classes of irreducible representations of G(Qv).
Let V be the even set of valuations v such that G is not isomorphic to the group
G∗ = GL(2) over Qv. If v does not belong to V , the Qv-isomorphism from G to
G∗ is determined up to inner automorphisms. There is consequently a canonical
bijection γv → γ∗v from Γ(Gv) to Γ(G∗

v), and a canonical bijection πv → π∗
v from

Π(Gv) to Π(G∗
v). One can therefore define a function f∗

v ∈ C∞
c (G∗

v) for every v /∈ V
such that

f∗
v,G∗(γ∗v ) = fv,G(γv)

and
f∗
v,G∗(π∗

v) = fv,G(πv),

for every γv ∈ Γ(Gv) and πv ∈ Π(Gv). This suggested to Jacquet and Langlands
the possibility of comparing (3.1) with the trace formula Selberg had obtained for
the group G∗ = GL(2) with noncompact quotient.

If v belongs to V , G(Qv) is the multiplicative group of a quaternion algebra
over Qv. In this case, there is a canonical bijection γv → γ∗v from Γ(Gv) onto the
set Γell(G

∗
v) of semisimple conjugacy classes in G∗(Qv) that are either central, or

do not have eigenvalues in Qv. Moreover, there is a global bijection γ → γ∗ from
Γ(G) onto the set of semisimple conjugacy classes γ∗ ∈ Γ(G∗) such that for every
v ∈ V , γ∗v belongs to Γell(G

∗
v). For each v ∈ V , Jacquet and Langlands assigned a

function f∗
v ∈ C∞

c

(
G∗(Qv)

)
to fv such that

(3.2) f∗
v,G∗(γ∗v ) =

{
fv,G(γv), if γ∗v ∈ Γell(G

∗
v),

0, otherwise,

for every (strongly) regular class γ∗v ∈ Γreg(G
∗
v). (An element is strongly regular if

its centralizer is a maximal torus. The strongly regular orbital integrals of f∗
v are

known to determine the value taken by f∗
v at any invariant distribution on G∗(Qv).)

This allowed them to attach a function

f∗ =
∏

v

f∗
v

in C∞
c

(
G∗(A)

)
to the original function f . They then observed that

(3.3) f∗
G∗(γ∗) =

{
fG(γ), if γ∗ is the image of γ ∈ Γ(G),

0, otherwise,

for any class γ∗ ∈ Γ(G∗).
It happens that Selberg’s formula for the group G∗ = GL(2) contains a number

of supplementary terms, in addition to analogues of the terms in (3.1). However,
Jacquet and Langlands observed that the local vanishing conditions (3.2) force all
of the supplementary terms to vanish. They then used (3.3) to deduce that the
remaining terms on the geometric side equaled the corresponding terms on the
geometric side of (3.1). This left only a spectral identity

(3.4)
∑

π∈Π(G)

m(π,R)tr
(
π(f)

)
=

∑

π∗∈Π(G∗)

m(π∗, R∗
disc)tr

(
π∗(f∗)

)
,

where R∗
disc is the subrepresentation of the regular representation of G∗(A)1 on

L2
(
G∗(Q)\G∗(A)1

)
that decomposes discretely. By setting f = fSf

S, for a fixed fi-

nite set S of valuations containing V ∪{v∞}, and a fixed function fS ∈ C∞
c

(
G(QS)

)
,
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one can treat (3.4) as an identity of linear forms in a variable function fS belong-
ing to the Hecke algebra H(GS ,KS). Jacquet and Langlands used it to establish
an injective global correspondence π → π∗ of automorphic representations, with
π∗
v = πv for each v /∈ V . They also obtained an injective local correspondence
πv → π∗

v of irreducible representations for each v ∈ V , which is compatible with
the global correspondence, and also the local correspondence fv → f∗

v of functions.
Finally, they gave a simple description of the images of both the local and global
correspondences of representations.

The Jacquet-Langlands correspondence is remarkable for both the power of its
assertions and the simplicity of its proof. It tells us that the arithmetic information
carried by unramified components πp of automorphic representations π of G(A),
whatever form it might take, is included in the information carried by automorphic
representations π∗ of G∗(A). In the case v∞ /∈ V , it also implies a correspondence
between spectra of Laplacians on certain compact Riemann surfaces, and discrete
spectra of Laplacians on noncompact surfaces. The Jacquet-Langlands correspon-
dence is a simple prototype of the higher reciprocity laws one might hope to deduce
from the trace formula. In particular, it is a clear illustration of the importance of
having a trace formula for noncompact quotient.

4. Noncompact quotient and parabolic subgroups

If G(Q)\G(A)1 is not compact, the two properties that allowed us to derive
the trace formula (1.3) fail. The regular representation R does not decompose
discretely, and the operators R(f) are not of trace class. The two properties are
closely related, and are responsible for the fact that the integral (1.2) generally
diverges. To see what goes wrong, consider the case that G = GL(2), and take f
to be the restriction to H = G(A)1 of a nonnegative function in C∞

c

(
G(A)

)
. If the

integral (1.2) were to converge, the double integral
∫

G(Q)\G(A)1

∑

γ∈G(Q)

f(x−1γx)dx

would be finite. Using Fubini’s theorem to justify again the manipulations of §1,
we would then be able to write the double integral as

∑

γ∈{G(Q)}

vol
(
G(Q)γ\G(A)1γ

) ∫

G(A)1γ\G(A)1
f(x−1γx)dx.

As it happens, however, the summand corresponding to γ is often infinite.

Sometimes the volume ofG(Q)γ\G(A)1γ is infinite. Suppose that γ =

(
γ1 0
0 γ2

)
,

for a pair of distinct elements γ1 and γ2 in Q∗. Then

Gγ =

{(
y1 0
0 y2

)
: y1, y2 ∈ GL(1)

}
∼= GL(1)×GL(1),

so that

G(A)1γ
∼=
{
(y1, y2) ∈ (A∗)2 : |y1||y2| = 1

}
,

and

G(Q)γ\G(A)1γ
∼= (Q∗\A1)× (Q∗\A∗) ∼= (Q∗\A1)2 × (R∗)0.
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An invariant measure on the left hand quotient therefore corresponds to a Haar
measure on the abelian group on the right. Since this group is noncompact, the
quotient has infinite volume.

Sometimes the integral overG(A)1γ\G(A)1 diverges. Suppose that γ =

(
1 1
0 1

)
.

Then

G(A)γ =

{(
z y
0 z

)
: y ∈ A, z ∈ A∗

}

The computation of the integral∫

G(A)1γ\G(A)1
f(x−1γx)dx =

∫

G(A)γ\G(A)

f(x−1γx)dx

is a good exercise in understanding relations among the Haar measures d∗a, du and
dx on A∗, A, and G(A), respectively. One finds that the integral equals

∫

Gγ(A)\P0(A)

∫

P0(A)\G(A)

f(k−1p−1γpk)dℓpdk,

where P0(A) is the subgroup of upper triangular matrices
{
p =

(
a∗ u
0 b∗

)
: a∗, b∗ ∈ A∗, u ∈ A

}
,

with left Haar measure
dℓp = |a∗|−1da∗db∗du,

and dk is a Borel measure on the compact space P0(A)\G(A). The integral then
reduces to an expression

c(f)
∏

p

(1 − p−1)−1 = c(f)

(
∞∑

n=1

1

n

)
,

where

c(f) = c0

∫

P0(A)\G(A)

∫

A

f

(
k−1

(
1 u
0 1

)
k

)
dudk,

for a positive constant c0. In particular, the integral is generally infinite.
Observe that the nonconvergent terms in the case G = GL(2) both come from

conjugacy classes in GL(2,Q) that intersect the parabolic subgroup P0 of upper
triangular matrices. This suggests that rational parabolic subgroups are responsible
for the difficulties encountered in dealing with noncompact quotient. Our suspicion
is reinforced by the following characterization, discovered independently by Borel
and Harish-Chandra [BH] and Mostow and Tamagawa [MT]. For a general group
G over Q, the quotient G(Q)\G(A)1 is noncompact if and only if G has a proper
parabolic subgroup P defined over Q.

We review some basic properties of parabolic subgroups, many of which are
discussed in the chapter [Mur] in this volume. We are assuming now that G
is a general connected reductive group over Q. A parabolic subgroup of G is an
algebraic subgroup P such that P (C)\G(C) is compact. We consider only parabolic
subgroups P that are defined over Q. Any such P has a Levi decomposition P =
MNP , which is a semidirect product of a reductive subgroup M of G over Q

with a normal unipotent subgroup NP of G over Q. The unipotent radical NP is
uniquely determined by P , while the Levi component M is uniquely determined up
to conjugation by P (Q).
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Let P0 be a fixed minimal parabolic subgroup of G over Q, with a fixed Levi
decomposition P0 = M0N0. Any subgroup P of G that contains P0 is a parabolic
subgroup that is defined over Q. It is called a standard parabolic subgroup (relative
to P0). The set of standard parabolic subgroups of G is finite, and is a set of
representatives of the set of all G(Q)-conjugacy classes of parabolic subgroups over
Q. A standard parabolic subgroup P has a canonical Levi decomposition P =
MPNP , where MP is the unique Levi component of P that contains M0. Given
P , we can form the central subgroup AP = AMP

of MP , the real vector space
aP = aMP

, and the surjective homomorphism HP = HMP
from MP (A) onto aP .

In case P = P0, we often write A0 = AP0 , a0 = aP0 and H0 = HP0 .
In the example G = GL(n), one takes P0 to be the Borel subgroup of upper

triangular matrices. The unipotent radical N0 of P0 is the subgroup of unipotent
upper triangular matrices. For the Levi component M0, one takes the subgroup of
diagonal matrices. There is then a bijection

P ←→ (n1, . . . , np)

between standard parabolic subgroups P of G = GL(n) and partitions (n1, . . . , np)
of n. The group P is the subgroup of block upper triangular matrices associated
to (n1, . . . , np). The unipotent radical of P is the corresponding subgroup

NP =







In1 | ∗

. . .

0 |Inp








of block unipotent matrices, the canonical Levi component is the subgroup

MP =




m =



m1| 0

. . .

0 |mp


 : mi ∈ GL(ni)





of block diagonal matrices, while

AP =




a =



a1In1 | 0

. . .

0 |apInp


 : ai ∈ GL(1)




.

Naturally, Ik stands here for the identity matrix of rank k. The free abelian group
X(MP )Q attached to MP has a canonical basis of rational characters

χi : m −→ det(mi), m ∈MP , 1 ≤ i ≤ p.
We are free to use the basis 1

n1
χ1, . . . ,

1
np
χp of the vector space a∗P , and the corre-

sponding dual basis of aP , to identify both a∗P and aP with Rp. With this interpre-
tation, the mapping HP takes the form

HP (m) =

(
1

n1
log | det m1|, . . . ,

1

np
log | det mp|

)
, m ∈MP (A).

It follows that

HP (a) =
(
log |a1|, . . . , log |ap|

)
, a ∈ AP (A).
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For general G, we have a variant of the regular representation R for any
standard parabolic subgroup P . It is the regular representation RP of G(A) on
L2
(
NP (A)MP (Q)\G(A)

)
, defined by

(
RP (y)φ

)
(x) = φ(xy), φ ∈ L2

(
NP (A)MP (Q)\G(A)

)
, x, y ∈ G(A).

Using the language of induced representations, we can write

RP = Ind
G(A)
NP (A)MP (Q)(1NP (A)MP (Q)) ∼= Ind

G(A)
P (A)(1NP (A) ⊗RMP

),

where IndHK(·) denotes a representation of H induced from a subgroup K, and 1K
denotes the trivial one dimensional representation of K. We can of course integrate
RP against any function f ∈ C∞

c

(
G(A)

)
. This gives an operator RP (f) on the

Hilbert space L2
(
NP (A)MP (Q)\G(A)

)
. Arguing as in the special case R = RG of

§1, we find that RP (f) is an integral operator with kernel

(4.1) KP (x, y) =

∫

NP (A)

∑

γ∈MP (Q)

f(x−1γny)dn, x, y ∈ NP (A)MP (Q)\G(A).

We have seen that the diagonal value K(x, x) = KG(x, x) of the original kernel
need not be integrable over x ∈ G(Q)\G(A)1. We have also suggested that parabolic
subgroups are somehow responsible for this failure. It makes sense to try to modify
K(x, x) by adding correction terms indexed by proper parabolic subgroups P . The
correction terms ought to be supported on some small neighbourhood of infinity, so
that they do not affect the values taken by K(x, x) on some large compact subset
of G(Q)\G(A)1. The diagonal value KP (x, x) of the kernel of RP (f) provides a
natural function for any P . However, KP (x, x) is invariant under left translation
of x by the group NP (A)MP (Q), rather than G(Q). One could try to rectify this
defect by summing KP (δx, δx) over elements δ in P (Q)\G(Q). However, this sum
does not generally converge. Even if it did, the resulting function on G(Q)\G(A)1

would not be supported on a small neighbourhood of infinity. The way around
this difficulty will be to multiply KP (x, x) by a certain characteristic function on
NP (A)MP (Q)\G(A) that is supported on a small neighbourhood of infinity, and
which depends on a choice of maximal compact subgroup K of G(A).

In case G = GL(n), the product

K = O(n,R)×
∏

p

GL(n,Zp)

is a maximal compact subgroup of G(A). According to the Gramm-Schmidt or-
thogonalization lemma of linear algebra, we can write

GL(n,R) = P0(R)O(n,R).

A variant of this process, applied to the height function

‖v‖p = max{|vi|p : 1 ≤ i ≤ n}, v ∈ Qn
p ,

on Qn
p instead of the standard inner product on Rn, gives a decomposition

GL(n,Qp) = P0(Qp)GL(n,Zp),

for any p. It follows that GL(n,A) equals P0(A)K.
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These properties carry over to our general group G. We choose a suitable
maximal compact subgroup

K =
∏

v

Kv, Kv ⊂ G(Qv),

of G(A), with G(A) = P0(A)K [Ti, (3.3.2), (3.9], [A5, p. 9]. We fix K, and
consider a standard parabolic subgroup P of G. Since P contains P0, we obtain a
decomposition

G(A) = P (A)K = NP (A)MP (A)K = NP (A)MP (A)1AP (R)0K.

We then define a continuous mapping

HP : G(A) −→ aP

by setting

HP (nmk) = HMP
(m), n ∈ NP (A), m ∈MP (A), k ∈ K.

We shall multiply the kernel KP (x, x) by the preimage under HP of the character-
istic function of a certain cone in aP .

5. Roots and weights

We have fixed a minimal parabolic subgroup P0 of G, and a maximal compact
subgroup K of G(A). We want to use these objects to modify the kernel function
K(x, x) so that it becomes integrable. To prepare for the construction, as well as
for future geometric arguments, we review some properties of roots and weights.

The restriction homomorphism X(G)Q → X(AG)Q is injective, and has finite
cokernel. If G = GL(n), for example, the homomorphism corresponds to the injec-
tion z → nz of Z into itself. We therefore obtain a canonical linear isomorphism

(5.1) a∗P = X(MP )Q ⊗ R
∼−→ X(AP )Q ⊗ R.

Now suppose that P1 and P2 are two standard parabolic subgroups, with P1 ⊂
P2. There are then Q-rational embeddings

AP2 ⊂ AP1 ⊂MP1 ⊂MP2 .

The restriction homomorphism X(MP2)Q → X(MP1)Q is injective. It provides
a linear injection a∗P2

→֒ a∗P1
and a dual linear surjection aP1 7→ aP2 . We write

aP2

P1
⊂ aP1 for the kernel of the latter mapping. The restriction homomorphism

X(AP1)Q → X(AP2)Q is surjective, and extends to a surjective mapping from
X(AP1)Q ⊗ R to X(AP2)Q ⊗ R. It thus provides a linear surjection a∗P1

7→ a∗P2
,

and a dual linear injection aP2 →֒ aP1 . Taken together, the four linear mappings
yield split exact sequences

0 −→ a∗P2
⇄ a∗P1

−→ a∗P1
/a∗P2

−→ 0

and

0 −→ aP2

P1
−→ aP1 ⇄ aP2 −→ 0

of real vector spaces. We may therefore write

aP1 = aP2 ⊕ aP2

P1

and

a∗P1
= a∗P2

⊕ (aP2

P1
)∗.
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For any P , we write ΦP for the set of roots of (P,AP ). We also write nP for
the Lie algebra of NP . Then ΦP is a finite subset of nonzero elements in X(AP )Q

that parametrizes the decomposition

nP =
⊕

α∈ΦP

nα

of nP into eigenspaces under the adjoint action

Ad : AP −→ GL(nP )

of AP . By definition,

nα =
{
Xα ∈ nP : Ad(a)Xα = aαXα, a ∈ AP

}
,

for any α ∈ ΦP . We identify ΦP with a subset of a∗P under the canonical mappings

ΦP ⊂ X(AP )Q ⊂ X(AP )Q ⊗ R ≃ a∗P .

If H belongs to the subspace aG of aP , α(H) = 0 for each α ∈ ΦP , so ΦP is
contained in the subspace (aGP )∗ of a∗P . As is customary, we define a vector

ρP =
1

2

∑

α∈ΦP

(dim nα)α

in (aGP )∗. We leave the reader to check that left and right Haar measures on the
group P (A) are related by

dℓp = e2ρ(HP (p))drp, p ∈ P (A).

In particular, the group P (A) is not unimodular, if P 6= G.
We write Φ0 = ΦP0 . The pair

(V,R) =
(
(aGP0

)∗,Φ0 ∪ (−Φ0)
)

is a root system [Ser2], for which Φ0 is a system of positive roots. We write
W0 = WG

0 for the Weyl group of (V,R). It is the finite group generated by reflections
about elements in Φ0, and acts on the vector spaces V = (aGP0

)∗, a∗0 = a∗P0
, and

a0 = aP0 . We also write ∆0 ⊂ Φ0 for the set of simple roots attached to Φ0. Then
∆0 is a basis of the real vector space (aG0 )∗ = (aGP0

)∗. Any element β ∈ Φ0 can be
written uniquely

β =
∑

α∈∆0

nαα,

for nonnegative integers nα. The corresponding set

∆∨
0 = {α∨ : α ∈ ∆0}

of simple coroots is a basis of the vector space aG0 = aGP0
. We write

∆̂0 = {̟α : α ∈ ∆0}
for the set of simple weights, and

∆̂∨
0 = {̟∨

α : α ∈ ∆0}

for the set of simple co-weights. In other words, ∆̂0 is the basis of (aG0 )∗ dual to

∆∨
0 , and ∆̂∨

0 is the basis of aG0 dual to ∆0.
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Standard parabolic subgroups are parametrized by subsets of ∆0. More pre-
cisely, there is an order reversing bijection P ↔ ∆P

0 between standard parabolic
subgroups P of G and subsets ∆P

0 of ∆0, such that

aP =
{
H ∈ a0 : α(H) = 0, α ∈ ∆P

0

}
.

For any P , ∆P
0 is a basis of the space aPP0

= aP0 . Let ∆P be the set of linear forms

on aP obtained by restriction of elements in the complement ∆0−∆P
0 of ∆P

0 in ∆0.
Then ∆P is bijective with ∆0 −∆P

0 , and any root in ΦP can be written uniquely
as a nonnegative integral linear combination of elements in ∆P . The set ∆P is a
basis of (aGP )∗. We obtain a second basis of (aGP )∗ by taking the subset

∆̂P = {̟α : α ∈ ∆0 −∆P
0 }

of ∆̂0. We shall write
∆∨
P = {α∨ : α ∈ ∆P }

for the basis of aGP dual to ∆̂P , and

∆̂∨
P = {̟∨

α : α ∈ ∆P }
for the basis of aGP dual to ∆P . We should point out that this notation is not
standard if P 6= P0. For in this case, a general element α ∈ ∆P is not part of a
root system (as defined in [Ser2]), so that α∨ is not a coroot. Rather, if α is the
restriction to aP of the simple root β ∈ ∆0 −∆P

0 , α∨ is the projection onto aP of
the coroot β∨.

We have constructed two bases ∆P and ∆̂P of (aGP )∗, and corresponding dual

bases ∆̂∨
P and ∆∨

P of aGP , for any P . More generally, suppose that P1 ⊂ P2 are two

standard parabolic subgroups. Then we can form two bases ∆P2

P1
and ∆̂P2

P1
of (aP2

P1
)∗,

and corresponding dual bases (∆̂P2

P1
)∨ and (∆P2

P1
)∨ of aP2

P1
. The construction proceeds

in the obvious way from the bases we have already defined. For example, ∆P2

P1
is

the set of linear forms on the subspace aP2

P1
of aP1 obtained by restricting elements

in ∆P2
0 − ∆P1

0 , while ∆̂P2

P1
is the set of linear forms on aP2

P1
obtained by restricting

elements in ∆̂P1 − ∆̂P2 . We note that P1∩MP2 is a standard parabolic subgroup of
the reductive groupMP2 , relative to the fixed minimal parabolic subgroup P0∩MP2 .
It follows from the definitions that

aP1∩MP2
= aP1 , a

MP2

P1∩MP2
= aP2

P1
, ∆P1∩MP2

= ∆P2

P1
,

and
∆̂P1∩MP2

= ∆̂P2

P1
.

Consider again the example of G = GL(n). Its Lie algebra is the space Mn of
(n× n)-matrices, with the Lie bracket

[X,Y ] = XY − Y X,
and the adjoint action

Ad(g) : X −→ gXg−1, g ∈ G, X ∈Mn,

of G. The group

A0 =




a =



a1 0

. . .

0 an


 : ai ∈ GL(1)







5. ROOTS AND WEIGHTS 27

acts by conjugation on the Lie algebra

n0 = nP0 =








0 ∗ · · · ∗
. . .

. . .
...

. . . ∗
0 0








of NP0 , and

Φ0 = {βij : a −→ aia
−1
j , i < j}.

As linear functionals on the vector space

a0 =




u :



u1 0

. . .

0 un


 : ui ∈ R




,

the roots Φ0 take the form

βij(u) = ui − uj , i < j.

The decomposition of a general root in terms of the subset

∆0 = {βi = βi,i+1 : 1 ≤ i ≤ n− 1},
of simple roots is given by

βij = βi + · · ·+ βj−1, i < j.

The set of coroots equals

Φ∨
0 =

{
β∨
ij = ei − ej = (

j︷ ︸︸ ︷
0, . . . , 0, 1︸ ︷︷ ︸

i

, 0, . . . , 0,−1, 0, . . . , 0) : i < j
}
,

where we have identified a0 with the vector space Rn, equipped with the standard
basis e1, . . . , en. The simple coroots form the basis

∆∨
0 = {β∨

i = ei − ei+1 : 1 ≤ i ≤ n− 1}
of the subspace

aG0 = {u ∈ Rn :
∑

ui = 0}.
The simple weights give the dual basis

∆̂0 = {̟i : 1 ≤ i ≤ n− 1},
where

̟i(u) =
n− i
n

(u1 + · · ·+ ui)−
( i
n

)
(ui+1 + · · ·+ un).

The Weyl group W0 of the root system for GL(n) is the symmetric group Sn, acting
by permutation of the coordinates of vectors in the space a0

∼= Rn. The dot product
on Rn give a W -invariant inner product 〈·, ·〉 on both a0 and a∗0. It is obvious that

〈βi, βj〉 ≤ 0, i 6= j.

We leave to the reader the exercise of showing that

〈̟i, ̟j〉 ≥ 0, 1 ≤ i, j ≤ n− 1.
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Suppose that P ⊂ GL(n) corresponds to the partition (n1, . . . , np) of n. The
general embedding aP →֒ a0 we have defined corresponds to the embedding

t −→
(
t1, . . . , t1︸ ︷︷ ︸

n1

, t2, . . . , t2︸ ︷︷ ︸
n2

, . . . , tp, . . . , tp︸ ︷︷ ︸
np

)
, t ∈ Rp,

of Rp into Rn. It follows that

∆P
0 = {βi : i 6= n1 + · · ·+ nk, 1 ≤ k ≤ p− 1}.

Since ∆P is the set of restrictions to aP ⊂ a0 of elements in the set

∆0 −∆P
0 = {βn1 , βn1+n2 , . . .},

we see that

∆P = {αi : t→ ti − ti+1, 1 ≤ i ≤ p− 1, t ∈ Rp}.
The example of G = GL(n) provides algebraic intuition. It is useful for readers

less familiar with general algebraic groups. However, the truncation of the kernel
also requires geometric intuition. For this, the example of G = SL(3) is often
sufficient.

The root system for SL(3) is the same as for GL(3). In other words, we can
identify a0 with the two dimensional subspace

{u ∈ R3 :
∑

ui = 0}

of R3, in which case

∆0 = {β1, β2} ⊂ Φ0 = {β1, β2, β1 + β2},
in the notation above. We can also identify a0 isometrically with the two dimension
Euclidean plane. The singular (one-dimensional) hyperplanes, the coroots Φ∨

0 , and

the simple coweights (∆̂0)∨ are then illustrated in the familiar Figures 5.1 and 5.2.

β∨
1

β∨
2

β∨
1

+ β∨
2

aP1

aP2

Figure 5.1. The two simple coroots β∨
1 and β∨

2 are orthogonal to

the respective subspaces aP2 and aP1 of a0. Their inner product is

negative, and they span an obtuse angled cone.

There are four standard parabolic subgroups P0, P1, P2, and G, with P1 and P2

being the maximal parabolic subgroups such that ∆P1
0 = {β2} and ∆P2

0 = {β1}.
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̟∨
1

̟∨
2

Figure 5.2. The two simple coweights̟∨
1 and ̟∨

2 lie in the respec-

tive subspaces aP1 and aP2 . Their inner product is positive, and they

span an acute angled cone.

6. Statement and discussion of a theorem

Returning to the general case, we can now describe how to modify the function
K(x, x) on G(Q)\G(A). For a given standard parabolic subgroup P , we write τP
for the characteristic function of the subset

a+
P = {t ∈ aP : α(t) > 0, α ∈ ∆P }

of aP . In the case G = SL(3), this subset is the open cone generated by ̟∨
1 and

̟∨
2 in Figure 5.2 above. We also write τ̂P for the characteristic function of the

subset

{t ∈ aP : ̟(t) > 0, ̟ ∈ ∆̂P }
of aP . In case G = SL(3), this subset is the open cone generated by β∨

1 and β∨
2 in

Figure 5.1.
The truncation of K(x, x) depends on a parameter T in the cone a+

0 = a+
P0

that
is suitably regular, in the sense that β(T ) is large for each root β ∈ ∆0. For any
given T , we define
(6.1)

kT (x) = kT (x, f) =
∑

P

(−1)dim(AP /AG)
∑

δ∈P (Q)\G(Q)

KP (δx, δx)τ̂P
(
HP (δx) − T

)
.

This is the modified kernel, on which the general trace formula is based. A few
remarks might help to put it into perspective.

One has to show that for any x, the sum over δ in (6.1) may be taken over a
finite set. In the caseG = SL(2), the reader can verify the property as an exercise in
reduction theory for modular forms. In general, it is a straightforward consequence
[A3, Lemma 5.1] of the Bruhat decomposition for G and the construction by Borel
and Harish-Chandra of an approximate fundamental domain for G(Q)\G(A). (We
shall recall both of these results later.) Thus, kT (x) is given by a double sum over
(P, δ) in a finite set. It is a well defined function of x ∈ G(Q)\G(A).

Observe that the term in (6.1) corresponding to P = G is just K(x, x). In
case G(Q)\G(A)1 is compact, there are no proper parabolic subgroups P (over



30 JAMES ARTHUR

Q). Therefore kT (x) equals K(x, x) in this case, and the truncation operation is
trivial. In general, the terms with P 6= G represent functions on G(Q)\G(A)1 that
are supported on some neighbourhood of infinity. Otherwise said, kT (x) equals
K(x, x) for x in some large compact subset of G(Q)\G(A)1 that depends on T .

Recall that G(A) is a direct product of G(A)1 with AG(R)0. Observe also that
kT (x) is invariant under translation of x by AG(R)0. It therefore suffices to study
kT (x) as a function of x in G(Q)\G(A)1.

Theorem 6.1. The integral

(6.2) JT (f) =

∫

G(Q)\G(A)1
kT (x, f)dx

converges absolutely.

Theorem 6.1 does not in itself provide a trace formula. It is really just a first
step. We are giving it a central place in our discussion for two reasons. The state-
ment of the theorem serves as a reference point for outlining the general strategy.
In addition, the techniques required to prove it will be an essential part of many
other arguments.

Let us pause for a moment to outline the general steps that will take us to
the end of Part I. We shall describe informally what needs to be done in order to
convert Theorem 6.1 into some semblance of a trace formula.

Step 1. Find spectral expansions for the functions K(x, y) and kT (x) that are
parallel to the geometric expansions (1.1) and (6.1).

This step is based on Langlands’s theory of Eisenstein series. We shall describe
it in the next section.

Step 2. Prove Theorem 6.1.

We shall sketch the argument in §8.

Step 3. Show that the function

T −→ JT (f),

defined a priori for points T ∈ a+
0 that are highly regular, extends to a polynomial

in T ∈ a0.

This step allows us to define JT (f) for any T ∈ a0. It turns out that there is a
canonical point T0 ∈ a0, depending on the choice of K, such that the distribution
J(f) = JT0(f) is independent of the choice of P0 (though still dependent of the
choice of K). For example, if G = GL(n) and K is the standard maximal compact
subgroup of GL(n,A), T0 = 0. We shall discuss these matters in §9, making full
use of Theorem 6.1.

Step 4. Convert the expansion (6.1) of kT (x) in terms of rational conjugacy classes
into a geometric expansion of J(f) = JT0(f).

We shall give a provisional solution to this problem in §10, as a direct corollary
of the proof of Theorem 6.1.

Step 5. Convert the expansion of kT (x) in §7 in terms of automorphic represen-
tations into a spectral expansion of J(f) = JT0(f).

This problem turns out to be somewhat harder than the last one. We shall
give a provisional solution in §14, as an application of a truncation operator on
functions on G(Q)\G(A)1.
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We shall call the provisional solutions we obtain for the problems of Steps 4
and 5 the coarse geometric expansion and the coarse spectral expansion, following
[CLL]. The identity of these two expansions can be regarded as a first attempt at
a general trace formula. However, because the terms in the two expansions are still
of an essentially global nature, the identity is of little use as it stands. The general
problem of refining the two expansions into more tractible local terms will be left
until Part II. In order to give some idea of what to expect, we shall deal with the
easiest terms near the end of Part I.

In §11, we will rewrite the geometric terms attached to certain semisimple
conjugacy classes in G(Q). The distributions so obtained are interesting new linear
forms in f , known as weighted orbital integrals. In §15, we will rewrite the spectral
terms attached to certain induced cuspidal automorphic representations of G(A).
The resulting distributions are again new linear forms in f , known as weighted
characters. This will set the stage for Part II, where one of the main tasks will be
to write the entire geometric expansion in terms of weighted orbital integrals, and
the entire spectral expansion in terms of weighted characters.

There is a common thread to Part I. It is the proof of Theorem 6.1. For
example, the proofs of Corollary 10.1, Theorem 11.1, Proposition 12.2 and parts
(ii) and (iii) of Theorem 14.1 either follow directly from, or are strongly motivated
by, the proof of Theorem 6.1. Moreover, the actual assertion of Theorem 6.1 is the
essential ingredient in the proofs of Theorems 9.1 and 9.4, as well as their geometric
analogues in §10 and their spectral analogues in §14. We have tried to emphasize
this pattern in order to give the reader some overview of the techniques.

The proof of Theorem 6.1 itself has both geometric and analytic components.
However, its essence is largely combinatorial. This is due to the cancellation in
(6.1) implicit in the alternating sum over P . At the heart of the proof is the
simplest of all cancellation laws, the identity obtained from the binomial expansion
of
(
1 + (−1)

)n
.

Identity 6.2. Suppose that S is a finite set. Then

(6.3)
∑

F⊂S

(−1)|S|−|F | =

{
1 if S = ∅,
0 otherwise.

�

7. Eisenstein series

Eisenstein series are responsible for the greatest discrepancy between what we
need and what we can prove here. Either of the two main references [Lan5] or
[MW2] presents an enormous challenge to anyone starting to learn the subject.
Langlands’s survey article [Lan1] is a possible entry point. For the trace formula,
one can usually make do with a statement of the main theorems on Eisenstein
series. We give a summary, following [A2, §2].

The role of Eisenstein series is to provide a spectral expansion for the kernel
K(x, y). In general, the regular representation R of G(A) on L2

(
G(Q)\G(A)

)
does

not decompose discretely. Eisenstein series describe the continuous part of the
spectrum.

We write RG,disc for the restriction of the regular representation of G(A)1 to
the subspace L2

disc

(
G(Q)\G(A)1

)
of L2

(
G(Q)\G(A)1

)
that decomposes discretely.
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Since G(A) is a direct product of G(A)1 with AG(R)0, we can identify RG,disc

with the representation of G(A) on the subspace L2
disc

(
G(Q)AG(R)0\G(A)

)
of

L2
(
G(Q)AG(R)0\G(A)

)
that decomposes discretely. For any point λ ∈ a∗G,C, the

tensor product

RG,disc,λ(x) = RG,disc(x)e
λ(HG(x)), x ∈ G(A),

is then a representation of G(A), which is unitary if λ lies in ia∗G.
We have assumed from the beginning that the invariant measures in use satisfy

any obvious compatibility conditions. For example, if P is a standard parabolic
subgroup, it is easy to check that the Haar measures on the relevant subgroups of
G(A) can be chosen so that

∫

G(A)

f(x)dx

=

∫

K

∫

P (A)

f(pk)dℓpdk

=

∫

K

∫

MP (A)

∫

NP (A)

f(mnk)dndmdk

=

∫

K

∫

MP (A)1

∫

AP (R)0

∫

NP (A)

f(mank)dndadmdk,

for any f ∈ C∞
c

(
G(A)

)
. We are assuming implicitly that the Haar measures on

K and NP (A) are normalized so that the spaces K and NP (Q)\NP (A) each have
volume 1. The Haar measure dx on G(A) is then determined by Haar measures dm
and da on the groups MP (A)1 and AP (R)0. We write dH for the Haar measure on
aP that corresponds to da under the exponential map. We then write dλ for the
Haar measure on ia∗P that is dual to dH , in the sense that

∫

ia∗
P

∫

aP

h(H)e−λ(H)dHdλ = h(0),

for any function h ∈ C∞
c (aP ).

Suppose that P is a standard parabolic subgroup of G, and that λ lies in a∗P,C.
We write

y −→ IP (λ, y), y ∈ G(A),

for the induced representation

Ind
G(A)
P (A)(INP (A) ⊗RMP ,disc,λ)

of G(A) obtained from λ and the discrete spectrum of the reductive group MP .
This representation acts on the Hilbert space HP of measurable functions

φ : NP (A)MP (Q)AP (R)0\G(A) −→ C

such that the function

φx : m −→ φ(mx), m ∈MP (Q)\MP (A)1,

belongs to L2
disc

(
MP (Q)\MP (A)1

)
for any x ∈ G(A), and such that

‖φ‖2 =

∫

K

∫

MP (Q)\MP (A)1
|φ(mk)|2dmdk <∞.
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For any y ∈ G(A), IP (λ, y) maps a function φ ∈ HP to the function
(
IP (λ, y)φ

)
(x) = φ(xy)e(λ+ρP )(HP (xy))e−(λ+ρP )(HP (x)).

We have put the twist by λ into the operator IP (λ, y) rather than the underlying
Hilbert space HP , in order that HP be independent of λ. Recall that the function
eρP (HP (·)) is the square root of the modular function of the group P (A). It is in-
cluded in the definition in order that the representation IP (λ) be unitary whenever
the inducing representation is unitary, which is to say, whenever λ belongs to the
subset ia∗P of a∗P,C.

Suppose that

RMP ,disc
∼=
⊕

π

π ∼=
⊕

π

(⊗

v

πv

)

is the decomposition of RMP ,disc into irreducible representations π =
⊗
v
πv of

MP (A)/AP (R)0. The induced representation IP (λ) then has a corresponding de-
composition

IP (λ) ∼=
⊕

π

IP (πλ) ∼=
⊕

π

(⊗

v

IP (πv,λ)
)

in terms of induced representations IP (πv,λ) of the local groupsG(Qv). This follows
from the definition of induced representation, and the fact that

eλ(HMP (m)) =
∏

v

eλ(HMP (mv)),

for any point m =
∏
v
mv in MP (A). If λ ∈ ia∗P is in general position, all of

the induced representations IP (πv,λ) are irreducible. Thus, if we understand the
decomposition of the discrete spectrum of MP into irreducible representations of
the local groups MP (Qv), we understand the decomposition of the generic induced
representations IP (λ) into irreducible representations of the local groups G(Qv).

The aim of the theory of Eisenstein series is to construct intertwining operators
between the induced representations IP (λ) and the continuous part of the regular
representation R of G(A). The problem includes being able to construct intertwin-
ing operators among the representations IP (λ), as P and λ vary. The symmetries
among pairs (P, λ) are given by the Weyl sets W (aP , aP ′) of Langlands. For a given
pair P and P ′ of standard parabolic subgroups, W (aP , aP ′) is defined as the set of
distinct linear isomorphisms from aP ⊂ a0 onto aP ′ ⊂ a0 obtained by restriction
of elements in the Weyl group W0. Suppose, for example that G = GL(n). If
P and P ′ correspond to the partitions (n1, . . . , np) and (n′

1, . . . , n
′
p′) of n, the set

W (aP , aP ′) is empty unless p = p′, in which case

W (aP , aP ′) ∼= {s ∈ Sp : n′
i = ns(i), 1 ≤ i ≤ p}.

In general, we say that P and P ′ are associated if the set W (aP , aP ′) is nonempty.
We would expect a pair of induced representations IP (λ) and IP ′(λ′) to be equiva-
lent if P and P ′ belong to the same associated class, and λ′ = sλ for some element
s ∈W (aP , aP ′).

The formal definitions apply to any elements x ∈ G(A), φ ∈ HP , and λ ∈ a∗M,C.
The associated Eisenstein series is

(7.1) E(x, φ, λ) =
∑

δ∈P (Q)\G(Q)

φ(δx)e(λ+ρP )(HP (δx)).
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If s belongs to W (aP , aP ′), the operator

M(s, λ) : HP −→ HP ′

that intertwines IP (λ) with IP ′(sλ) is defined by

(7.2)
(
M(s, λ)φ

)
(x) =

∫
φ(w−1

s nx)e(λ+ρP )(HP (w−1
s nx)e(−sλ+ρP ′ )(HP ′ (x))dn,

where the integral is taken over the quotient

NP ′(A) ∩ wsNP (A)w−1
s \NP ′(A),

and ws is any representative of s in G(Q). A reader so inclined could motivate both
definitions in terms of finite group theory. Each definition is a formal analogue of
a general construction by Mackey [Ma] for the space of intertwining operators

between two induced representations IndHH1
(ρ1) and IndHH2

(ρ2) of a finite group H .
It follows formally from the definitions that

E
(
x, IP (λ, y)φ, λ

)
= E(xy, φ, λ)

and
M(s, λ)IP (λ, y) = IP ′(sλ, y)M(s, λ).

These are the desired intertwining properties. However, (7.1) and (7.2) are defined
by sums and integrals over noncompact spaces. They do not generally converge. It
is this fact that makes the theory of Eisenstein series so difficult.

Let H0
P be the subspace of vectors φ ∈ HP that are K-finite, in the sense that

the subset
{IP (λ, k)φ : k ∈ K}

of HP spans a finite dimensional space, and that lie in a finite sum of irreducible
subspaces ofHP under the action IP (λ) of G(A). The two conditions do not depend
on the choice of λ. Taken together, they are equivalent to the requirement that the
function

φ(x∞xfin), x∞ ∈ G(R), xfin ∈ G(Afin),

be locally constant in xfin, and smooth, KR-finite and Z∞-finite in x∞, where Z∞

denotes the algebra of bi-invariant differential operators on G(R). The space H0
P

is dense in HP .
For any P , we can form the chamber

(a∗P )+ =
{
Λ ∈ a∗P : Λ(α∨) > 0, α ∈ ∆P

}

in a∗P .

Lemma 7.1 (Langlands). Suppose that φ ∈ H0
P and that λ lies in the open

subset {
λ ∈ a∗P,C : Re(λ) ∈ ρP + (a∗P )+

}

of a∗P,C. Then the sum (7.1) and integral (7.2) that define E(x, φ, λ) and(
M(s, λ)φ

)
(x) both converge absolutely to analytic functions of λ. �

For spectral theory, one is interested in points λ such that IP (λ) is unitary,
which is to say that λ belongs to the real subspace ia∗P of a∗P,C. This is outside the

domain of absolute convergence for (7.1) and (7.2). The problem is to show that
the functions E(x, φ, λ) and M(s, λ)φ have analytic continuation to this space. The
following theorem summarizes Langlands’ main results on Eisenstein series.
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Theorem 7.2 (Langlands). (a) Suppose that φ ∈ H0
P . Then E(x, φ, λ) and

M(s, λ)φ can be analytically continued to meromorphic functions of λ ∈ a∗P,C that
satisfy the functional equations

(7.3) E
(
x,M(s, λ)φ, sλ

)
= E(x, φ, λ)

and

(7.4) M(ts, λ) = M(t, sλ)M(s, λ), t ∈W (aP ′ , aP ′′).

If λ ∈ ia∗P , both E(x, φ, λ) and M(s, λ) are analytic, and M(s, λ) extends to a
unitary operator from HP to HP ′ .

(b) Given an associated class P = {P}, define L̂P to be the Hilbert space of
families of measurable functions

F = {FP : ia∗P −→ HP , P ∈ P}
that satisfy the symmetry condition

FP ′(sλ) = M(s, λ)FP (λ), s ∈W (aP , aP ′),

and the finiteness condition

‖F‖2 =
∑

P∈P

n−1
P

∫

ia∗
P

‖FP (λ)‖2dλ <∞,

where

nP =
∑

P ′∈P

|W (aP , aP ′)|

for any P ∈ P. Then the mapping that sends F to the function
∑

P∈P

n−1
P

∫

ia∗
P

E
(
x, FP (λ), λ

)
dλ, x ∈ G(A),

defined whenever FP (λ) is a smooth, compactly supported function of λ with values

in a finite dimensional subspace of H0
P , extends to a unitary mapping from L̂P onto

a closed G(A)-invariant subspace L2
P

(
G(Q)\G(A)

)
of L2

(
G(Q)\G(A)

)
. Moreover,

the original space L2
(
G(Q)\G(A)

)
has an orthogonal direct sum decomposition

(7.5) L2
(
G(Q)\G(A)

)
=
⊕

P

L2
P

(
G(Q)\G(A)

)
.

�

Theorem 7.2(b) gives a qualitative description of the decomposition of R. It
provides a finite decomposition

R =
⊕

P

RP ,

where RP is the restriction of R to the invariant subspace L2
P

(
G(Q)\G(A)

)
of

L2
(
G(Q)\G(A)

)
. It also provides a unitary intertwining operator from RP onto

the representation R̂P of G(A) on L̂P defined by
(
R̂P(y)F

)
P
(λ) = IP (λ, y)FP (λ), F ∈ L̂2

P , P ∈ P .
The theorem is thus compatible with the general intuition we retain from the theory
of Fourier series and Fourier transforms.
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Let BP be an orthonormal basis of the Hilbert space HP . We assume that
every φ ∈ BP lies in the dense subspace H0

P . It is a direct consequence of Theorem
7.2 that the kernel

K(x, y) =
∑

γ∈G(Q)

f(x−1γy), f ∈ C∞
c

(
G(A)

)
,

of R(f) also has a formal expansion

(7.6)
∑

P

n−1
P

∫

ia∗
P

∑

φ∈BP

E
(
x, IP (λ, f)φ, λ

)
E(y, φ, λ)dλ

in terms of Eisenstein series. A reader to whom this assertion is not clear might
consider the analogous assertion for the case H = R and Γ = {1}. If f belongs to
C∞
c (R), the spectral expansion

K(x, y) = f(−x+ y) =
1

2πi

∫

iR

πλ(f)eλxeλydλ, f ∈ C∞
c (R),

of the kernel of R(f), in which

πλ(f) =

∫

R

f(u)eλudu,

is just the inverse Fourier transform of f .
In the case of Eisenstein series, one has to show that the spectral expansion of

K(x, y) converges in order to make the formal argument rigorous. In general, it is
not feasible to estimate E(x, φ, λ) as a function of λ ∈ ia∗P . What saves the day is
the following simple idea of Selberg, which exploits only the underlying functional
analysis.

One first shows that f may be written as a finite linear combination of con-
volutions h1 ∗ h2 of functions hi ∈ Crc

(
G(A)

)
, whose archimedean components are

differentiable of arbitrarily high order r. An application of the Holder inequality to
the formal expansion (7.6) establishes that it is enough to prove the convergence in

the special case that f = hi ∗h∗i , where h∗i (x) = hi(x−1), and x = y. The integrand
in (7.6) is then easily seen to be nonnegative. In fact, the double integral over λ and
φ can be expressed as an increasing limit of nonnegative functions, each of which
is the kernel of the restriction of R(f) to an invariant subspace. Since this limit is
bounded by the nonnegative function

Ki(x, x) =
∑

γ∈G(Q)

(hi ∗ h∗i )(x−1γx),

the integral converges. (See [A3, p. 928–934].)
There is also a spectral expansion for the kernel

KQ(x, y) =

∫

NQ(A)

∑

γ∈MQ(Q)

f(x−1γny)dn

of RQ(f), for any standard parabolic subgroup Q. One has only to replace the
multiplicity nP = nGP and the Eisenstein series E(x, φ, λ) = EGP (x, φ, λ) in (7.6) by

their relative analogues nQP = nMQ∩P and

EQP (x, φ, λ) =
∑

δ∈P (Q)\Q(Q)

φ(δx)e(λ+ρP )(HP (δx)),
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for each P ⊂ Q. Since P\Q = MQ∩P\MQ, the analytic continuation of EQP (x, φ, λ)
follows from Theorem 7.2(a), with (MQ,MQ ∩ P ) in place of (G,P ). The spectral
expansion of KQ(x, y) is

∑

P⊂Q

(nQP )−1

∫

ia∗
P

∑

φ∈BP

EQP
(
x, IP (λ, f)φ, λ

)
EQP (y, φ, λ)dλ.

If we substitute this formula into (6.1), we obtain a spectral expansion for the
truncated kernel kT (x). The two expansions of kT (x) ultimately give rise to two
formulas for the integral JT (f). They are thus the source of the trace formula.

8. On the proof of the theorem

Theorem 6.1 represents a significant step in the direction of a trace formula.
It is time now to discuss its proof. We shall outline the main argument, proving
as much as possible. There are some lemmas whose full justification will be left to
the references. However, in these cases we shall try to give the basic geometric idea
behind the proof.

Suppose that T1 belongs to the real vector space a0, and that ω is a compact
subset of NP0(A)MP0(A)1. The subset

SG(T1) = SG(T1, ω)

=
{
x = pak : p ∈ ω, a ∈ A0(R)0, k ∈ K, β

(
HP0(a)− T1

)
> 0, β ∈ ∆0

}

ofG(A) is called the Siegel set attached to T1 and ω. The inequality in the definition
amounts to the assertion that

τP0

(
HP0(x) − T1

)
= τP0

(
HP0(a)− T1

)
= 1.

For example, if G = SL(3), the condition is that the point HP0(x) in the two
dimensional vector space a0 lies in the open cone in Figure 8.1.

Theorem 8.1 (Borel, Harish-Chandra). One can choose T1 and ω so that

G(A) = G(Q)SG(T1, ω).

This is one of the main results in the foundational paper [BH] of Borel and
Harish-Chandra. It was formulated in the adelic terms stated here in [Bor1]. The
best reference might be the monograph [Bor2]. �

From now on, T1 and ω are to be fixed as in Theorem 8.1. Suppose that T ∈ a0

is a truncation parameter, in the earlier sense that β(T ) is large for each β ∈ ∆0.
We then form the truncated Siegel set

SG(T1, T ) = SG(T1, T, ω) =
{
x ∈ SG(T1, ω) : ̟

(
HP0(x) − T

)
≤ 0, ̟ ∈ ∆̂0

}
.

For example, if G = SL(3), SG(T1, T ) is the set of elements x ∈ SG(T1) such that
HP0(x) lies in the relatively compact subset of a0 illustrated in Figure 8.2.

We write FG(x, T ) for the characteristic function in x of the projection of
SG(T1, T ) onto G(Q)\G(A). Since G(A)1 ∩ SG(T1, T ) is compact, FG(·, T ) has
compact support on G(Q)\G(A)1, and is invariant under translation by AG(R)0.

More generally, suppose that P is a standard parabolic subgroup. We define
the sets SP (T1) = SP (T1, ω) and SP (T1, T ) = SP (T1, T, ω) and the characteristic

function FP (x, T ) exactly as above, but with ∆P0 , ∆̂P0 and G(Q)\G(A) replaced by



38 JAMES ARTHUR

T1

Figure 8.1. The shaded region is the projection onto a0 of a Siegel

set for G = SL(3). It is the translate of the open cone a+
P0

by a point

T1 ∈ a0. If T1 is sufficiently regular in the negative cone (−a+
P0

), the

Siegel set is an approximate fundamental domain.

T1

T

Figure 8.2. The shaded region represents a truncation of the Siegel

set at a point T ∈ a+
P0

. The image of the truncated Siegel set in

SL(3,Q)\SL(3,A) is compact.

∆P
P0

, ∆̂P
P0

and P (Q)\G(A) respectively. In particular, FP (x, T ) is the characteristic
function of a subset of P (Q)\G(A). More precisely, if

x = nmak, n ∈ NP (A), m ∈MP (A)1, a ∈ AP (R)0, k ∈ K,
then

FP (x, T ) = FP (m,T ) = FMP (m,T ).

Lemma 8.2. For any x ∈ G(A), we have
∑

P

∑

δ∈P (Q)\G(Q)

FP (δx, T )τP
(
HP (δx)

)
= 1.
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In case G = SL(2), the lemma follows directly from classical reduction theory,
as we shall see in Figure 8.3 below. The general proof is established from properties
of finite dimensional Q-rational representations ofG. (See [A3, Lemma 6.4], a result
that is implicit in Langlands monograph, for example in [Lan5, Lemma 2.12].)

Lemma 8.2 can be restated geometrically in terms of the subsets

GP (T ) =
{
x ∈ P (Q)\G(A) : FP (x, T ) = 1, τP

(
HP (x)− T

)
= 1
}

of P (Q)\G(A). The lemma asserts that for any P , the projection of P (Q)\G(A)
onto G(Q)\G(A) maps GP (T ) injectively onto a subset GP (T ) of G(Q)\G(A),
and that G(Q)\G(A) is a disjoint union over P of the sets GP (T ). Otherwise
said, G(Q)\G(A)1 has a partition parametrized by the set of standard parabolic
subgroups, which separates the problem of noncompactness from the topological
complexity of G(Q)\G(A)1. The subset corresponding to P = G is compact but
topologically complex, while the subset corresponding to P = P0 is topologically
simple but highly noncompact. The subset corresponding to a group P 6∈ {P0, G} is
mixed, being a product of a compact set of intermediate complexity with a simple
set of intermediate degree of noncompactness. The partition of G(Q)\G(A)1 is,
incidentally, closely related to the compactification of this space defined by Borel
and Serre.

Consider the case that G = SL(2). If K is the standard maximal compact
subgroup of SL(2,A), Theorem 2.1(a) tells us that

SL(2,Q)\SL(2,A)/K ∼= SL(2,Z)\SL(2,R)/SO(2) ∼= SL(2,Z)\H,

where H ∼= SL(2,R)/SO(2) is the upper half plane. Since they are right K-
invariant, the two sets GP (T ) in this case may be identified with subsets of
SL(2,Z)\H, which we illustrate in Figure 8.3. The darker region in the figure
represents the standard fundamental domain for SL(2,Z) in H. Its intersection
with the lower bounded rectangle equals GG(T ), while its intersection with the
upper unbounded rectangle equals GP0(T ). The larger unbounded rectangle repre-
sents a Siegel set, and its associated truncation. These facts, together with Lemma
8.2, follow in this case from a basic fact from classical reduction theory. Namely,
if γ ∈ SL(2,Z) and z ∈ H are such that the y-coordinates of both z and γz are
greater than eT , then γ is upper triangular.

For another example, consider the case that G = SL(3). In this case there
are four sets, corresponding to the four standard parabolic subgroups P0, P1, P2

and G. In Figure 8.4, we illustrate the partition of G(Q)\G(A)1 by describing the
corresponding partition of the image in a0 of the Siegel set S(T1). �

Lemma 8.2 is a critical first step in the proof of Theorem 6.1. We shall actually
apply it in a slightly different form. Suppose that P1 ⊂ P . Then

P1\P = (P1 ∩MP )NP \MPNP ∼= P1 ∩MP \MP .

We write τPP1
= τP1∩MP

and τ̂PP1
= τ̂P1∩MP

. We shall regard these two functions as

characteristic functions on a0 that depend only on the projection of a0 onto aP2

P1
,

relative to the decomposition

a0 = aP1
0 ⊕ aP2

P1
⊕ aP2 .



40 JAMES ARTHUR

1/2−1/2 1−1

y = eT

y = eT1

GG(T )

GP0(T )

Figure 8.3. An illustration for H = SL(2,R)/SO(2,R) of a stan-

dard fundamental domain and its truncation at a large positive num-

ber T , together with the more tractible Siegel set and its associated

truncation.

T1

T

P = P0

P = P2

P = P1P = G

Figure 8.4. A partition of the region in Figure 8.1 into four sets,

parametrized by the four standard parabolic subgroups P of SL(3).
The set corresponding to P = P0 is the truncated region in Figure

8.2.

If P is fixed, we obtain the identity

(8.1)
∑

{P1:P1⊂P}

∑

δ1∈P1(Q)\P (Q)

FP1(δ1x, T )τPP1

(
HP1(δ1x)− T

)
= 1
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by applying Lemma 8.2 to MP instead of G, noting at the same time that

FP1(y, T ) = FMP1 (m,T )

and

HP1(y) = HMP1
(m),

for any point

y = nmk, n ∈ NP (A), m ∈MP (A), k ∈ K.

We can now begin the proof of Theorem 6.1. We write

kT (x) =
∑

P

(−1)dim(AP /AG)
∑

δ∈P (Q)\G(Q)

KP (δx, δx)τ̂P
(
HP (δx)− T

)

=
∑

P

(−1)dim(AP /AG)
∑

δ

( ∑

P1⊂P

∑

δ1∈P1(Q)\P (Q)

FP1(δ1δx, T )τPP1

(
HP1(δ1δx) − T

))

· τ̂P
(
HP (δx)− T

)
KP (δx, δx),

by substituting (8.1) into the definition of kT (x). We then write

KP (δx, δx) = KP (δ1δx, δ1δx)

and

τ̂P
(
HP (δx) − T

)
= τ̂P

(
HP (δ1δx)− T

)
,

since both functions are left P (Q)-invariant. Combining the double sum over δ and
δ1 into a single sum over δ ∈ P1(Q)\G(Q), we write kT (x) as the sum over pairs
P1 ⊂ P of the product of (−1)dim(AP /AG) with

∑

δ∈P1(Q)\G(Q)

FP1(δx, T )τPP1

(
HP1(δx) − T

)
τ̂P
(
HP (δx)− T

)
KP (δx, δx).

The next step is to consider the product

τPP1

(
HP1(δx)− T

)
τ̂P
(
HP (δx) − T

)
= τPP1

(H1)τ̂P (H1),

for the vector

H1 = HP1(δx)− TP1

in aP1 . (We have written TP1 for the projection of T onto aP1 .) We claim that

τPP1
(H1)τ̂P (H1) =

∑

{P2,Q:P⊂P2⊂Q}

(−1)dim(AP2/AQ)τQP1
(H1)τ̂Q(H1),

for fixed groups P1 ⊂ P . Indeed, for a given pair of parabolic subgroups P ⊂ Q,
the set of P2 with P ⊂ P2 ⊂ Q is bijective with the collection of subsets ∆P2

P of

∆Q
P . Since

(−1)dim(AP2/AQ) = (−1)|∆
Q

P
|−|∆

P2
P

|,

the claim follows from Identity 6.2. We can therefore write

(8.2) τPP1
(H1)τ̂P (H1) =

∑

{P2:P2⊃P}

σP2

P1
(H1),

where

σP2

P1
(H1) =

∑

{Q:Q⊃P2}

(−1)dim(AP2/AQ)τQP1
(H1)τ̂Q(H1).
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Lemma 8.3. Suppose that P1 ⊂ P2, and that

H1 = H2
1 +H2, H2

1 ∈ aP2

P1
, H2 ∈ aGP2

,

is a point in the space aGP1
= aP2

P1
⊕aGP2

. The function σP2

P1
(H1) then has the following

properties.
(a) σP2

P1
(H1) equals 0 or 1.

(b) If σP2

P1
(H1) = 1, then τP2

P1
(H2

1 ) = 1, and ‖H2‖ ≤ c‖H2
1‖, for a positive

constant c that depends only on P1 and P2.

The proof of Lemma 8.3 is a straightforward analysis of roots and weights. It
is based on the intuition gained from the example of G = SL(3), P1 = P0, and P2 a
(standard) maximal parabolic subgroup. For the general case, we refer the reader

to Lemma 6.1 of [A3], which gives an explicit description of the function σP2

P1
from

which the conditions (a) and (b) are easily inferred. In the case of the example, Q
is summed over the set {P2, G}, and we obtain a difference

σP2

P1
(H1) = σP2

P0
(H1) = τP2

P0
(H1)τ̂P2 (H1)− τP0(H1)

of two characteristic functions. The first characteristic function is supported on
the open cone generated by the vectors β∨

1 and ̟∨
2 in Figure 8.5. The second

characteristic function is supported on the open cone generated by ̟∨
1 and ̟∨

2 .

The difference σP2

P1
(H1) is therefore the characteristic function of the half open cone

generated by β∨
1 and ̟∨

1 , the region shaded in Figure 8.5. It is obvious that this
function satisfies the conditions (i) and (ii).

β∨
1

̟∨
2

̟∨
1

HH2

H2

1

Figure 8.5. The shaded region is the complement in the upper right

hand quadrant of the acute angled cone spanned by ̟∨
1 and ̟∨

2 . It

represents the support of the characteristic function σP2

P1
(H1) attached

to G = SL(3), P1 = P0 minimal, and P2 maximal. This function has

compact support in the horizontal component H2 of H1, and semi-

infinite support in the vertical component H2
1 .

�
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We have established that kT (x) equals
∑

P1⊂P

(−1)dim(AP /AG)
∑

δ∈P1(Q)\G(Q)

FP1(δx, T )·

·
( ∑

{P2:P2⊃P}

σP2

P1

(
HP1(δx)− T

))
KP (δx, δx).

Therefore kT (x) = kT (x, f) has an expansion

(8.3)
∑

P1⊂P2

∑

δ∈P1(Q)\G(Q)

FP1(δx, T )σP2

P1

(
HP1(δx)− T

)
kP1,P2(δx),

where kP1,P2(x) = kP1,P2(x, f) is the value at y = x of the alternating sum

KP1,P2(x, y) =
∑

{P :P1⊂P⊂P2}

(−1)dim(AP /AG)KP (x, y)(8.4)

=
∑

P

(−1)dim(AP /AG)
∑

γ∈MP (Q)

∫

NP (A)

f(x−1γny)dn.

The function

χT (x) = χTP1,P2
(x) = FP1(x, T )σP2

P1

(
HP1(x)− T

)

takes values 0 or 1. We can therefore write

|kT (x)| ≤
∑

P1⊂P2

∑

δ∈P1(Q)\G(Q)

χT (δx)|kP1,P2(δx)|.

It follows that

(8.5)

∫

G(Q)\G(A)1
|kT (x)|dx ≤

∑

P1⊂P2

∫

P1(Q)\G(A)1
χT (x)|kP1,P2(x)|dx.

Suppose that the variable of integration x ∈ P1(Q)\G(A)1 on the right hand side
of this inequality is decomposed as

(8.6) x = p1a1k,

and

(8.7) HP1(a1) = H2
1 +H2, H2

1 ∈ aP2

P1
, H2 ∈ aGP2

,

where p1 ∈ P1(Q)\MP1(A)1NP1(A), a1 ∈ AP1(R)0 ∩ G(A)1, and k ∈ K. The
integrand is then compactly supported in p1, k and H2. We need only study its
behaviour in H2

1 , for points H2
1 with τP2

P1
(H2

1 − T ) > 0. This is the heart of the
proof. It is where we exploit the cancellation implicit in the alternating sum over
P .

We claim that the sum over γ ∈MP (Q) in the formula for

kP1,P2(x) = KP1,P2(x, x)

can be restricted to the subset P1(Q) ∩MP (Q) of MP (Q). More precisely, given
standard parabolic subgroups P1 ⊂ P ⊂ P2, a point T ∈ a+

0 with β(T ) large
(relative to the support of f) for each β ∈ ∆0, and a point x ∈ P1(Q)\G(A)1 with
χT (x) 6= 0, we claim that

∫

NP (A)

f(x−1γnx)dn = 0,
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for any element γ in the complement of P1(Q) in MP (Q).
Consider the example that G = SL(2), P1 = P0, and P = P2 = G. Then

NP = NG = {1}. Suppose that γ belongs to the set

MP (Q)− P1(Q) = G(Q)− P0(Q).

Then γ is of the form

(
∗ ∗
c ∗

)
, for some element c ∈ Q∗. Suppose that x is such

that χT (x) 6= 0. Then

x = p1a1k, p1 =

(
u1 ∗
0 u−1

1

)
, a1 =

(
er 0
0 e−r

)
, k ∈ K,

for an element u1 ∈ A∗ with |u1| = 1 and a real number r that is large. We see that
∫

NP (A)

f(x−1γnx)dn = f(x−1γx)

= f

(
k−1

(
er 0
0 e−r

)−1(
u1 0
0 u−1

1

)−1(∗ ∗
c ∗

)(
u1 ∗
0 u−1

1

)(
er 0
0 e−r

)
k

)

= f

(
k−1

(
∗ ∗

u2
1e

2rc ∗

)
k

)
.

Since f is compactly supported, and |u2
1e

2rc| = e2r is large, the last expression
vanishes. The claim therefore holds in the special case under consideration.

The claim in general is established on p. 944 of [A3]. Taking it now for granted,
we can then replace the sum over MP (Q) in the expression for kP1,P2(x) by a
sum over P1(Q) ∩ MP (Q). But P1(Q) ∩ MP (Q) equals MP1(Q)NP

P1
(Q), where

NP
P1

= NP1 ∩MP is the unipotent radical of the parabolic subgroup P1 ∩MP of
MP . We may therefore write kP1,P2(x) as

∑

{P :P1⊂P⊂P2}

(−1)dim(AP /AG)
∑

µ∈MP1 (Q)

∑

ν∈NP
P1

(Q)

∫

NP (A)

f(x−1µνnx)dn.

Now the restriction of the exponential map

exp : nP1 = nPP1
⊕ nP −→ NP1 = NP

P1
NP

is an isomorphism of algebraic varieties over Q, which maps the Haar measure dx1

on nP1(A) to the Haar measure dn1 on NP1(A). This allows us to write kP1,P2(x)
as

∑

µ∈MP1 (Q)

( ∑

P :P1⊂P⊂P2}

(−1)dim(AP /AG)
∑

ζ∈nP
P1

(Q)

∫

nP (A)

f
(
x−1µ exp(ζ +X)x

)
dX
)
.

There is one more operation to be performed on our expression for kP1,P2(x).
We shall apply the Poisson summation formula for the locally compact abelian
group nPP1

(A) to the sum over the discrete cocompact subgroup nPP1
(Q). We identify

nPP1
with dim(nPP1

)-copies of the additive group by choosing a rational basis of root

vectors. We can then identify nPP1
(A) with its dual group by means of the standard

bilinear form 〈·, ·〉 on Adim(nPP1
) and a nontrivial additive character ψ on A/Q. We
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obtain an expression

∑

µ

∑

P

(−1)dim(AP /AG)
∑

ξ∈nP
P1

(Q)

∫

nP1 (A)

f
(
x−1µ exp(X1)x

)
ψ
(
〈ξ,X1〉

)
dX1

for kP1,P2(x). But nPP1
(Q) is contained in nP2

P1
(Q), for any P with P1 ⊂ P ⊂ P2. As

P varies, certain summands will occur more than once, with differing signs. This
allows us at last to effect the cancellation given by the alternating sum over P . Set

nP2

P1
(Q)′ =

{
ξ ∈ nP2

P1
(Q) : ξ /∈ nPP1

(Q), for any P ( P2

}
.

It then follows from Identity 6.2 that kP1,P2(x) equals
(8.8)

(−1)dim(AP2/AG)
∑

µ∈MP1 (Q)

∑

ξ∈n
P2
P1

(Q)′

(∫

nP1 (A)

f(x−1µ expX1x)ψ
(
〈ξ,X1〉

)
dX1

)
.

We have now obtained an expression for kP1,P2(x, x) that will be rapidly de-
creasing in the coordinate H2

1 of x, relative to the decompositions (8.6) and (8.7).
The main reason is that the integral

hx,µ(Y1) =

∫

nP1 (A)

f(x−1µ expX1x)ψ
(
〈Y1, X1〉

)
dX1

is a Schwartz-Bruhat function of Y1 ∈ nP1(A). This function varies smoothly with
x ∈ G(A), and is finitely supported in µ ∈ MP1(Q), independently of x in any
compact set.

We substitute the formula (8.8) for kP1,P2(x) into the right hand side of (8.5),
and then decompose the integral over x according to the (8.6). We deduce that the
the integral ∫

G(Q)\G(A)1
|kT (x)|dx

is bounded by a constant multiple of

(8.9)
∑

P1⊂P2

∑

µ∈MP1 (Q)

∑

ξ∈n
P2
P1

(Q)′

sup
y

∫ ∣∣hy,µ
(
Ad(a1)ξ

)∣∣da1,

where the integral is taken over the set of elements a1 in AP1(R)0 ∩ G(A)1 with

σP2

P1

(
HP1(a1) − T

)
= 1, and the supremum is taken over the compact subset of

elements

y = a−1
1 p1a1k, p1 ∈ P1(Q)\MP1(A)1NP1(A), a ∈ AP1(R)0 ∩G(A)1, k ∈ K,

in G(A)1 with FP1(p1, T ) = σP2

P1

(
HP1(a1) − T

)
= 1. We have used two changes

of variables of integration here, with complementary Radon-Nikodym derivatives,
which together have allowed us to write

dX1dx = d(a−1
1 X1a1)dp1da1dk, x = p1a1k.

The mapping Ad(a1) in (8.9) acts by dilation on ξ. We leave the reader to show
that this property implies that (8.9) is finite, and hence that the integral of |kT (x)|
converges. (See [A3, Theorem 7.1].) This completes our discussion of the proof of
Theorem 6.1. �
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We have seen that Lemma 8.3 is an essential step in the proof of Theorem
6.1. There is a particularly simple case of this lemma that is important for other
combinatorial arguments. It is the identity

(8.10)
∑

{P :P1⊂P}

(−1)dim(AP1/AP )τPP1
(H1)τ̂P (H1) =

{
0, if P1 6= G,

1, if P1 = G,

obtained by setting P2 = P1. The identity holds for any standard parabolic sub-
group P1 and any point H1 ∈ aP1 . Indeed, the left hand side of (8.10) equals

σP1

P1
(H1), so the identity follows from condition (ii) of Lemma 8.3.
There is also a parallel identity

(8.11)
∑

{P :P1⊂P}

(−1)dim(AP1/AP )τ̂PP1
(H1)τP (H1) =

{
0, if P1 6= G,

1, if P1 = G,

related by inversion to (8.10). To see this, it is enough to consider the case that P1

is proper in G. One can then derive (8.11) from (8.10) by evaluating the expression
∑

{P,Q:P1⊂P⊂Q}

(−1)dim(AP /AQ)τ̂PP1
(H1)τ

Q
P (H1)τ̂Q(H1)

as two different iterated sums. For if one takes Q to index the inner sum, and
assumes inductively that (8.11) holds whenever G is replaced by a proper Levi
subgroup, one finds that the expression equals the sum of τ̂P1(H1) with the left
hand side of (8.11). On the other hand, by taking the inner sum to be over P ,
one sees from (8.10) that the expression reduces simply to τ̂P1(H1). It follows that
the left hand side of (8.11) vanishes, as required. In the case that G = SL(3) and
P1 = P0 is minimal, the reader can view the left hand side of (8.11) (or of (8.10)) as
an algebraic sum of four convex cones, formed in the obvious way from Figure 5.1.
In general, (8.11) is only one of several identities that can be deduced from (8.10).
We shall describe these identities, known collectively as Langlands’ combinatorial
lemma, in §17.

9. Qualitative behaviour of JT (f)

Theorem 6.1 allows us to define the linear form

JT (f) = JG,T (f) =

∫

G(Q)\G(A)1
kT (x, f)dx, f ∈ C∞

c

(
G(A)

)
,

on C∞
c

(
G(A)

)
. We are still a long way from converting the geometric and spectral

expansions of kT (x, f) to an explicit trace formula. We put this question aside for
the moment, in order to investigate two qualitative properties of JT (f).

The first property concerns the behaviour of JT (f) as a function of T .

Theorem 9.1. For any f ∈ C∞
c

(
G(A)

)
, the function

T −→ JT (f),

defined for T ∈ a+
0 sufficiently regular, is a polynomial in T whose degree is bounded

by the dimension of aG0 .
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We shall sketch the proof of Theorem 9.1. Let T1 be a fixed point in a0 with
β(T1) large for every β ∈ ∆0, and let T ∈ a0 be a variable point with β(T −T1) > 0
for each β. It would be enough to show that the function

T −→ JT (f)− JT1(f) =

∫

G(Q)\G(A)1

(
kT (x) − kT1(x)

)
dx

is a polynomial in T . If we substitute the definition (6.1) for the two functions in
the integrand, we see that the only terms in the resulting expression that depend
on T and T1 are differences of characteristic functions

τ̂P
(
HP (δx) − T

)
− τ̂P

(
HP (δx) − T1

)
.

We need to compare the supports of these two functions. We shall do so by ex-
panding the first function in terms of analogues of the second function for smaller
groups.

Suppose that H and X range over points in aG0 . We define functions

Γ′
P (H,X), P ⊃ P0,

inductively on dim(AP /AG) by setting

(9.1) τ̂P (H −X) =
∑

{Q:Q⊃P}

(−1)dim(AQ/AG)τ̂QP (H)Γ′
Q(H,X),

for any P . Since the summand with Q = P equals the product of (−1)dim(AP /AG)

with Γ′
P (H,X), (9.1) does indeed give an inductive definition of Γ′

P (H,X) in terms
of functions Γ′

Q(H,X) with dim(AQ/AG) less than dim(AP /AG). It follows induc-

tively from the definition that Γ′
P (H,X) depends only on the projections HP and

TP of H and T onto aGP .

Lemma 9.2. (a) For any X and P , the function

H −→ Γ′
P (H,X), H ∈ aGP ,

is compactly supported.
(b) The function

X −→
∫

aG
P

Γ′
P (H,X)dH, X ∈ aGP ,

is a homogeneous polynomial of degree equal to dim(aGP ).

Once again, we shall be content to motivate the lemma geometrically in some
special cases. For the general case, we refer the reader to [A5, Lemmas 2.1 and
2.2].

The simplest case is when aGP is one-dimensional. Suppose for example that
G = SL(3) and P = P1 is a maximal parabolic subgroup. Then Q is summed over
the set {P1, G}. Taking X to be a fixed point in positive chamber in aGP , we see
that H → Γ′

P (H,X) is the difference of characteristic functions of two open half
lines, and is hence the characteristic function of the bounded half open interval in
Figure 9.1.

Suppose that G = SL(3) and P = P0. Then Q is summed over the set
{P0, P1, P2, G}, where P1 and P2 are the maximal parabolic subgroups represented
in Figure 5.1. If X is a fixed point in the positive chamber a+

0 in aGP = a0, we
can describe the summands in (9.1) corresponding to P1 and P2 with the help of
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0 X

Γ′
P (H, X) = 1 Γ′

P (H, X) = 0
aG

P

Figure 9.1. The half open, bounded interval represents the support

of a characteristic function Γ′
P (H,X) of H , for a maximal parabolic

subgroup P ⊂ G. It is the complement of one open half line in

another.

Figure 9.1. We see that the function H → Γ′
P (H,X) is a signed sum of character-

istic functions of four regions, two obtuse cones and two semi-infinite rectangles.
Keeping track of the signed contribution of each region in Figure 9.2, we see that
Γ′
P (H,X) is the characteristic function of the bounded shaded region in the figure.

It is clear that the area of this figure is a homogeneous polynomial of degree 2 in
the coordinates of X .

X

+1− 1

+1− 1

+1− 1

+1 + 1− 1

0

Figure 9.2. The bounded shaded region represents the support of

the characteristic function Γ′
P (H,X) of H , for the minimal parabolic

subgroup P = P0 of SL(3). It is an algebraic sum of four unbounded

regions, the two obtuse angled cones with vertices 0 and X , and the

two semi-infinite rectangles defined by 0 and the projections ofX onto

the two spaces aP1 and aP2 .

�

Let us use Lemma 9.2 to prove Theorem 9.1. We set H = HP (δx) − T1 and
X = T − T1. Then H −X equals HP (δx) − T , and the expansion (9.1) is

τ̂P
(
HP (δx)−T

)
=
∑

Q⊃P

(−1)dim(AQ/AG)τ̂QP
(
HP (δx)−T1

)
Γ′
Q

(
HP (δx)−T1, T −T1

)
.
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Substituting the right hand side of this formula into the definition of JT (f), we
obtain

JT (f) =

∫

G(Q)\G(A)1

∑

P

(−1)dim(AP /AG)
∑

δ∈P (Q)\G(Q)

∑

Q⊃P

(−1)dim(AQ/AG)C(δx)dx

=
∑

Q

∫

G(Q)\G(A)1

∑

P⊂Q

(−1)dim(AP /AQ)
∑

δ∈Q(Q)\G(Q)

∑

η∈P (Q)\Q(Q)

C(ηδx)dx

=
∑

Q

∫

Q(Q)\G(A)1

∑

P⊂Q

(−1)dim(AP /AQ)
∑

η∈P (Q)∩MQ(Q)\MQ(Q)

C(ηx)dx,

where

C(y) = KP (y, y)τ̂QP
(
HP (y)− T1

)
Γ′
Q

(
HQ(y)− T1, T − T1

)
.

We are going to make a change of variables in the integral over x in Q(Q)\G(A)1.
Since the expression we ultimately obtain will be absolutely convergent, this change
of variables, as well as the ones above, will be justified by Fubini’s theorem.

We write x = nQmQaQk, for variables nQ,mQ, aQ and k in NQ(Q)\NQ(A),
MQ(Q)\MQ(A)1, AQ(R)0∩G(A)1, and K respectively. The invariant measures are
then related by

dx = δQ(aQ)dnQdmQdaQdk.

The three factors in the product C(ηx) become

Γ′
Q

(
HQ(ηx) − T1, T − T1

)
= Γ′

Q

(
HQ(x)− T1, T − T1

)
= Γ′

Q

(
HQ(aQ)− T1, T − T1

)
,

τ̂QP
(
HP (ηx)− T1

)
= τ̂QP

(
HP (ηmQ)− T1

)
,

and

KP (ηx, ηx) =

∫

NP (A)

∑

γ∈MP (Q)

f(k−1m−1
Q a−1

Q n−1
Q η−1 · γn · ηnQaQmQk)dn.

In this last integrand, the element η normalizes the variables nQ and aQ without
changing the measures. The same is true of the element γ. We can therefore absorb
both variables in the integral over n. Since

δQ(aQ)dn = d(a−1
Q n−1

Q nnQaQ),

the product of δQ(aQ) with KP (ηx, ηx) equals

(9.2)

∫

NP (A)

∑

γ∈MP (Q)

f(k−1m−1
Q η−1 · γn · ηmQk)dn.

The original variable nQ has now disappeared from all three factors, so we may as
well write

dn = d(nQnQ) = dnQdnQ, nQ ∈ NQ
P (A), nQ ∈ NQ(A),
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for the decomposition of the measure in NP (A). The last expression (9.2) is the
only factor that depends on the original variable k. Its integral over k equals

∫

K

∫

NQ(A)

∫

NQP (A)

∑

γ∈MP (Q)

f(k−1m−1
Q η−1 · γnQnQ · ηmQk)dn

QdnQdk

=

∫

NQP (A)

∑

γ∈MP (Q)

∫

K

∫

NQ(A)

f(k−1m−1
Q η−1 · γnQ · ηmQnQk)dnQdkdnQ

=

∫

NQP (A)

∑

γ∈MP (Q)

fQ(m−1
Q η−1 · γnQ · ηmQ)dnQ

= KP∩MQ
(ηmQ, ηmQ),

where

fQ(m) = δQ(m)
1
2

∫

K

∫

NQ(A)

f(k−1mnQk)dnQdk, m ∈MQ(A),

and KP∩MQ
(·, ·) is the induced kernel (4.1), but with G, P , and f replaced by MQ,

P ∩MQ, and fQ respectively. We have used the facts that

dnQ = d
(
(ηmQ)−1nQ(ηmQ)

)
,

for η and mQ as above, and that

δQ(m) = e2ρQ(HQ(m)) = 1,

when m = γ lies in MQ(Q). The correspondence f → fQ is a continuous linear
mapping from C∞

c

(
G(A)

)
to C∞

c

(
MQ(A)

)
. It was introduced originally by Harish-

Chandra to study questions of descent.
We now collect the various terms in the formula for JT (f). We see that JT (f)

equals the sum over Q and the integral over mQ in MQ(Q)\MQ(A)1 of the product
of
∑

P⊂Q

(−1)dim(AP /AQ)
∑

η∈P (Q)∩MQ(Q)\MQ(Q)

KP∩MQ
(ηmQ, ηmQ)τ̂QP

(
HP (ηmQ)− T1

)

with the factor

pQ(T1, T ) =

∫

AQ(R)0∩G(R)1
Γ′
Q

(
HQ(aQ)− T1, T − T1

)
da

=

∫

aG
Q

Γ′
Q(H − T1, T − T1)dH.

By Lemma 9.2, the last factor is a polynomial in T of degree equal to dim(aGQ). To
analyze the first factor, we note that

dim(AP /AQ) = dim(AP∩MQ
/AMQ

)

and

τ̂QP
(
HP (ηmQ)− T1

)
= τ̂

MQ

P∩MQ

(
HP∩MQ

(ηmQ)− T1

)
,

and that the mapping P → P ∩MQ is a bijection from the set of standard parabolic
subgroups P of G with P ⊂ Q onto the set of standard parabolic subgroups of MQ.
The first factor therefore equals the analogue kT1(mQ, fQ) for T1, mQ and fQ of the
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truncated kernel kT (x, f). Its integral over mQ equals JMQ,T1(fQ). We conclude
that

(9.3) JT (f) =
∑

Q⊃P0

JMQ,T1(fQ)pQ(T1, T ).

Therefore JT (f) is a polynomial in T whose degree is bounded by the dimension
of aG0 . This completes the proof of Theorem 9.1. �

Having established Theorem 9.1, we are now free to define JT (f) at any point T
in a0. We could always set T = 0. However, it turns out that there is a better choice
in general. The question is related to the choice of minimal parabolic subgroup P0.

We write P(M0) for the set of (minimal) parabolic subgroups of G with Levi
component M0. The mapping

s −→ sP0 = wsP0w
−1
s , s ∈W0,

is then a bijection from W0 to P(M0). We recall that ws is a representative of s
in G(Q). If G = GL(n), we can take ws to be a permutation matrix, an element
in G(Q) that also happens to lie in the standard maximal compact subgroup K of
G(A). In general, however, s might require a separate representative w̃s in K. The
quotient w−1

s w̃s does belong to M0(A), so the point

HP0(w
−1
s ) = HM0(w

−1
s w̃s)

in a0 is independent of the choice of P0. By arguing inductively on the length of
s ∈W0, one shows that there is a unique point T0 ∈ aG0 such that

(9.4) HP0(w
−1
s ) = T0 − s−1T0,

for every s ∈W0. (See [A5, Lemma 1.1].) In the case that G equals GL(n) and K
is the standard maximal compact subgroup of GL(n,A), T0 = 0.

Proposition 9.3. The linear form

J(f) = JG(f), f ∈ C∞
c

(
G(A)

)
,

defined as the value of the polynomial

JT (f) = JG,T (f)

at T = T0, is independent of the choice of P0 ∈ P(M0).

The proof of Proposition 9.3 is a straightforward exercise. If T ∈ a0 is highly
regular relative to P0, sT is highly regular relative to the group P ′

0 = sP0 in P(M0).
The mapping

P −→ P ′ = sP = wsPw
−1
s , P ⊃ P0,

is a bijection between the relevant families {P ⊃ P0} and {P ′ ⊃ P ′
0} of standard

parabolic subgroups. For any P , the mapping δ → δ′ = wsδ is a bijection from
P (Q)\G(Q) onto P ′(Q)\G(Q). It follows from the definitions that

τ̂P
(
HP (δx) − T

)
= τ̂P ′

(
sHP (w−1

s δ′x)− sT
)

= τ̂P ′

(
sHP (w̃−1

s δ′x) + sHP0(w
−1
s )− sT

)

= τ̂P ′

(
HP ′(δ′x)− (sT − sT0 + T0)

)
.

Comparing the definition (6.1) of the truncated kernel with its analogue for P ′
0 =

sP0, we see that
JTP0

(f) = JsT−sT0+T0

sP0
(f),
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where the subscripts indicate the minimal parabolic subgroups with respect to
which the linear forms have been defined. Each side of this identity extends to a
polynomial function of T ∈ a0. Setting T = T0, we see that the linear form

J(f) = JT0

P0
(f) = JT0

sP0
(f)

is indeed independent of the choice of P0. (See [A5, p. 18–19].) �

The second qualitative property of JT (f) concerns its behaviour under con-
jugation by G(A). A distribution on G(A) is a linear form I on C∞

c

(
G(A)

)
that

is continuous with respect to the natural topology. The distribution is said to be
invariant if

I(fy) = I(f), f ∈ C∞
c

(
G(A)

)
, y ∈ G(A),

where

fy(x) = f(yxy−1).

The proof of Theorem 6.1 implies that f → JT (f) is a distribution if T ∈ a+
P0

is

sufficiently regular. Since JT (f) is a polynomial in T , its coefficients are also dis-
tributions. In particular, f → J(f) is a distribution on G(A), which is independent
of the choice of P0 ∈ P(M0). We would like to compute its obstruction to being
invariant.

Consider a point y ∈ G(A), a function f ∈ C∞
c

(
G(A)

)
, and a highly regular

point T ∈ a+
0 . We are interested in the difference JT (fy)− JT (f).

To calculate JT (fy), we have to replace the factor

KP (δx, δx) =
∑

γ∈MP (Q)

∫

NP (A)

f(x−1δ−1γnδx)dn

in the truncated kernel (6.1) by the expression

∑

γ∈MP (Q)

∫

NP (A)

fy(x−1δ−1γnγx)dn = KP (δxy−1, δxy−1).

The last expression is invariant under translation of y by the central subgroup
AG(R)0. We may as well therefore assume that y belongs to the subgroup G(A)1

of G(A). With this condition, we can make a change of variables x → xy in the
integral over G(Q)\G(A)1 that defines JT (fy). We see that JT (fy) equals
∫

G(Q)\G(A)1

(∑

P

(−1)dim(AP /AG)
∑

δ∈P (Q)\G(Q)

KP (δx, δx)τ̂P
(
HP (δxy)− T

))
dx.

If δx = nmak, for elements n, m, a, and k in NP (A), MP (A)1, AP (R)0 ∩ G(A)1,
and K respectively, set kP (δx) = k. We can then write

τ̂P
(
HP (δxy)− T

)
= τ̂P

(
HP (a) +HP (ky)− T

)

= τ̂P
(
HP (δx) − T +HP (kP (δx)y)

)
.

The last expression has an expansion
∑

Q⊃P

(−1)dim(AQ/AG)τ̂QP
(
HP (δx) − T

)
Γ′
Q

(
HP (δx) − T,−HP (kP (δx)y)

)

given by (9.1), which we can substitute into the formula above for JT (fy).
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The discussion now is identical to that of the proof of Theorem 9.1. Set

u′Q(k, y) =

∫

aGQ

Γ′
Q

(
H,−HQ(ky)

)
dH, k ∈ K,

and

fQ,y(m) = δQ(m)
1
2

∫

K

∫

NQ(A)

f(k−1mnk)u′Q(k, y)dndk, m ∈MQ(A).

The transformation f → fQ,y is a continuous linear mapping from C∞
c

(
G(A)

)

to C∞
c

(
MQ(A)

)
, which varies smoothly with y ∈ G(A), and depends only on the

image of y in G(A)1. The proof of Theorem 9.1 then leads directly to the following
analogue

(9.5) JT (fy) =
∑

Q⊃P0

JMQ,T (fQ,y)

of (9.3). Since we have taken KQ = K ∩MQ(A) as maximal compact subgroup of
MQ(A), HP0(w

−1
s ) equals HP0∩MQ

(w−1
s ) for any s in the subgroup WM

0 of W0 =

WG
0 . The canonical point T0 ∈ aG0 , defined for G by (9.4), therefore projects onto

the canonical point in a
Q
0 attached to MQ. Setting T = T0 in (9.5), we obtain the

following result.

Theorem 9.4. The distribution J satisfies the formula

J(fy) =
∑

Q⊃P0

JMQ(fQ,y)

for conjugation of f ∈ C∞
c

(
G(A)

)
by y ∈ G(A). �

10. The coarse geometric expansion

We have constructed a distribution J on G(A) from the truncated kernel
kT (x) = kT (x, f). The next step is to transform the geometric expansion for kT (x)
into a geometric expansion for J(f). The problem is more subtle than it might
first appear. This is because the truncation kT (x) of K(x, x) is not completely
compatible with the decomposition of K(x, x) according to conjugacy classes. The
difficulty comes from those conjugacy classes in G(Q) that are particular to the
case of noncompact quotient, namely the classes that are not semisimple.

In this section we shall deal with the easy part of the problem. We shall give
a geometric expansion of J(f) into terms parametrized by semisimple conjugacy
classes in G(Q). The proof requires only minor variations of the discussion of the
last two sections.

Recall that any element γ in G(Q) has a Jordan decomposition γ = µν. It is
the unique decomposition of γ into a product of a semisimple element µ = γs in
G(Q), with a unipotent element ν = γu in G(Q) that commutes with γs. We define
two elements γ and γ′ in G(Q) to be O-equivalent if their semisimple parts γs and
γ′s are G(Q)-conjugate. We then write O = OG for the set of such equivalence
classes. A class o ∈ O is thus a union of conjugacy classes in G(Q).

The set O is in obvious bijection with the semisimple conjugacy classes in G(Q).
We shall say that a semisimple conjugacy class in G(Q) is anisotropic if it does not
intersect P (Q), for any P ( G. Then γ ∈ G(Q) represents an anisotropic class if
and only if AG is the maximal Q-split torus in the connected centralizer H of γ in
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G. (Such classes were called elliptic in [A3, §2]. However, the term elliptic is better
reserved for semisimple elements γ in G(Q) such as 1, for which AG is the maximal
split torus in the center of H .) We can define an anisotropic rational datum to be
an equivalence class of pairs (P, α), where P ⊂ G is a standard parabolic subgroup,
and α is an anisotropic conjugacy class in MP (Q). The equivalence relation is
just conjugacy, which for standard parabolic subgroups is given by the Weyl sets
W (aP , aP ′) of §7. In other words, (P ′, α′) is equivalent to (P, α) if α = w−1

s α′ws for
some element s ∈ W (aP , aP ′). The mapping that sends {(P, α)} to the conjugacy
class of α in G(Q) is a bijection onto the set of semisimple conjugacy classes in G(Q).
We therefore have a canonical bijection from the set of anisotropic rational data
and our set O. Anisotropic rational data will not be needed for the constructions of
this section. We mention them in order to be able to recognize the formal relations
between these constructions and their spectral analogues in §12.

In case G = GL(n), the classes O are related to basic notions from linear
algebra. The Jordan decomposition is given by Jordan normal form. Two elements
γ and γ′ in GL(n,Q) are O-equivalent if and only if they have the same set of
complex eigenvalues (with multiplicity). This is the same as saying that γ and
γ′ have the same characteristic polynomial. The set O of equivalence classes in
GL(n,Q) is thus bijective with the set of rational monic polynomials of degree
n with nonzero constant term. If o ∈ O is an equivalence class, the intersection
o ∩ P (Q) is empty for all P 6= G if and only if the characteristic polynomial of o

is irreducible over Q. This is the condition that o consist of a single anisotropic
conjugacy class in G(Q). A general equivalence class o ∈ O consists of only one
conjugacy class if and only if the elements in o are all semisimple, which in turn is
equivalent to saying that the characteristic polynomial of o has distinct irreducible
factors over Q. We leave the reader to verify these properties from linear algebra.

If G is arbitrary, we have a decomposition

(10.1) K(x, x) =
∑

o∈O

Ko(x, x),

where

Ko(x, x) =
∑

γ∈o

f(x−1γx).

More generally, we can write

KP (x, x) =
∑

γ∈MP (Q)

∫

NP (A)

f(x−1γnx)dn =
∑

o∈O

KP,o(x, x)

for any P , where

KP,o(x, x) =
∑

γ∈MP (Q)∩o

∫

NP (A)

f(x−1γnx)dn.

We therefore have a decomposition

(10.2) kT (x) =
∑

o∈O

kTo (x)
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of the truncated kernel, where

kTo (x) = kTo (x, f)

=
∑

P

(−1)dim(AP /AG)

∫

δ∈P (Q)\G(Q)

KP,o(δx, δx)τ̂P
(
HP (δx) − T

)
.

The following extension of Theorem 6.1 can be regarded as a corollary of its proof.

Corollary 10.1. The double integral

(10.3)
∑

o∈O

∫

G(Q)\G(A)1
kTo (x, f)dx

converges absolutely.

The proof of Corollary 10.1 is in fact identical to the proof of Theorem 6.1
sketched in §8, but for one point. The discrepancy arises when we apply the Poisson
summation formula to the lattice nPP1

(Q), for standard parabolic subgroups P1 ⊂ P .
To do so, we require a sum over the lattice, or what amounts to the same thing, a
sum over elements ν ∈ NP

P1
(Q). In the proof of Theorem 6.1, we recall that such a

sum arose from the property

P1(Q) ∩MP (Q) = MP1(Q)NP
P1

(Q).

That it also occurs in treating a class o ∈ O is a consequence of the parallel property

(10.4) P1(Q) ∩MP (Q) ∩ o =
(
MP1(Q) ∩ o

)
NP
P1

(Q).

This is in turn a consequence of the first assertion of the next lemma.

Lemma 10.2. Suppose that P ⊃ P0, γ ∈M(Q), and φ ∈ Cc
(
NP (A)

)
. Then

∑

δ∈NP (Q)γs\NP (Q)

∑

η∈NP (Q)γs

φ(γ−1δ−1γηδ) =
∑

ν∈NP (Q)

φ(ν)

and ∫

NP (A)γs\NP (A)

∫

NP (A)γs

φ(γ−1n−1
1 γn2n1)dn2dn1 =

∫

NP (A)

φ(n)dn,

where NP (·)γs denotes the centralizer of γs in NP (·).
The proof of Lemma 10.2 is a typical change of variable argument for unipotent

groups. The first assertion represents a decomposition of a sum over NP (Q), while
the second is the corresponding decomposition of an adelic integral over NP (A).
(See [A3, Lemmas 2.1 and 2.2].) �

The first assertion of the lemma implies that P (Q) ∩ o equals(
MP (Q) ∩ o

)
NP (Q). If we apply it to the pair (MP , P1 ∩MP ) in place of (G,P ),

we obtain the required relation (10.4). We then obtain Corollary 10.1 by following
step by step the proof of Theorem 6.1. (Theorem 7.1 of [A3] was actually stated
and proved directly for the functions kTo (x) rather than their sum kT (x).) �

Once we have Corollary 10.1, we can apply Fubini’s theorem to double integral
(10.3). We obtain an absolutely convergent expansion

JT (f) =
∑

o∈O

JTo (f),
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whose terms are given by absolutely convergent integrals

(10.5) JTo (f) =

∫

G(Q)\G(A)1
kTo (x, f)dx, o ∈ O.

The behaviour of JTo (f) as a function of T is similar to that of JT (f). We have
only to apply the proof of Theorem 9.1 to the absolutely convergent integral (10.5).
This tells us that for any f ∈ C∞

c

(
G(A)

)
and o ∈ O, the function

T −→ JTo (f),

defined for T ∈ a+
0 sufficiently regular in a sense that is independent of o, is a

polynomial in T of degree bounded by the dimension of aG0 . We can therefore
define JTo (f) for all values of T ∈ a0 by its polynomial extension. We then set

Jo(f) = JT0
o (f), o ∈ O,

for the point T0 ∈ aG0 given by (9.4). The proof of Proposition 9.3 tells us that
Jo(f) is independent of the choice of minimal parabolic subgroup P0 ∈ P(M0).

The distributions Jo(f) = JGo (f) can sometimes be invariant, though they are
not generally so. To see this, we apply the proof of Theorem 9.4 to the absolutely
convergent integral (10.5). For any Q ⊃ P0 and h ∈ C∞

c

(
MQ(A)

)
, set

J
MQ

o (h) =
∑

oQ

J
MQ

oQ (h), o ∈ O,

where oQ ranges over the finite preimage of o in OMQ under the obvious mapping
of OMQ into O = OG. We then obtain the variance property

(10.6) Jo(f
y) =

∑

Q⊃P0

J
MQ

o (fQ,y), o ∈ O, y ∈ G(A),

in the notation of Theorem 9.4. Observe that o need not lie in the image the map
OMQ → O attached to any proper parabolic subgroup Q ( G. This is so precisely
when o is anisotropic, in the sense that it consists of a single anisotropic (semisimple)
conjugacy class. It is in this case that the distribution Jo(f) is invariant.

The expansion of JT (f) in terms of distributions JTo (f) extends by polynomial
interpolation to all values of T . Setting T = T0, we obtain an identity

(10.7) J(f) =
∑

o∈O

Jo(f), f ∈ C∞
c

(
G(A)

)
,

of distributions. This is what we will call the coarse geometric expansion. The
distributions Jo(f) for which o is anisotropic are to be regarded as general analogues
of the geometric terms in the trace formula for compact quotient.

11. Weighted orbital integrals

The summands Jo(f) in the coarse geometric expansion of J(f) were defined
in global terms. We need ultimately to describe them more explicitly. For example,
we would like to have a formula for Jo(f) in which the dependence on the local
components fv of f is more transparent. In this section, we shall solve the problem
for “generic” classes o ∈ O. For such classes, we shall express Jo(f) as a weighted
orbital integral of f .
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We fix a class o ∈ O, which for the moment we take to be arbitrary. Recall
that

KP,o(x, y) =
∑

γ∈MP (Q)∩o

∫

NP (A)

f(x−1γny)dn,

for any P ⊃ P0. Lemma 10.2 provides a decomposition of the integral over NP (A)
onto a double integral. We define a modified function

(11.1) K̃P,o(x, y) =
∑

γ∈MP (Q)∩o

∑

η∈NP (Q)γs\NP (Q)

∫

NP (A)γs

f(x−1η−1γnηy)dn

by replacing the outer adelic integral of the lemma with a corresponding sum of

rational points. We then define a modified kernel k̃To (x) = k̃To (x, f) by replac-
ing the function KP,o(δx, δx) in the formula for kTo (x) with the modified function

K̃P,o(δx, δx). That is,

k̃To (x, f) =
∑

P

(−1)dim(AP /AG)
∑

δ∈P (Q)\G(Q)

K̃P,o(δx, δx)τ̂P
(
HP (δx) − T

)
.

Theorem 11.1. If T ∈ a+
P0

is highly regular, the integral

(11.2)

∫

G(Q)\G(A)1
k̃To (x, f)dx

converges absolutely, and equals JTo (f).

The proof of Theorem 11.1 is again similar to that of Theorem 6.1, or rather
its modification for the class o discussed in §10. Copying the formal manipulations
from the first half of §8, we write

(11.3)

∫

G(Q)\G(A)1
k̃To (x)dx =

∑

P1⊂P2

∫

P1(Q)\G(A)1
χT (x)k̃P1,P2,o(x)dx,

where χT (x) is as in (8.5), and

k̃P1,P2,o(x) =
∑

{P :P1⊂P⊂P2}

(−1)dim(AP /AG)K̃P,o(x, x).

To justify these manipulations, we have to show that for any P1 ⊂ P2, the integral

(11.4)

∫

P1(Q)\G(A)1
χT (x)|k̃P1,P2,o(x)|dx

is finite. This would also establish the absolute convergence assertion of the theo-
rem.

We estimate the integral (11.4) as in the second half of §8. We shall be content
simply to mention the main steps. The first is to show that if T is sufficiently

regular and χT (x) 6= 0, the summands in the formula for K̃P,o(x, x) vanish for
elements γ in the complement of P1(Q) ∩MP (Q) ∩ o in MP (Q) ∩ o. The next step
is to write P1(Q) ∩MP (Q) ∩ o as a product

(
MP1(Q) ∩ o

)
NP
P1

(Q), by appealing to
Lemma 10.2. We then have to apply Lemma 10.2 again, with (MP , P1 ∩MP ) in
place of (G,P ), to the resulting sum over (µ, ν) in the product of MP1(Q)∩ o with
NP
P1

(Q). This yields a threefold sum, one of which is taken over the set

NP
P1

(Q)µs = exp
(
nPP1

(Q)µs
)
,
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where nPP1
(Q)µs denotes the centralizer of µs in the Lie algebra nPP1

(Q). The last

step is to apply the Poisson summation formula to the lattice nPP1
(Q)µs in nPP1

(A)µs .
The resulting cancellation from the alternating sum over P then yields a formula

for k̃P1,P2,o(x) analogous to the formula (8.8) for kP1,P2(x). Namely, k̃P1,P2,o(x)

equals the product of (−1)dim(AP2/AG) with the sum over µ ∈MP1(Q) ∩ o of

∑

η∈NP1(Q)µs\NP1(Q)

∑

ξ∈n
P2
P1

(Q)′µs

(∫

nP1 (A)µs

f
(
x−1η−1µ exp(X1)ηx

)
ψ
(
〈ξ,X1〉

)
dX1

)
,

where nP2

P1
(Q)′µs is the intersection of nP2

P1
(Q)µs with the set nP2

P1
(Q)′ in (8.8). The

convergence of the integral (11.4) is then proved as at the end of §8. (See [A3,
p. 948–949].)

Once we have shown that the integrals (11.4) are finite, we know that the
identity (11.3) is valid. The remaining step is to compare it with the corresponding
identity

∫

G(Q)\G(A)1
kTo (x)dx =

∑

P1⊂P2

∫

P1(Q)\G(A)1
χT (x)kP1,P2,o(x)dx,

which we obtain by modifying the proof of Theorem 6.1 as in the last section.
Suppose that P1 ⊂ P2 are fixed. We can then write

∫

P1(Q)\G(A)1
χT (x)k̃P1,P2,o(x)dx

=

∫

MP1 (Q)NP1 (A)\G(A)1
χT (x)

( ∫

NP1 (Q)\NP1(A)

k̃P1,P2,o(n1x)dn1

)
dx,

since χT (x) is left NP1(A)-invariant. The integral of k̃P1,P2,o(n1x) over n1 is equal
to the sum over pairs

(P, µ), P1 ⊂ P ⊂ P2, µ ∈MP1(Q) ∩ o,

of the product of the sign (−1)dim(AP /AG) with the expression
∫

NP1 (Q)\NP1(A)

∑

η∈NP (Q)µs\NP (Q)

( ∫

NP (A)µs

f(x−1n−1
1 η−1µnηn1x)dn

)
dn1.

If we replace the variable n1 by νn1, and then integrate over ν in NP (Q)\NP (A),
we can change the sum over η to an integral over ν in NP (Q)µs\NP (A). Since
the resulting integrand is invariant under left translation of ν by elements in the
larger group NP (A)µs , we can in fact integrate ν over NP (A)µs\NP (A). We can
thus change the sum of η in the expression to an adelic integral over ν. Applying
Lemma 10.2 to the resulting double integral over ν and n, we see that the expression
equals ∫

NP1(Q)\NP1 (A)

∫

NP (A)

f(x−1n−1
1 µnn1x)dndn1.

The signed sum over (P, µ) of this last expression equals
∫

NP1 (Q)\NP1(A)

kP1,P2,o(n1x)dn1.
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We conclude that∫

P1(Q)\G(A)1
χT (x)k̃P1,P2,o(x)dx

=

∫

MP1 (Q)NP1(A)\G(A)1
χT (x)

( ∫

NP1(Q)\NP1 (A)

kP1,P2,o(n1x)dn1

)
dx

=

∫

P1(Q)\G(A)1
χT (x)kP1,P2,o(x)dx.

We have shown that the summands corresponding to P1 ⊂ P2 in the two
identities are equal. It follows that

∫

G(Q)\G(A)1
k̃To (x)dx =

∫

G(Q)\G(A)1
kTo (x)dx = JTo (f).

This is the second assertion of Theorem 11.1. �

The formula (11.2) for JTo (f) is better suited to computation. As an example,
we consider the special case that the class o ∈ O consists entirely of semisimple
elements. Then o is a semisimple conjugacy class in G(Q), and for any element
γ ∈ o, the centralizer G(Q)γ of γ = γs contains no nontrivial unipotent elements.
In particular, the group NP (Q)γs = NP (Q)γ attached to any P is trivial. It follows
that

K̃P,o(x, x) =
∑

γ∈MP (Q)∩o

∑

η∈NP (Q)

f(x−1η−1γηx).

To proceed, we need to characterize the intersection MP (Q) ∩ o.
In §7, we introduced the Weyl set W (aP1 , aP ′

1
) attached to any pair of standard

parabolic subgroups P1 and P ′
1. Suppose that P1 is fixed. If P is any other standard

parabolic subgroup, we define W (P1;P ) to be the set of elements s in the union over
P ′

1 ⊂ P of the sets W (aP1 , aP ′
1
) such that s−1α > 0 for every root α in the subset

∆P
P ′

1
of ∆P ′

1
. In other words, s−1α belongs to the set ΦP1 for every such α. Suppose

for example that G = GL(n), and that P1 corresponds to the partition (ν1, . . . , νp1)
of n. We noted in §7 that each of the sets W (aP1 , aP ′

1
) is identified with a subset of

the symmetric group Sp1 . The union over P ′
1 of these sets is identified with the full

group Sp1 . If P corresponds to the partition (n1, . . . , np) of n, W (P1;P ) becomes
the set of elements s ∈ Sp1 such that (νs(1), . . . , νs(p1)) is finer than (n1, . . . , np),

and such that s−1(i) < s−1(i + 1), for any i that is not of the form n1 + · · · + nk
for some k.

The problem is simpler if we impose a second condition on o. Suppose that
(P1, α1) represents the anisotropic rational datum attached to o in the last section,
and that γ1 belongs to the anisotropic conjugacy class α1 in MP1(Q). Then γ1

represents the semisimple conjugacy class in o. We know that the groupH , obtained
by taking the connected component of 1 in the centralizer of γ1 in G, is contained
in MP1 . For H would otherwise have a proper parabolic subgroup over Q, and
H(Q) would contain a nontrivial unipotent element, contradicting the condition
that o consist entirely of semisimple elements. The group H(Q) is of finite index in
G(Q)γ . We shall say that o is unramified if G(Q)γ is also contained in MP1 . This
is equivalent to asking that the stabilizer of the conjugacy class α1 in W (aP1 , aP1)
be equal to {1}. In the case G = GL(n), the condition is automatically satisfied,
since any centralizer is connected.
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Assume that o is unramified, and that (P1, α1) and γ1 ∈ α1 are fixed as above.
The condition that o be unramified implies that if (P ′

1, α
′
1) is any other representa-

tive of the anisotropic rational datum of o, there is a unique element in W (aP1 , aP ′
1
)

that maps α1 to α′
1. Suppose that P is any standard parabolic subgroup and that

γ is an element in MP ∩ o. It follows easily from this discussion that γ can be
expressed uniquely in the form

γ = µ−1wsγ1w
−1
s µ, s ∈ W (P1;P ), µ ∈MP (Q)wsγ1w−1

s
\MP (Q),

where as usual,

MP (Q)wsγ1w−1
s

= MP,wsγ1w
−1
s

(Q)

is the centralizer of wsγ1w
−1
s in MP (Q). (See [A3, p. 950].)

Having characterized the intersection MP (Q) ∩ o, we can write

K̃P,o(x, x)

=
∑

s∈W (P1;P )

∑

µ

∑

η∈NP (Q)

f(x−1η−1µ−1wsγ1w
−1
s µηx)

=
∑

s

∑

π

f(x−1π−1wsγ1w
−1
s πx),

where µ and π are summed over the right cosets of MP (Q)wsγw−1
s

in MP (Q) and

P (Q) respectively. Therefore k̃To (x) equals the expression

∑

P

(−1)dim(AP /AG)
∑

δ∈P (Q)\G(Q)

K̃P,o(δx, δx)τ̂P
(
HP (δx) − T

)

=
∑

P

(−1)dim(AP /AG)
∑

s∈W (P1;P )

∑

δ

f(x−1δ−1wsγ1w
−1
s δx)τ̂P

(
HP (δx)− T

)
,

where δ is summed over the right cosets of MP (Q)wsγ1w−1
s

in G(Q). Set δ1 = w−1
s δ.

Since

w−1
s

(
MP (Q)wsγ1w−1

s

)
ws = G(Q)γ1 = MP1(Q)γ1 ,

we obtain

k̃To (x)

=
∑

P

(−1)dim(AP /AG)
∑

s∈W (P1;P )

∑

δ1

f(x−1δ−1
1 γ1δ1x)τ̂P

(
HP (wsδ1x) − T

)

=
∑

δ1

f(x−1δ−1
1 γ1δ1x)ψ

T (δ1x),

where δ1 is summed over right cosets of MP1(Q)γ1 in G(Q), and

ψT (y) = ψTP1
(y) =

∑

P

(−1)dim(AP /AG)
∑

s∈W (P1;P )

τ̂P
(
HP (wsy)− T

)

=
∑

P ′
1

∑

s∈W (aP1 ,aP ′
1
)

∑

{P :s∈W (P1;P )}

(−1)dim(AP /AG)τ̂P
(
HP ′

1
(wsy)− T

)
.
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Therefore

JTo (f) =

∫

G(Q)\G(A)1
k̃To (x, f)dx

=

∫

MP1 (Q)γ1\G(A)1
f(x−1γx)ψT (x)dx.

The convergence of the second integral follows from the convergence of the first
integral (Theorem 11.1), and the fact (implied by Lemma 11.2 below) that the
function χT is nonnegative.

We can write

MP1(Q)γ1\G(A)1 ∼=
(
MP1(Q)γ1\MP1(A)1γ1

)
×
(
MP1(A)1γ1\G(A)1

)
,

where MP1(A)1γ1 is the centralizer of γ1 in the group MP1(A)1. Since the centralizer
of γ1 in MP1(A) equals its centralizer G(A)γ1 in G(A), we can also write

MP1(A)1γ1\G(A)1 ∼=
(
AP1(R)0 ∩G(R)1

)
×
(
G(A)γ1\G(A)

)
.

In the formula for JTo (f) we have just obtained, we are therefore free to decompose
the variable of integration as

x = may, m ∈MP1(Q)γ1\MP1(A)1γ1 , a ∈ AP1(R)0∩G(R)1, y ∈ G(A)γ1\G(A).

Then f(x−1γ1x) = f(y−1γ1y) and ψT (x) = ψT (ay). Therefore

(11.5) JTo (f) = vol
(
MP1(Q)γ1\MP1(A)1γ1

) ∫

G(A)γ1\G(A)

f(y−1γ1y)v
T
P1

(y)dy,

where

vTP1
(y) =

∫

AP1 (R)0∩G(R)1
ψT (ay)da =

∫

aGP1

ψT (expH · y)dH.

It remains to evaluate the function vTP1
(y).

For any parabolic subgroup Q ⊃ P0 and any point Λ ∈ a∗Q, define εQ(Λ) to
be the sign +1 or −1 according to whether the number of roots α ∈ ∆Q with
Λ(α∨) ≤ 0 is even or odd. Let

H −→ φQ(Λ, H), H ∈ aQ,

be the characteristic function of the set of H such that for any α ∈ ∆Q, ̟α(H) > 0
if Λ(α∨) ≤ 0, and ̟α(H) ≤ 0 if Λ(α∨) > 0. These functions were introduced
by Langlands [Lan1], and are useful for studying certain convex polytopes. We
apply them to the discussion above by taking Q = P ′

1 and Λ = sΛ1, for an element
s ∈W (aP1 , aP ′

1
) and a point Λ1 in the chamber

(a∗P1
)+ =

{
Λ1 ∈ a∗P1

: Λ1(α
∨) > 0, α ∈ ∆P1

}
.

Suppose that s belongs to any one of the sets W (aP1 , aP ′
1
). We claim that for

any point H ′ ∈ aP ′
1
, the expression

(11.6)
∑

{P :s∈W (P1;P )}

(−1)dim(AP /AG)τ̂P (H ′)

that occurs in the definition of ψT (y) equals

(11.7) εP ′
1
(sΛ1)φP ′

1
(sΛ1, H

′), Λ1 ∈ (a∗P1
)+.
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To see this, define a parabolic subgroup P s ⊃ P ′
1 by setting

∆P s

P ′
1

= {α ∈ ∆P ′
1

: s−1α > 0}.
The element s then lies in W (P1;P ) if and only if P ′

1 ⊂ P ⊂ P s. The expression
(11.6) therefore equals

∑

{P :P ′
1⊂P⊂P s}

(−1)dim(AP /AG)τ̂P (H ′).

If we write the projection of H ′ onto aGP ′
1

in the form
∑

α

cαα
∨, α ∈ ∆P ′

1
, cα ∈ R,

we can apply (6.3) to the alternating sum over P . We see that the expression
equals the sign εP ′

1
(sΛ1) if H ′ lies in the support of the function φP ′

1
(sΛ1, H

′), and
vanishes otherwise. The claim is therefore valid.

The function ψT (expH · y) equals
∑

P ′
1

∑

s∈W (aP1 ,aP ′
1
)

∑

{P :s∈W (P1;P )}

(−1)dim(AP /AG)τ̂P
(
sH +HP ′

1
(wsy)− TP ′

1

)
,

where TP ′
1

is the projection of T onto aP ′
1
. This in turn equals

(11.8)
∑

P ′
1

∑

s∈W (aP1 ,aP ′
1
)

εP ′
1
(sΛ1)φP ′

1

(
sΛ1, sH +HP ′

1
(wsy)− TP ′

1

)
,

by what we have just established. Now as a function H ∈ aGP1
, (11.8) would appear

to be complicated. It is not! One shows in fact that (11.8) equals the characteristic
function of the projection onto aGP1

of the convex hull of
{
Ys = s−1

(
TP ′

1
−HP ′

1
(wsy)

)
: s ∈W (aP1 , aP ′

1
), P ′

1 ⊃ P0

}
.

The proof of this fact [A1, Lemma 3.2] uses elementary properties of convex hulls
and a combinatorial lemma of Langlands [A1, §2]. We shall discuss it in greater
generality later, in §17. In the meantime, we shall illustrate the property geomet-
rically in the special case that G = SL(3).

Assume for the moment then that G = SL(3) and P1 = P0. In this case, the
signed sum of characteristic functions

φP ′
1

(
sΛ1, sH +HP ′

1
(wsy)− T

)
= φP ′

1

(
sΛ1, s(H − Ys)

)
, H ∈ aP1 = aGP1

,

is over elements s parametrized by the symmetric group S3. We have of course the

simple roots ∆P1 = {α1, α2}, and the basis {α∨
1 , α

∨
2 } of aP1 dual to ∆̂P1 . Writing

s(H − Ys) = t1α
∨
1 + t2α

∨
2 , ti ∈ R,

we see that φP ′
1

(
sΛ1, s(H − Ys)

)
is the characteristic function of the affine cone

{
H = Ys + t1s

−1(α∨
1 ) + t2s

−1(α∨
2 ) : ti > 0 if s−1(αi) < 0; ti ≤ 0 if s−1(αi) > 0

}
.

In Figure 11.1, we plot the six vertices {Ys}, the associated six cones, and the signs

εP ′
1
(sΛ1) = (−1)|{i:s

−1(αi)<0}|, s ∈ S3,

by which the corresponding characteristic functions have to be multiplied. We then
observe that the signs cancel in every region of the plane except the convex hull of
the set of vertices.
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Y1

Ys1

Ys2

+1

+1− 1

+1− 1

+1− 1 + 1− 1

+1− 1 + 1− 1

+1− 1 + 1− 1

+1− 1

+1− 1

Figure 11.1. The shaded region is the convex hull of six points

{Ys} in the two dimensional vector space a0 attached to SL(3). It is

a signed sum of six cones, with vertices at each of the six points.

Returning to the general case, we take for granted the assertion that (11.8)
is equal to the characteristic function of the convex hull. Then vTP1

(y) equals the
volume of the given convex hull. In particular, the manipulations used to derive
the formula (11.5) for JTo (f) are justified. Observe that

Ys = s−1
(
TP ′

1
−HP ′

1
(wsy)

)

= s−1
(
TP ′

1
−HP ′

1
(w̃sy)−HP ′

1
(wsw̃

−1
s )
)

= s−1
(
TP ′

1
−HP ′

1
(w̃sy)− (T0)P ′

1
+ s(T0)P1

)
.

When T = T0, the point Ys equals

−s−1HP ′
1
(w̃sy) + (T0)P1 .

The point (T0)P1 is independent of s, and consequently represents a fixed translate
of the convex hull. Since it has no effect on the volume, it may be removed from
consideration.

We have established the following result, which we state with P and γ in place
of P1 and γ1.

Theorem 11.2. Suppose that o ∈ O is an unramified class, with anisotropic
rational datum represented by a pair (P, α). Then

(11.9) Jo(f) = vol
(
MP (Q)γ\MP (A)1γ

) ∫

G(A)γ\G(A)

f(x−1γx)vP (x)dx,

where γ is any element in the MP (Q)-conjugacy class α, and vP (x) is the volume
of the projection onto aGP of the convex hull of

{
− s−1HP ′(w̃sx) : s ∈W (aP , aP ′), P ′ ⊃ P0

}
.

�
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12. Cuspidal automorphic data

We shall temporarily put aside the finer analysis of the geometric expansion
in order to develop the spectral side. We are looking for spectral analogues of
the geometric results we have already obtained. In this section, we introduce a
set X that will serve as the analogue of the set O of §10. Its existence is a basic
consequence of Langlands’ theory of Eisenstein series.

A function φ in L2
(
G(Q)\G(A)1

)
is said to be cuspidal if

(12.1)

∫

NP (A)

φ(nx)dn = 0,

for every P 6= G and almost every x ∈ G(A)1. This condition is a general analogue
of the vanishing of the constant term of a classical modular form, which character-
izes space of cusp forms. The subspace L2

cusp

(
G(Q)\G(A)1

)
of cuspidal functions

in L2
(
G(Q)\G(A)1

)
is closed and invariant under right translation by G(A)1. The

following property of this subspace is one of the foundations of the subject.

Theorem 12.1 (Gelfand, Piatetski-Shapiro). The space L2
cusp

(
G(Q)\G(A)1

)

decomposes under the action of G(A)1 into a discrete sum of irreducible represen-
tations with finite multiplicities. In particular, L2

cusp

(
G(Q)\G(A)1

)
is a subspace

of L2
disc

(
G(Q)\G(A)1

)
.

The proof is similar to that of the discreteness of the decomposition of R,
in the case of compact quotient. For if G(Q)\G(A)1 is compact, there are no
proper parabolic subgroups, by the criterion of Borel and Harish-Chandra, and
L2

cusp

(
G(Q)\G(A)1

)
equals L2

(
G(Q)\G(A)1

)
. In general, one combines the van-

ishing condition (12.1) with the approximate fundamental domain of Theorem
8.1 to show that for any f ∈ C∞

c

(
G(A)1

)
, the restriction Rcusp(f) of R(f) to

L2
cusp

(
G(Q)\G(A)1

)
is of Hilbert-Schmidt class. In particular, if f(x) = f(x−1),

Rcusp(f) is a compact self-adjoint operator. One then uses the spectral theorem to
show that L2

cusp

(
G(Q)\G(A)1

)
decomposes discretely. See [Lan5] and [Har4]. �

The theorem provides a G(A)1-invariant orthogonal decomposition

L2
cusp

(
G(Q)\G(A)1

)
=
⊕

σ

L2
cusp,σ

(
G(Q)\G(A)1

)
,

where σ ranges over irreducible unitary representations of G(A)1, and
L2

cusp,σ

(
G(Q)\G(A)

)
is G(A)1-isomorphic to a finite number of copies of σ. We

define a cuspidal automorphic datum to be an equivalence class of pairs (P, σ),
where P ⊂ G is a standard parabolic subgroup of G, and σ is an irreducible rep-
resentation of MP (A)1 such that the space L2

cusp,σ

(
MP (Q)\MP (A)1

)
is nonzero.

The equivalence relation is defined by the conjugacy, which for standard parabolic
groups is given by the Weyl sets W (aP , aP ′). In other words, (P ′, σ′) is equivalent
to (P, σ) if there is an element s ∈ W (aP , aP ′) such that the representation

s−1σ′ : m −→ σ′(wsmw
−1
s ), m ∈MP (A)1,

of MP (A)1 is equivalent to σ. We write X = XG for the set of cuspidal automorphic
data χ = {(P, σ)}.
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Cuspidal functions do not appear explicitly in Theorem 7.2, but they are an
essential ingredient of Langlands’s proof. For example, they give rise to a decom-
position

(12.2) L2
(
G(Q)\G(A)

)
=
⊕

P

L2
P-cusp

(
G(Q)\G(A)

)
,

which is based on cuspidal automorphic data, and is more elementary than the
spectral decomposition (7.5). Let us describe it.

For any P , we have defined the right G(A)-invariant Hilbert space HP of func-
tions on G(A), and the dense subspace H0

P . Let HP,cusp be the subspace of vectors
φ ∈ HP such that for almost all x ∈ G(A), the function φx(m) = φ(mx) on
MP (Q)\MP (A)1 lies in the space L2

cusp

(
MP (Q)\MP (A)1

)
. Then

HP,cusp =
⊕

σ

HP,cusp,σ,

where for any irreducible unitary representation σ of MP (A)1, HP,cusp,σ is the
subspace of vectors φ ∈ HP,cusp such that each of the functions φx lies in the
space L2

cusp,σ

(
MP (Q)\MP (A)1

)
. We write H0

P,cusp and H0
P,cusp,σ for the respective

intersections of HP,cusp and HP,cusp,σ with H0
P .

Suppose that Ψ(λ) is an entire function of λ ∈ a∗P,C of Paley-Wiener type, with

values in a finite dimensional subspace of functions x→ Ψ(λ, x) in H0
P,cusp,σ. Then

Ψ(λ, x) is the Fourier transform in λ of a smooth, compactly supported function
on aP . This means that for any point Λ ∈ a∗P , the function

ψ(x) =

∫

Λ+ia∗
P

e(λ+ρP )(HP (x))Ψ(λ, x)dλ

of x ∈ NP (A)MP (Q)\G(A) is compactly supported in HP (x).

Lemma 12.2 (Langlands). The function

(Eψ)(x) =
∑

δ∈P (Q)\G(Q)

ψ(δx), x ∈ G(Q)\G(A),

lies in L2
(
G(Q)\G(A)

)
.

Lemma 12.3 (Langlands). Suppose that Ψ′(λ′, x) is a second such function,
attached to a pair (P ′, σ′). Then the inner product formula

(12.3) (Eψ,Eψ′) =

∫

Λ+ia∗
P

∑

s∈W (aP ,aP ′ )

(
M(s, λ)Ψ(λ),Ψ′(−sλ)

)
dλ

holds if Λ is any point in a∗P such that (Λ− ρP )(α∨) > 0 for every α ∈ ∆P .

If χ is the class in X represented by a pair (P, σ), let L2
χ

(
G(Q)\G(A)

)
be the

closed, G(A)-invariant subspace of L2
(
G(Q)\G(A)

)
generated by the functions Eψ

attached to (P, σ).

Lemma 12.4 (Langlands). There is an orthogonal decomposition

(12.4) L2
(
G(Q)\G(A)

)
=
⊕

χ∈X

L2
χ

(
G(Q)\G(A)

)
.
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Lemmas 12.2–12.4 are discussed in the early part of Langlands’s survey article
[Lan1]. They are the foundations for the rest of the theory, and for Theorem 7.2
in particular. We refer the reader to [Lan1] for brief remarks on the proofs, which
are relatively elementary. �

The inner product formula (12.3) is especially important. It is used in the
proof of both the analytic continuation (a) and the spectral decomposition (b) in
Theorem 7.2. Observe that the domain of integration in (12.3) is contained in the
region of absolute convergence of the cuspidal operator valued function M(s, λ) in
the integrand. Once he had proved the meromorphic continuation of this func-
tion, Langlands was able to use (12.3) to establish the remaining analytic contin-
uation assertions of Theorem 7.2(a), and the spectral decomposition of the space
L2
χ

(
G(Q)\G(A)

)
. His method was based on a change contour of integration from

Λ+ ia∗P to ia∗P , and an elaborate analysis of the resulting residues. It was a tour de
force, the details of which comprise the notoriously difficult Chapter 7 of [Lan5].

Any class χ = {(P , σ)} in X determines an associated class Pχ = {P} of
standard parabolic subgroups. We then obtain a decomposition (12.2) from (12.4)
by setting

L2
P-cusp

(
G(Q)\G(A)

)
=

⊕

{χ∈X:Pχ=P}

L2
χ

(
G(Q)\G(A)

)
.

However, it is the finer decomposition (12.4) that is more often used. We shall
actually apply the obvious variant of (12.4) that holds for G(A)1 in place of G(A),
or rather its restriction

(12.5) L2
disc

(
G(Q)\G(A)1

)
=
⊕

χ∈X

L2
disc,χ

(
G(Q)\G(A)1

)

to the discrete spectrum, in which

L2
disc,χ

(
G(Q)\G(A)1

)
= L2

disc

(
G(Q)\G(A)1

)
∩ L2

χ

(
G(Q)\G(A)1

)
.

If P is a standard parabolic subgroup, the correspondence

(P1 ∩MP , σ1) −→ (P1, σ1), P1 ⊂ P, {(P1 ∩MP , σ1)} ∈ XMP ,

yields a mapping χP → χ from XMP to the set X = XG. We can then write

L2
disc

(
MP (Q)\MP (A)1

)
=
⊕

χ∈X

L2
disc,χ

(
MP (Q)\MP (A)1

)
,

where L2
disc,χ

(
MP (Q)\MP (A)1

)
is the sum of those subspaces of

L2
disc

(
MP (Q)\MP (A)1

)
attached to classes χP ∈ XMP in the fibre of χ. Let HP,χ

be the subspace of functions φ in the Hilbert space HP such that for almost all
x, the function φx(m) = φ(mx) lies in L2

disc,χ

(
MP (Q)\MP (A)1

)
. There is then an

orthogonal direct sum

HP =
⊕

χ

HP,χ.

There is also an algebraic direct sum

(12.6) H0
P =

⊕

χ

H0
P,χ,

where H0
P,χ is the intersection of HP,χ with H0

P . For any λ and f , we shall write

IP,χ(λ, f) for the restriction of the operator IP (λ, f) to the invariant subspaceHP,χ
of HP .
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At the end of §7, we described the spectral expansions for both the kernel
K(x, y) and the truncated function kT (x) in terms of Eisenstein series. They were
defined by means of an orthonormal basis BP of HP . We can assume that BP is
compatible with the algebraic direct sum (12.6). In other words,

BP =
∐

χ∈X

BP,χ,

where BP,χ is the intersection of BP with H0
P,χ. For any χ ∈ X we set

(12.7) Kχ(x, y) =
∑

P

n−1
P

∫

ia∗
P

∑

φ∈BP,χ

E
(
x, IP,χ(λ, f)φ, λ

)
E(y, φ, λ)dλ,

where nP is the integer defined in Theorem 7.2(b). It is a consequence of Lang-
lands’ construction of the spectral decomposition (7.5) from the more elementary
decomposition (12.4) that Kχ(x, y) is the kernel of the restriction of R(f) to the
invariant subspace L2

χ

(
G(Q)\G(A)

)
of L2

(
G(Q)\G(A)

)
. It follows, either from this

or from the definition (12.7), that

(12.8) K(x, y) =
∑

χ∈X

Kχ(x, y).

This is the spectral analogue of the geometric decomposition (10.1).
More generally, suppose that we fix P , and use P1 ⊂ P in place of P to index

the orthonormal bases. Then we have

KP (x, y) =
∑

χ∈X

KP,χ(x, y),

where KP,χ(x, y) is equal to

∑

P1⊂P

(nPP1
)−1

∫

ia∗
P

∑

φ∈BP1,χ

EPP1

(
x, IP1,χ(λ, f)φ, λ

)
EPP1

(y, φ, λ)dλ.

We obtain a decomposition

(12.9) kT (x) =
∑

χ∈X

kTχ (x),

where

kTχ (x) = kTχ (x, f)

=
∑

P

(−1)dim(AP /AG)
∑

δ∈P (Q)\G(Q)

KP,χ(δx, δx)τ̂P
(
HP (δx)− T

)
.

This is the spectral analogue of the geometric decomposition (10.2) of the truncated
kernel.

We have given spectral versions of the constructions at the beginning of §10.
However, the spectral analogue of the coarse geometric expansion (10.7) is more
difficult. The problem is to obtain an analogue of Corollary 10.1. We know from
Theorem 6.1 that

∫

G(Q)\G(A)1

∣∣∣
∑

χ

kTχ (x)
∣∣∣dx =

∫

G(Q)\G(A)1
|kT (x)|dx <∞.
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To obtain a corresponding expansion for JT (f), we would need the stronger asser-
tion that the double integral

∫

G(Q)\G(A)1

∑

χ

|kTχ (x)|dx

is finite. Unlike the geometric case of Corollary 10.1, this is not an immediate
consequence of the proof of Theorem 6.1. It requires some new methods.

13. A truncation operator

The process that assigns the modified function kT (x) = kT (x, f) to the original
kernel K(x, x) can be regarded as a construction that is based on the adjoint action
of G on itself. It is compatible with the geometry of classes o ∈ O. The process
is less compatible with the spectral properties of classes χ ∈ X. However, we still
have to deal with the spectral expansion (12.9) of kT (x). We do so by introducing
an operator that systematically truncates functions on G(Q)\G(A)1.

The operator depends on the same parameter T used to define kT (x). It
acts on the space Bloc

(
G(Q)\G(A)1

)
of locally bounded, measurable functions

on G(Q)\G(A)1. For any suitably regular point T ∈ a+
0 and any function φ ∈

Bloc

(
G(Q)\G(A)1

)
, we define ΛTφ to be the function in Bloc

(
G(Q)\G(A)1

)
whose

value at x equals

(13.1)
∑

P

(−1)dim(AP /AG)
∑

δ∈P (Q)\G(Q)

∫

NP (Q)\NP (A)

φ(nδx)τ̂P
(
HP (δx)− T

)
dn.

The inner sum may be taken over a finite set (that depends on x), while the
integrand is a bounded function of n. Notice the formal similarity of the definition
with that of kT (x) in §6. Notice also that if φ belongs to L2

cusp

(
G(Q)\G(A)1

)
, then

ΛTφ = φ.
There are three basic properties of the operator ΛT to be discussed in this

section. The first is that ΛT is an orthogonal projection.

Proposition 13.1. (a) For any P1, any φ1 ∈ Bloc

(
G(Q)\G(A)1

)
, and any

x1 ∈ G(A)1, the integral
∫

NP1(Q)\NP1 (A)

(ΛTφ1)(n1x1)dn1

vanishes unless ̟
(
HP1(x1)− T

)
≤ 0 for every ̟ ∈ ∆̂P1 .

(b) ΛT ◦ ΛT = ΛT .
(c) The operator ΛT is self-adjoint, in the sense that it satisfies the inner prod-

uct formula

(ΛTφ1, φ2) = (φ1,Λ
Tφ2),

for functions φ1 ∈ Bloc

(
G(Q)\G(A)1

)
and φ2 ∈ Cc

(
G(Q)\G(A)1

)
.

The first assertion of the proposition is Lemma 1.1 of [A4]. (The symbol <
in the statement of this lemma should in fact be ≤.) In the case G = SL(2), it
follows directly from classical reduction theory, as illustrated in the earlier Figure
8.3. In general, one has to apply the Bruhat decomposition to elements in the sum
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over P (Q)\G(Q) that occurs in the definition of ΛTφ. We recall that the Bruhat
decomposition is a double coset decomposition

G(Q) =
∐

s∈W0

(
B0(Q)wsN0(Q)

)

of G(Q), which in turn leads easily to a characterization

P (Q)\G(Q) ∼=
∐

s∈WM
0 \W0

(
w−1
s N0(Q)ws ∩N0(Q)\N0(Q)

)

of P (Q)\G(Q). Various manipulations, which we will not reproduce here, reduce
the assertion of (i) to Identity 6.2.

The assertion (ii) follows from (i). Indeed,
(
ΛT (ΛTφ)

)
(x) equals the sum over

P1 ⊃ P0 and δ1 ∈ P1(Q)\G(Q) of
∫

NP1(Q)\NP1 (A)

(ΛTφ)(n1δ1x)τ̂P1

(
HP1(δ1x)− T

)
dn1.

The term corresponding to P1 = G equals (ΛTφ)(x), while if P1 6= G, the term
vanishes by (i) and the definition of τ̂P1 .

To establish (iii), we observe that

(ΛTφ1, φ2)

=

∫

G(Q)\G(A)1

∑

P

(−1)dim(AP /AG)
∑

δ∈P (Q)\G(Q)

·

·
∫

NP (Q)\NP (A)

φ1(nδx)τ̂P
(
HP (δx)− T

)
φ2(x)dndx

=
∑

P

(−1)dim(AP /AG)

∫

NP (Q)\NP (A)

∫

P (Q)\G(A)1
φ1(nx)φ2(x)τ̂P

(
HP (x) − T

)
dxdn

=
∑

P

(−1)dim(AP /AG)

∫

NP (Q)\NP (A)

∫

P (Q)\G(A)1
φ1(x)φ2(nx)τ̂P

(
HP (x) − T

)
dxdn

=

∫

G(Q)\G(A)1

∑

P

(−1)dim(AP /AG)
∑

δ∈P (Q)\G(Q)

·

·
∫

NP (Q)\NP (A)

φ1(x)φ2(nδx)τ̂P
(
HP (δx)− T

)
dndx

= (φ1,Λ
Tφ2). �

It is not hard to show from (ii) and (iii) that ΛT extends to an orthogonal
projection from the space L2

(
G(Q)\G(A)

)
to itself. It is also easy to see that ΛT

preserves each of the spaces L2
P-cusp

(
G(Q)\G(A)1

)
in the cuspidal decomposition

(12.2). On the other hand, ΛT is decidedly not compatible with the spectral decom-
position (7.5). It is an operator built upon the cuspidal properties of §12, rather
than the more sensitive spectral properties of Theorem 7.2.

The second property of the operator ΛT is that it transforms uniformly tem-
pered functions to rapidly decreasing functions. To describe this property quanti-
tatively, we need to choose a height function ‖ · ‖ on G(A).
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Suppose first that G is a general linear group GL(m), and that x = (xij) is a
matrix in GL(m,A). We define

‖xv‖v = max
i,j
|xij,v|v

if v is a p-adic valuation, and

‖xv‖v =
(∑

i,j

|xij,v |2v
) 1

2

if v is the archimedean valuation. Then ‖xv‖v = 1 for almost all v. The height
function

‖x‖ =
∏

v

‖xv‖v

is therefore defined by a finite product. For arbitraryG, we fix a Q-rational injection
r: G→ GL(m), and define

‖x‖ = ‖r(x)‖.
By choosing r appropriately, we can assume that the set of points x ∈ G(A) with
‖x‖ ≤ t is compact, for any t > 0. The chosen height function ‖ · ‖ on G(A) then
satisfies

(13.2) ‖xy‖ ≤ ‖x‖‖y‖, x, y ∈ G(A),

(13.3) ‖x−1‖ ≤ C0‖x‖N0 , x ∈ G(A),

and

(13.4)
∣∣{x ∈ G(Q) : ‖x‖ ≤ t

}∣∣ ≤ C0t
N0 , t ≥ 0,

for positive contants C0 and N0. (See [Bor2].)
We shall say that a function φ on G(Q)\G(A)1 is rapidly decreasing if for any

positive integer N and any Siegel set S = SG(T1) for G(A), there is a positive
constant C such that

|φ(x)| ≤ C‖x‖−N

for every x in S1 = S ∩ G(A)1. The notion of uniformly tempered applies to the
space of smooth functions

C∞
(
G(Q)\G(A)1

)
= lim−→

K0

C∞
(
G(Q)\G(A)1/K0

)
.

By definition, C∞(G(Q)\G(A)1/K0

)
is the space of functions on G(Q)\G(A)1 that

are right invariant under the open compact subgroup K0 of G(Afin), and are infin-
itely differentiable as functions on the subgroup G(R)1 = G(R) ∩G(A)1 of G(A)1.
We can of course also define the larger space Cr

(
G(Q)\G(A)1

)
of functions of dif-

ferentiability class Cr in the same way. If X is a left invariant differential operator
on G(R)1 of degree k ≤ r, and φ lies in Cr

(
G(Q)\G(A)1/K0

)
, Xφ is a function in

Cr−k
(
G(Q)\G(A)1/K0

)
. Let us say that a function φ ∈ C∞

(
G(Q)\G(A)1

)
is uni-

formly tempered if there is an N0 ≥ 0 with the property that for every left invariant
differentiable operator X on G(R)1, there is a constant cX such that

|(Xφ)(x)| ≤ cX‖x‖N0 ,

for every x ∈ G(A)1.
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Proposition 13.2. (a) If φ ∈ C∞
(
G(Q)\G(A)1

)
is uniformly tempered, the

function ΛTφ is rapidly decreasing.
(b) Given a Siegel set S, positive integers N and N0, and an open compact

subgroup K0 of G(Afin), we can choose a finite set {Xi} of left invariant differential
operators on G(R)1 and a positive integer r with the property that if (Ω, dω) is
a measure space, and φ(ω): x → φ(ω, x) is any measurable function from Ω to
Cr
(
G(Q)\G(A)1/K0

)
, the supremum

(13.5) sup
x∈S1

(
‖x‖N

∫

Ω

|ΛTφ(ω, x)|dω
)

is bounded by

(13.6) sup
y∈G(A)1

(
‖y‖−N0

∑

i

∫

Ω

|Xiφ(ω, y)|dω
)
.

It is enough to prove (ii), since it is a refined version of (i). This assertion is
Lemma 1.4 of [A4], the proof of which is reminiscent of that of Theorem 6.1. The
initial stages of the two proofs are in fact identical. We multiply the summand
corresponding to P in

ΛTφ(ω, x)

=
∑

P

(−1)dim(AP /AG)
∑

δ∈P (Q)\G(Q)

∫

NP (Q)\NP (A)

φ(ω, nδx)dn · τ̂P
(
HP (δx) − T

)

by the left hand side of (8.1). We then apply the definition (8.2) to the product of
functions τPP1

and τ̂P that occurs in the resulting expansion. The function ΛTφ(σ, x)
becomes the sum over pairs P1 ⊂ P2 and elements δ ∈ P1(Q)\G(Q) of the product

FP1(δx, T )σP2

P1

(
HP1(δx) − T

)
φP1,P2(ω, δx),

where

(13.7) φP1,P2(ω, y) =
∑

{P :P1⊂P⊂P2}

(−1)dim(AP /AG)

∫

NP (Q)\NP (A)

φ(ω, ny)dn.

Suppose that y = δx is such that the first two factors in the last product are
both nonzero. Replacing δ by a left P1(Q)-translate, if necessary, we can assume
that

y = δx = n∗n
∗mak,

for k ∈ K, elements n∗, n
∗ and m in fixed compact subsets of NP2(A), NP2

P1
(A)

and MP1(A)1 respectively, and a point a ∈ AP1(R)0 with σP2

P1

(
HP1(a) − T

)
6= 0.

Therefore

y = δx = n∗a · a−1n∗amk = n∗ab,

where b belongs to a fixed compact subset of G(A)1 that depends only on G. The
next step is to extract an estimate of rapid decrease for the function

φP1,P2(ω, y) = φP1,P2(ω, δx) = φP1,P2(ω, ab)

from the alternating sum over P in (13.7).
At this point the argument diverges slightly from that of Theorem 6.1. The

quantitative nature of the assertion (ii) represents only a superficial difference,
since similar estimates are implicit in the discussion of §8. However, the integrals
in (13.7) are over quotients NP (Q)\NP (A) rather than groups NP (A), a reflection



72 JAMES ARTHUR

of the left G(Q)-invariance of the underlying function y → φ(σ, y). This alters the
way we realize the cancellation in the alternating sum over P . It entails having
to apply the Fourier inversion formula to a product of groups Q\A, in place of
the Poisson summation formula for a product of groups A. The problem is that
the quotient nP2

P1
(Q)\nP2

P1
(A) does not correspond with NP2

P1
(Q)\NP2

P1
(A) under the

exponential mapping. However, the problem may be resolved by a straightforward
combinatorial argument that appears in [Har4, Lemma 11]. One constructs a finite
set of pairs

(N−
I , NI), NP2 ⊂ N−

I ⊂ NI ⊂ NP1 ,

of Q-rational groups, where N−
I is normal in NI with abelian quotient N I . Each

index I parametrizes a subset
{
βI,α ∈ ΦP2

P1
: α ∈ ∆P2

P1

}

of roots of the parabolic subgroup MP2 ∩P1 of MP2 such that βI,α contains α in its
decomposition into simple roots. If XI,α ∈ nP1(Q) stands for a root vector relative
to βI,α, the space

nI(Q) =
⊕

α∈∆
P2
P1

QXI,α

becomes a linear complement for the Lie algebra of N−
I (Q) in that of NI(Q). The

combinatorial argument yields an expansion of φP1,P2(ω, ab) as linear combination
over I of functions

(13.8)
∑

ξ∈nI (Q)′

∫

nI(Q)\nI (A)

∫

N−
I (Q)\N−

I (A)

φ
(
ω, u exp(X)ab

)
ψ
(
〈X, ξ〉

)
dudX,

where

nI(Q)′ =
{
ξ =

∑

α∈∆
P2
P1

rαXI,α : rα ∈ Q∗
}
.

(See [A4, p. 94].)
One can estimate (13.8) as in the proof of Theorem 6.1. In fact, it is not hard

to show that for any positive integer n, the product of en‖HP1 (a)‖ with the integral
of the absolute value of (13.8) over ω has a bound of the form (13.6). But

en‖HP0 (a)‖ ≥ c1‖a‖nε ≥ c2‖n∗ab‖nε = c2‖δx‖nε,
for positive constants c1, c2 and ε. Moreover, it is known that there is a positive
constant c such that

‖δx‖ ≥ c‖x‖,
for any x in the Siegel set S, and any δ ∈ G(Q). It follows that the supremum

sup
x∈S

sup
δ∈P1(Q)\G(Q)

(
‖x‖nε

∫

Ω

∣∣φP1,P2(ω, δx)
∣∣dω
)

has a bound of the form (13.6). Since this supremum is independent of δ, we have
only to estimate the sum

∑

δ∈P1(Q)\G(Q)

FP1(δx, T )σP2

P1

(
HP1(δx) − T

)
.

It follows from the definition (8.3) and the fact that both FP1(·, T ) and σP2

P1
(·)

are characteristic functions that the summand corresponding to δ is bounded by
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τ̂P1

(
HP1(δx) − T

)
. In §6 we invoked Lemma 5.1 of [A3] in order to say that the

sum over δ in (6.1) could be taken over a finite set. The lemma actually asserts
that ∑

δ∈P1(Q)\G(Q)

τ̂P1

(
HP1(δx)− T

)
≤ cT ‖x‖N1 ,

for positive constants cT and N1. We obtain an estimate (13.6) for (13.5) by
choosing n ≥ ε−1(N +N1). �

The proof of Proposition 13.2 we have just sketched is that of [A4, Lemma
1.4]. The details in [A4] are a little hard to follow, thanks to less than perfect
exposition and some typographical errors. Perhaps the discussion above will make
them easier to read.

The most immediate application of Proposition 13.2 is to an Eisenstein series
x→ E(x, φ, λ). Among the many properties established by Langlands in the course
of proving Theorem 7.2 was the fact that Eisenstein series are uniformly slowly
increasing. More precisely, there is a positive integerN0 such that for any vector φ ∈
H0
P and any left invariant differential operator X on G(R)1, there is an inequality

|XE(x, φ, λ)| ≤ cX,φ(λ)‖x‖N0 , x ∈ G(A),

in which cX,φ(λ) is a locally bounded function on the set of λ ∈ a∗P,C at which

E(x, φ, λ) is analytic. It follows from Proposition 13.2 that for any N and any
Siegel set S, there is a locally bounded function cN,φ(λ) on the set of λ at which
E(x, φ, λ) is analytic such that

(13.9) |ΛTE(x, φ, λ)| ≤ cN,φ(λ)‖x‖−N ,
for every x ∈ S1. In particular, the truncated Eisenstein series ΛTE(x, φ, λ) is
square integrable on G(Q)\G(A)1. As we shall see, the spectral expansion of the
trace formula depends on being able to evaluate the inner product of two truncated
Eisenstein series.

The third property of the truncation operator is one of cancellation. It concerns
the partial truncation operator ΛT,P1 attached to a standard parabolic subgroup
P1 ⊃ P0. If φ is any function in Bloc

(
P1(Q)\G(A)1

)
, we define ΛT,P1φ to be the

function in Bloc

(
MP1(Q)NP1(A)\G(A)1

)
whose value at x equals

∑

{Q:P0⊂Q⊂P1}

(−1)dim(AQ/AP1 )
∑

δ∈Q(Q)\P1(Q)

∫

NQ(Q)\NQ(A)

φ(nδx)τ̂P1

Q

(
HQ(δx) − T

)
.

Proposition 13.3. If φ belongs to Bloc

(
G(Q)\G(A)1

)
, then

∑

P1⊃P0

∑

δ∈P1(Q)\G(Q)

ΛT,P1φ(δx)τP1

(
HP1(δx) − T

)
= φ(x).

More generally, if φ belongs to Bloc

(
P (Q)\G(A)1

)
for some P ⊃ P0, the sum

(13.10)
∑

{P1:P0⊂P1⊂P}

∑

δ∈P1(Q)\P (Q)

ΛT,P1φ(δx)τPP1

(
HP1(δx)− T

)

equals ∫

NP (Q)\NP (A)

φ(nx)dn.
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If we substitute the definition of ΛT,P1φ into (13.10), we obtain a double sum
over Q and P1. Combining the double sum over Q(Q)\P1(Q) and P1(Q)\P (Q) into
a single sum overQ(Q)\P (Q), we write (13.10) as the sum over parabolic subgroups
Q, with P0 ⊂ Q ⊂ P , and elements δ ∈ Q(Q)\P (Q) of the product of

∫

NQ(Q)\NQ(A)

φ(nδx)

with
∑

{P1:Q⊂P1⊂P}

(−1)dim(AQ/AP1 )τ̂P1

Q

(
HQ(δx)− T

)
τPP1

(
HP1(δx) − T

)
.

Since τPP1

(
HP1(δx)−T

)
= τPP1

(
HQ(δx)−T

)
, we can apply (8.11) to the alternating

sum over P1. This proves that the alternating sum vanishes unless Q = P , in which
case it is trivially equal to 1. The formula of the lemma follows. (See [A4, Lemma
1.5].) �

14. The coarse spectral expansion

The truncation operator ΛT acts on functions onG(Q)\G(A)1. If h is a function
of two variables and Λ is a linear operator on any space of functions in G(A), we
write Λ1h and Λ2h for the transforms of h obtained by letting Λ act separately
on the first and second variables respectively. We want to consider the case that
Λ = ΛT , and h(x, y) equals the χ-componentKχ(x, y) of the kernelK(x, y) of R(f).
We recall that the parameter T in both the operator ΛT and the modified kernel
kT (x) is a suitably regular point in a+

0 .

Theorem 14.1. (a) The double integral

(14.1)
∑

χ∈X

∫

G(Q)\G(A)1
ΛT2Kχ(x, x)dx

converges absolutely.
(b) If T is suitably regular, in a sense that depends only on the support of f ,

the double integral

(14.2)
∑

χ∈X

∫

G(Q)\G(A)1
kTχ (x)dx

also converges absolutely.
(c) If T is as in (ii), we have

∫

G(Q)\G(A)1
kTχ (x)dx =

∫

G(Q)\G(A)1
ΛT2Kχ(x, x)dx,

for any χ ∈ X.

The assertions of Theorem 14.1 are among the main results of [A4]. Their
proof is given in §2 of that paper. We shall try to give some idea of the argument.

The assertion (i) requires a quantitative estimate for the spectral expansion of
the kernel

K(x, y) =
∑

γ∈G(Q)

f(x−1γy).



14. THE COARSE SPECTRAL EXPANSION 75

The sum here can obviously be taken over elements γ in the support of the function
u→ f(x−1uy). Since the support equals x ·suppf ·y−1, we can apply the properties
(13.2)–(13.4) of the height function ‖ · ‖. We see that

|K(x, y)| ≤ c(f)‖x‖N1‖y‖N1,

for a positive number N1 that depends only on G. For any χ ∈ X, Kχ(x, y) is
the kernel of the restriction of R(f) to the invariant subspace L2

χ

(
G(Q)\G(A)

)
of

L2
(
G(Q)\G(A)

)
. It follows from the discussion at the end of §7 that the sum

∑

χ∈X

|Kχ(x, y)|

of absolute values is bounded by a finite sum of products

(∑

χ

Kχ,1(x, x)
) 1

2
(∑

χ

Kχ,2(y, y)
) 1

2

=
(
K1(x, x)

) 1
2
(
K2(y, y)

) 1
2 .

of kernels Ki(·, ·) attached positive definite functions

fi = hi ∗ h∗i , hi ∈ Crc
(
G(A)

)
.

It follows that

∑

χ

|Kχ(x, y)| = c(f)‖x‖N1‖y‖N1, x, y ∈ G(A),

for some constant c(f) depending on f .
A similar estimate holds for derivatives of the kernel. Suppose that X and Y

are left invariant differential operators on G(R) of degrees d1 and d2. Suppose that
f belongs to Crc

(
G(A)

)
, for some large positive integer r. The corresponding kernel

then satisfies

X1Y2Kχ(x, y) = KX,Y
χ (x, y), χ ∈ X,

where KX,Y (x, y) is the kernel attached to a function fX,Y in Cr−d1−d2c

(
G(A)

)
. It

follows that

∑

χ∈X

|X1Y2Kχ(x, y)| ≤ c(fX,Y )‖x‖N1‖y‖N1,

for all x, y ∈ G(A).
We combine the last estimate with Proposition 13.2(b). Choose the objects S,

N , N0 and K0 of Proposition 13.2(b) so that G(A) = G(Q)S, N is large, N0 = N1,
and f is biinvariant under K0. We can then find a finite set {Yi} of left invariant
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differential operators on G(R) such that

sup
y∈S

(
‖y‖N

∑

χ

|ΛT2Kχ(x, y)|
)

≤ sup
y∈G(A)

(∑

χ

‖y‖−N0

∣∣∣
∑

i

(Yi)2Kχ(x, y)
∣∣∣
)

≤ sup
y∈G(A)

(∑

i

‖y‖−N0

∑

χ

|(Yi)2Kχ(x, y)|
)

≤ sup
y∈G(A)

(∑

i

‖y‖−N0c(f1,Yi)‖x‖N1‖y‖N1

)

≤
(∑

i

c(f1,Yi)
)
‖x‖N1 ,

for any x ∈ G(A). Setting x = y, we see that there is a constant c1 = c1(f) such
that ∑

χ

|ΛT2Kχ(x, x)| ≤ c1‖x‖N1−N ,

for any x ∈ S. Since any bounded function is integrable over S1 = S ∩ G(A)1,
we conclude that the sum over χ of the functions |ΛT2Kχ(x, x)| is integrable over
G(Q)\G(A)1. This is the assertion (a).

The proof of (b) and (c) begins with an expansion of the function kTχ (x) =

kTχ (x, f). We are not thinking of the χ-form of the expansion (8.3) of kT (x), but
rather a parallel expansion in terms of partial truncation operators. We shall derive
it as in §8, using Proposition 13.3 in place of Lemma 8.2.

The kernel KP,χ(x, y) defined in §12 is invariant under left translation of either
variable by NP (A). In particular, we can write

KP,χ(x, y) =

∫

NP (Q)\NP (A)

KP,χ(x, ny)dn.

It follows from the definition in §12 that kTχ (x) equals

∑

P

(−1)(AP /AG)
∑

δ∈P (Q)\G(Q)

τ̂P
(
HP (δx) − T

) ∫

NP (Q)\NP (A)

KP,χ(δx, nδx)dn.

The integral over n can then be expanded according to Proposition 13.3. The
resulting sum over P1(Q)\P (Q) combines with that over P (Q)\G(Q) to give an
expression
∑

P1⊂P

(−1)dim(AP /AG)
∑

δ∈P1(Q)\G(Q)

τ̂P
(
HP (δx)−T

)
τPP1

(
HP1(δx)−T

)
ΛT,P1

2 KP,χ(δx, δx)

for kTχ (x). Applying the expansion (8.2), we write

τ̂P
(
HP (δx) − T

)
τPP1

(
HP1(δx) − T

)

=τ̂P
(
HP1(δx)− T

)
τPP1

(
HP1(δx)− T

)

=
∑

{P2:P2⊃P}

σP2

P1

(
HP1(δx) − T

)
.
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It follows that kTχ (x) has an expansion

(14.3)
∑

P1⊂P2

∑

δ∈P1(Q)\G(Q)

σP2

P1

(
HP1(δx) − T

)
ΛT,P1

2 KP1,P2,χ(δx, δx),

where

KP1,P2,χ(x, y) =
∑

{P :P1⊂P⊂P2}

(−1)dim(AP /AG)KP,χ(x, y).

Observe that (14.3) is the same as the expansion (8.3) (or rather its χ-analogue),
except that the partial “cut-off” function FP1(·, T ) has been replaced by the partial

truncation operator ΛT,P1

2 .

We recall from Lemma 8.3 that σP2

P1
vanishes if P1 = P2 6= G, so the corre-

sponding summand in (14.3) equals 0. If P1 = P2 = G, σP2

P1
equals 1, and the

corresponding summand in (14.3) equals ΛT2Kχ(x, x). It follows that the difference

kTχ (x) − ΛT2Kχ(x, x)

equals the modified expression (14.3) obtained by taking the first sum over P1 ( P2.
Consider the integral over G(Q)\G(A)1 of the absolute value of this difference. The
absolute value is of course bounded by the corresponding double sum of absolute
values, in which we can combine the integral with the sum over P1(Q)\G(Q). It
follows that the double integral

∑

χ∈X

∫

G(Q)\G(A)1
|kTχ (x) − ΛT2Kχ(x, x)|dx

is bounded by

(14.4)
∑

χ∈X

∑

P1(P2

∫

P1(Q)\G(A)1
σP2

P1

(
HP1(x) − T

)
|ΛT,P1

2 KP1,P2,χ(x, x)|dx.

The assertion (ii) would follow from (i) if it could be shown that (14.4) is finite. In
fact, one shows that for T highly regular, the integrand in (14.4) actually vanishes.
This obviously suffices to establish both (ii) and (iii).

Consider the integrand in (14.4) attached to a fixed pair P1 ( P2. In order to

treat the factor ΛT,P1

2 KP1,P2,χ, one studies the function
∫

NP1(Q)\NP1 (A)

KP1,P2(x, n1y)dn1

=
∑

{P :P1⊂P⊂P2}

(−1)dim(AP /AG)

∫

NP1(Q)\NP1 (A)

KP (x, n1y)dn1

=
∑

P

(−1)dim(AP /AG)

∫

NP1 (Q)\NP1(A)

∫

NP (A)

∑

γ∈MP (Q)

f(x−1γnn1y)dndn1.

In the last summand corresponding to P , we change the triple integral to a double
integral over the product

MP (Q)NP (A)/NP1(Q)×NP1(A).

This in turn can be written as a triple integral over the product
(
MP (Q)/MP (Q) ∩NP1(Q)

)
×
(
NP (A)/NP (Q)

)
×NP1(A).
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The integral over NP (A)/NP (Q) can then be absorbed in the integral over NP1(A).
Since

MP (Q)/MP (Q) ∩NP1(Q) ∼= P (Q)/P1(Q)×MP1(Q),

the sum over P takes the form

∑

P

(−1)dim(AP /AG)
∑

γ∈P1(Q)\P (Q)

∫

NP1 (A)

∑

γ1∈MP1 (Q)

f(x−1γ−1γ1n1y)dn1

=
∑

P

(−1)dim(AP /AG)
∑

γ∈P1(Q)\P (Q)

KP1(γx, y).

Let F (P1, P2) be the set of elements in P1(Q)\P2(Q) which do not lie in P1(Q)\P (Q)
for any P with P1 ⊂ P ( P2. The alternating sum over P and γ then reduces to a
sum over γ ∈ F (P1, P2), by Identity 6.2. We have established that

(14.5)

∫

NP1(Q)\NP1 (A)

KP1,P2(x, n1y)dn1 = (−1)dim(AP2/AG)
∑

γ∈F (P1,P2)

KP1(γx, y).

There remain two steps to showing that the integrand in (14.4) vanishes. The

first is to show that for any x and y, ΛT,P1

2 KP1,P2,χ(x, y) depends linearly on the
function of m ∈ MP1(Q)\MP1(A)1 obtained from the left hand side of (14.5) by
replacing y by my. This is related to the decompositions of §12, and is easily
established from the estimates we have discussed. The other is to show that if T is
highly regular relative to supp(f), and σP2

P1

(
HP1(x)−T

)
6= 0, then KP1(γx,mx) = 0

for all m and any γ ∈ F (P1, P2). This is a consequence of the Bruhat decomposition
for G(Q). In the interests of simplicity (rather than efficiency), we shall illustrate
the ideas in the concrete example of G = GL(2), referring the reader to [A4, §2]
for the general case.

Assume that G = GL(2), P1 = P0 and P2 = G. The partial truncation operator
ΛT,P1 is then given simply by an integral over NP0(Q)\NP0(A). Therefore

ΛT,P1

2 KP1,P2,χ(x, y) =

∫

NP0(Q)\NP0 (A)

(
Kχ(x, ny)−KP0,χ(x, ny)

)
dn.

If χ = (G, π), the integral of Kχ(x, ny) over n vanishes, since π is a cuspidal
automorphic representation of G(A), whileKP0,χ(x, ny) vanishes by definition. The
integrand in (14.4) thus vanishes in this case for any T .

For G = GL(2), we have reduced the problem to the remaining case that χ
is represented by a pair (P0, σ0). Since MP0 is the group of diagonal matrices in
GL(2), we can identify σ0 with a pair of characters on the group Q∗\A1. It follows
directly from the definitions that

∫

NP0(Q)\NP0 (A)

KP0,χ(x, ny)dn = KP0,χ(x, y)

=

∫

MP0 (Q)\MP0 (A)1
KP0(x,my)σ0(m)dm.
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The spectral decomposition of the kernel K(x, y) also leads to a formula
∫

NP0(Q)\NP0 (A)

Kχ(x, ny)dn

=

∫

MP0 (Q)\MP0 (A)1

∫

NP0 (Q)\NP0(A)

K(x, nmy)σ0(m)dndm.

Indeed, the required contribution from the terms in K(x, y) corresponding to the
Hilbert space HG can be inferred from the fact that the representation of G(A)
on HG is a sum of cuspidal automorphic representations and one-dimensional au-
tomorphic representations. To obtain the contribution from the terms in K(x, y)
corresponding to HP0 , we use the fact that for any φ ∈ H0

P0
, the function

y −→
∫

NP0(Q)\NP0 (A)

E(ny, φ, λ)dn

also belongs to H0
P0

. Combining the two formulas, we see that

ΛT,P1

2 KP1,P2,χ(x, y)

=

∫

MP0 (Q)\MP0 (A)1

∫

NP0 (Q)\NP0(A)

KP1,P2(x, nmy)σ0(m)dndm

=

∫

MP0 (Q)\MP0 (A)1

∑

γ∈F (P1,P2)

KP1(γx,my)σ0(m)dm,

for any x and y. This completes the first step in the case of G = GL(2).
For the second step, we note that

F (P1, P2) = F (P0, G) = P0(Q)\
(
G(Q)− P0(A)

)

=
{
MP0(Q)

(
0 1
1 0

)
NP0(Q)

}
,

by the Bruhat decomposition for GL(2). Setting y = x, we write
∑

γ∈F (P1,P2)

KP1(γx,mx)

=
∑

γ∈F (P1,P2)

∫

NP0(A)

f(x−1γ−1nmx)dn

=

∫

NP0(A)

∑

ν∈NP0 (Q)

∑

µ∈MP0 (Q)

f
(
x−1ν

(
0 1
1 0

)
µnmx

)
dn,

for any m ∈ MP (A)1. We need to show that if T is highly regular relative to

supp(f), the product of any summand with σP2

P1

(
HP1(x) − T

)
vanishes for each

x ∈ G(A)1. Assume the contrary, and write

x = n1

(
r 0
0 r−1

)
m1k1, n1 ∈ NP0(A), r ∈ (R∗)0, m1 ∈MP0(A)1, k1 ∈ K.

On the one hand, the number

σP2

P1

(
HP1(x)− T

)
= σGP0

(
HP0(x) − T

)
= τP0

(
HP0

(
r 0
0 r−1

)
− T

)
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is positive, so that r is large relative to supp(f). On the other hand, it follows from
the discussion above that the point

x−1ν

(
0 1
1 0

)
µnmx

belongs to supp(f), for some ν ∈ NP0(Q), µ ∈ MP0(Q), n ∈ NP0(A), and m ∈
MP0(A)1. Substituting for x, we see that there is a point

(
a b
c d

)
in GL(2,A)1, with

|c| = r2, which lies in the fixed compact set K · supp f ·K. This is a contradiction.
The argument in the case of G = GL(2) is thus complete. �

We have finished our remarks on the proof of Theorem 14.1. We can now
treat the double integral (14.2) as we did its geometric analogue (10.3) in §10. By
Fubini’s theorem, we obtain an absolutely convergent expression

JT (f) =
∑

χ∈X

JTχ (f)

whose terms are given by absolutely convergent integrals

(14.6) JTχ (f) =

∫

G(Q)\G(A)1
kTχ (x, f)dx, χ ∈ X.

Following the discussion of §10, we analyze JTχ (f) as a function of T by means

of the proof of Theorem 9.1. Defined initially for T ∈ a+
0 sufficiently regular, we

see that JTχ (f) extends to any T ∈ a0 as a polynomial function whose degree is

bounded by the dimension of aG0 . We then set

Jχ(f) = JT0
χ (f), χ ∈ X,

for the point T0 ∈ aG0 given by (9.4). By the proof of Proposition 9.3, each distribu-
tion Jχ(f) is independent of the choice of minimal parabolic subgroup P0 ∈ P(M0).

The new distributions Jχ(f) = JGχ (f) are again generally not invariant. Ap-
plying the proof of Theorem 9.4 to the absolutely convergent integral (14.6), we
obtain the variance property

(14.7) Jχ(fy) =
∑

Q⊃P0

JMQ
χ (fQ,y), χ ∈ X, y ∈ G(A).

As before, J
MQ
χ (fQ,y) is defined as a finite sum of distributions J

MQ
χQ (fQ,y), in which

χQ ranges over the preimage of χ in XMQ under the mapping of XMQ to X. Once
again, χ need not lie in the image of the map XMQ → X attached to any proper
parabolic subgroup Q ( G. This is the case precisely when χ is cuspidal, in the
sense that it is defined by a pair (G, σ). When χ is cuspidal, the distribution Jχ(f)
is in fact invariant.

The expansion of JT (f) in terms of distributions JTχ (f) extends by polynomial
interpolation to all values of T . Setting T = T0, we obtain an identity

(14.8) J(f) =
∑

χ∈X

Jχ(f), f ∈ C∞
c

(
G(A)

)
.

This is what we will call the coarse spectral expansion. The distributions Jχ(f) for
which χ is cuspidal are to be regarded as general analogues of the spectral terms
in the trace formula for compact quotient.
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15. Weighted characters

This section is parallel to §11. It is aimed at the problem of describing the
summands Jχ(f) in the coarse spectral expansion more explicitly. At this point,
we can give a partial solution. We shall express Jχ(f) as a weighted character for
“generic” classes χ ∈ X.

For any χ ∈ X, JTχ (f) is defined by the formula (14.6). However, Theorem
14.1(iii) and the definition (12.7) provide another expression

JTχ (f) =

∫

G(Q)\G(A)1
ΛT2Kχ(x, x)dx

=
∑

P

n−1
P

∫

G(Q)\G(A)1

( ∫

ia∗
P

∑

φ∈BP,χ

E
(
x, IP (λ, f)φ, λ

)
ΛTE(x, φ, λ)dλ

)
dx

for JTχ (f). This second formula is better suited to computation.
Suppose that λ ∈ ia∗P . The function E(x, φ′, λ) is slowly increasing for any

φ′ ∈ H0
P,χ, while the function ΛTE(x, φ, λ) is rapidly decreasing by (13.9). The

integral ∫

G(Q)\G(A)1
E(x, φ′, λ)ΛTE(x, φ, λ)dx

therefore converges, and consequently defines a Hermitian bilinear form on H0
P,χ.

By the intertwining property of Eisenstein series, this bilinear form behaves in the
natural way under the the actions of K and Z∞ on H0

P,χ. It may therefore be
written as (

MT
P,χ(λ)φ

′, φ
)
,

for a linear operator MT
P,χ(λ) on H0

P,χ. Since ΛT is a self-adjoint projection, by
Proposition 13.1, we see that

(15.1)
(
MT
P,χ(λ)φ

′, φ
)

=

∫

G(Q)\G(A)1
ΛTE(x, φ′, λ)ΛTE(x, φ, λ)dx,

for any vectors φ′ and φ in H0
P,χ. It follows that the operatorMT

P,χ(λ) is self-adjoint
and positive definite.

The following result can be regarded as a spectral analogue of Theorem 11.1.

Theorem 15.1. If T ∈ a+
P0

is suitably regular, in a sense that depends only on
the support of f , the double integral

(15.2)
∑

P

n−1
P

∫

ia∗
P

tr
(
MT
P,χ(λ)IP,χ(λ, f)

)
dλ

converges absolutely, and equals JTχ (f).

This is Theorem 3.2 of [A4]. It includes the implicit assertion that the operator
in the integrand is of trace class, as well as that of the absolute convergence of
the integral. The precise assertion is Theorem 3.1 of [A4], which states that the
expression

∑

χ

∑

P

∫

ia∗
P

‖MT
P,χ(λ)IP,χ(λ, f)‖1dλ

is finite. As usual, ‖ · ‖1 denotes the trace class norm, taken here for operators on
the Hilbert space HP,χ.
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Apart from the last convergence assertion, Theorem 15.1 is a formal conse-
quence of the expression above for JTχ (f). It follows from the definition of MT

P,χ(λ),

once we know that the integral over G(Q)\G(A)1 in the expression can be taken in-
side the integral over λ and the sum over φ. The convergence assertion is a modest
extension of Theorem 14.1(i). Its proof combines the same two techniques, namely
the estimates for K(x, y) obtained from Selberg’s positivity argument, and the
estimates for ΛT given by Proposition 13.2. We refer the reader to §3 of [A4]. �

Suppose that P is fixed. Since the inner product (15.1) depends only on the
image of T in the intersection (aGP0

)+ of a+
P0

with aGP0
, we shall assume for the rest

of this section that T actually lies in (aGP0
)+. It turns out that the inner product

can be computed explicitly for cuspidal Eisenstein series. The underlying reason
for this is that the constant term∫

NQ(Q)\NQ(A)

E(nx, φ, λ)dn, φ ∈ H0
P , λ ∈ a∗P,C,

defined for any standard Q ⊃ P0, has a relatively simple formula if φ is cuspidal.
Suppose that φ belongs to H0

P,cusp and that λ lies in a∗P,C. If Q is associated to
P , we have the basic formula

∫

NQ(Q)\NQ(A)

E(nx, φ, λ)dn =
∑

s∈W (aP ,aQ)

(
M(s, λ)φ

)
(x)e(sλ+ρQ)(HQ(x))

This is established in the domain of absolute convergence of Eisenstein series from
the integral formula for M(s, λ)φ and the Bruhat decomposition for G(Q) [Lan1,
Lemma 3]. More generally, suppose that Q is arbitrary. Then

(15.3)

∫

NQ(Q)\NQ(A)

E(nx, φ, λ)dn =
∑

s∈W (P ;Q)

EQ
(
x,M(s, λ)φ, sλ

)
,

where we have written EQ(·, ·, ·) = EQP1
(·, ·, ·), for the group P1 such that s belongs

to W (aP , aP1). This is established inductively from the first formula by showing
that for any Q′ ( Q, the Q′-constant terms of each sides are equal. The formula
(15.3) allows us to express the truncated Eisenstein series ΛTE(x, φ, λ), for λ in
its domain of absolute convergence, in terms of the signs εQ and characteristic
functions φQ defined in §11.

Lemma 15.2. Suppose that φ ∈ H0
P,cusp and λ ∈ Λ + ia∗P , where Λ is any point

in the affine chamber ρP + (a∗P )+. Then

(15.4) ΛTE(x, φ, λ) =
∑

Q⊃P0

∑

δ∈Q(Q)\G(Q)

ψQ(δx),

where for any y ∈ G(A), ψQ(y) is the sum over s ∈W (aP , aQ) of the expression

(15.5) εQ(sΛ)φQ
(
sΛ, HQ(δx) − TQ

)
e(sλ+ρQ)(HQ(y))

(
M(s, λ)φ

)
(y).

This is Lemma 4.1 of [A4]. To prove it, we note that for any Q, s, and δ, the
expression

εQ(sΛ)φQ
(
sΛ, HQ(δx) − TQ

)

equals ∑

{R⊃Q:s∈W (P ;R)}

(−1)dim(AR/AG)τ̂R
(
HR(δx)− TR

)
,
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by the identity of (11.7) and (11.6) established in §11. We substitute this into
the formula (15.5) for ψQ(δx). We then take the sum over δ in (15.4) inside the
resulting sums over s and R. This allows us to decompose it into a double sum
over ξ ∈ Q(Q)\R(Q) and δ ∈ R(Q)\G(Q). The sum

∑

ξ∈Q(Q)\R(Q)

e(sλ+ρQ)(HQ(ξδx)
(
M(s, λ)φ

)
(ξδx)

converges absolutely to ER
(
δx,M(s, λ)φ, sλ

)
. It follows that the right hand side

of (15.4) equals
∑

R

(−1)dim(AR/AG)
∑

δ

{∑

s

ER
(
δx,M(s, λ)φ, sλ

)}
τ̂R
(
HR(δx)− TR

)
,

with δ and s summed over R(Q)\G(Q) and W (P ;R) respectively. Moreover, the
last expression in the brackets equals

∫

NR(Q)\NR(A)

E(nδx, φ, λ)dn,

by (15.3). It then follows from the definition (13.1) that the right hand side of
(15.4) equals the truncated Eisenstein series on the right hand side of (15.4). (The
elementary convergence arguments needed to justify these manipulations are given
on p. 114 of [A4].) �

For any Q, we treat the sum ψQ in the last lemma as a function on
NQ(A)MQ(Q)\G(A)1. It then follows from the definition of the characteristic func-
tions φQ(sΛ, ·) and our choice of Λ that ψQ(x) is rapidly decreasing in HQ(x). This
is slightly weaker than the condition of compact support imposed on the function ψ
in §12. However, we shall still express the right hand side of (15.4) as the sum over
Q of functions (EψQ)(x), following the notation of Lemma 12.2. In fact, the inner
product formula (12.3) is easily seen to hold under the slightly weaker conditions
here. We shall sketch how to use it to compute the inner product of truncated
Eisenstein series.

One has first to compute the Fourier transform

ΨQ(µ, x) =

∫

AQ(R)0∩G(A)1
e−(µ+ρQ)(HQ(ax))ψQ(ax)da,

for any µ ∈ ia∗Q. This entails computing the integral
∫

AQ(R)0∩G(A)1
e(sλ−µ)(HQ(ax))εQ(sΛ)φQ

(
sΛ, HQ(ax) − TQ

)
da,

which can be written as∫

aG
Q

e(sλ−µ)(H)εQ(sΛ)φQ(sΛ, H − TQ)dH,

after the obvious change of variables. A second change of variables

H =
∑

α∈∆Q

tαα
∨, tα ∈ R,

simplifies the integral further. It becomes a product of integrals of rapidly decreasing
exponential functions over half lines, each of which contributes a linear form in sλ−µ
to the denominator. We have of course to multiply the resulting expression by the
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relevant Jacobian determinant, which equals the volume of aGQ modulo the lattice

Z(∆∨
Q) generated by ∆∨

Q. The result is

(15.6) ΨQ(µ, x) =
∑

s∈W (aP ,aQ)

e(sλ−µ)(T )
(
M(s, λ)φ

)
(x)θQ(sλ− µ)−1,

where

(15.7) θQ(sλ− µ) = vol
(
aGQ/Z(∆∨

Q)
)−1 ∏

α∈∆Q

(sλ− µ)(α∨).

It is worth emphasizing that ΨQ(µ, x) is a rather simple function of µ, namely
a linear combination of products of exponentials with quotients of polynomials. We
have taken the real part Λ of λ to be any point in ρP + (a∗P )+. Assume from now
on that it is also highly regular, in the sense that Λ(α∨) is large for every α ∈ ∆P .
Then ΨQ(µ, x) is an analytic function of µ in the tube in a∗Q,C over a ball BQ around
0 in a∗Q of large radius. Moreover, for any ΛQ ∈ BQ,

ΨQ(µ) : x −→ ΨQ(µ, x), µ ∈ ΛQ + i(aGQ)∗,

is a square integrable function of µ with values in a finite dimensional subspace of
H0
Q,cusp.

Consider another set of data P ′, φ′ ∈ H0
P ′,cusp and λ′ ∈ Λ′ + ia∗P ′ , where P ′ is

associated to P and Λ′ is a highly regular point in ρP ′ + (a∗P ′)+. These give rise
to a corresponding pair of functions ψQ′(x) and ΨQ′(µ′, x), for each standard Q′

associated to P ′. Following the notation of Lemma 12.2, we write the inner product

(15.8)

∫

G(Q)\G(A)1
ΛTE(x, φ, λ)ΛTE(x, φ′, λ′)dx

as ∑

Q,Q′

∫

G(Q)\G(A)1
(EψQ)(x)(EψQ′ )(x)dx.

We are taking for granted the extension of Lemma 12.3 to the rapidly decreasing
functions ψQ and ψQ′ . It yields the further expression

∑

Q,Q′

∫

ΛQ+i(aG
Q

)∗

∑

t∈W (aQ,aQ′ )

(
M(t, µ)ΨQ(µ),ΨQ′(−tµ)

)
dµ

for the inner product, where ΛQ is any point in the intersection of ρQ + (aGQ)∗

with the ball BQ. It follows from (15.6) (and its analogue for P ′) that the inner
product (15.8) equals the sum over Q and s ∈ W (aP , aQ), and the integral over
µ ∈ ΛQ + i(aGQ)∗, of the product of

(15.9) θQ(sλ − µ)−1e(sλ−µ)(T )

with

(15.10)
∑

Q′

∑

t

∑

s′

θQ′(s′λ̄′ + tµ)−1e(s′λ̄′+tµ)(T )
(
M(t, µ)M(s, λ)φ,M(s′, λ′)φ′

)
.

The inner sums in (15.10) are over elements t ∈ W (aQ, aQ′) and s′ ∈W (aP ′ , aQ′).
There are three more steps. The first is to show that (15.10) is an analytic

function of µ if the real part of µ is any point in ρQ + (a∗Q)+. The operator valued

functions M(t, µ) are certainly analytic, since the integral formula (7.2) converges
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uniformly in the given domain. The remaining functions θQ(s′λ̄′ + tµ)−1 of µ have
singularities along hyperplanes

{µ : (s′λ̄′ + tµ)(α∨) = 0}, α ∈ ∆Q′ ,

for fixed Q′, t, s′ and λ′. However, each such hyperplane occurs twice in the sum
(15.10), corresponding to a pair of multi-indices (Q′, t, s′) and (Q′

α, sαt, sαs
′) that

differ by a simple reflection about α. (By definition, Q′
α is the standard parabolic

subgroup such that sα belongs toW (aQ′ , aQ′
α
).) It is a consequence of the functional

equations (7.4) that
(
M(sαt, µ)M(s, λ)φ,M(sαs

′, λ′)φ′
)

=
(
M(t, µ)M(s, λ)φ,M(s′, λ′)φ′

)
,

whenever (s′λ̄′ + tµ)(α∨) = 0. It then follows that the singularities cancel from
the sum (15.10), and therefore that (15.10) is analytic in the given domain. (This
argument is a basic part of the theory of (G,M)-families, to be discussed in §17.)

The second step is to show that if s 6= 1, the integral over µ of the product
of (15.9) and (15.10) vanishes. For any such s, there is a root α ∈ ∆Q′ such that
(sΛQ)(α∨) < 0. As a function of µ, (15.9) is analytic on any of the affine spaces

(ΛQ + r̟α) + i(aGQ)∗, 0 ≤ r <∞.
We have just seen that the same property holds for the function (15.10). We can
therefore deform the contour of integration from ΛQ + i(aGQ)∗ to the affine space

attached to any r. The function M(t, µ) is bounded independently of r on this
affine space, as is the product

e−µ(T )e(tµ)(T ).

This leaves only the product

θQ(sλ− µ)−1θQ′(s′λ̄′ + tµ)−1,

which is the inverse of a polynomial in µ of degree twice the dimension of the affine
space. The integral attached to r therefore approaches 0 as r approaches infinity.
The original integral therefore vanishes.

The final step is to set s = 1 in (15.9) and (15.10), and then integrate the
product of the resulting two expressions over µ in ΛQ + i(aGQ)∗. The group Q

actually equals P when s equals 1. However, the point ΛQ in (aGQ)∗ = (aGP )∗ does
not equal the real part Λ of λ. Indeed, the conditions we have imposed imply that
(Λ − ΛQ)(α∨) > 0 for each α ∈ ∆Q. We change the contour of integration from
ΛQ + i(aGQ)∗ to the affine space

ΛQ + rρP + i(aGQ)∗,

for a large positive number r. As in the second step, the integral approaches 0 as
r approaches infinity. In this case, however, the function

θQ(sλ− µ) = θP (λ− µ)

contributes a multidimensional residue at µ = λ. Using a change of variables

µ =
∑

α∈∆P

zα̟α, zα ∈ C,

one sees without difficulty that the residue equals the value of (15.10) at s = 1 and
µ = λ. This value is therefore equal to the original inner product (15.8). Since



86 JAMES ARTHUR

the original indices of summation Q and s have disappeared, we may as well re-
introduce them in place of the indices Q′ and t in (15.9). We then have the following
inner product formula.

Proposition 15.3 (Langlands). Suppose that φ ∈ H0
P,cusp and φ′ ∈ H0

P ′,cusp,

for standard parabolic subgroups P and P ′. The inner product
∫

G(Q)\G(A)1
ΛTE(x, φ, λ)ΛTE(x, φ′, λ′)dx

is then equal to the sum

(15.11)
∑

Q

∑

s

∑

s′

θQ(sλ+ s′λ̄′)−1e(sλ+s′λ̄′)(T )
(
M(s, λ)φ,M(s′, λ′)φ′

)
,

taken over Q ⊃ P0, s ∈W (aP , aQ) and s′ ∈ W (aP ′ , aQ), as meromorphic functions
of λ ∈ a∗P,C and λ′ ∈ a∗P ′,C.

The discussion above has been rather dense. However, it does yield the required
formula if the real parts of λ and λ′ are suitably regular points in (a∗P )+ and (a∗P ′)+

respectively. Since both sides are meromorphic in λ and λ̄′, the formula holds in
general. �

The argument we have given was taken from §4 of [A4]. The formula stated
by Langlands [Lan1, §9] actually differs slightly from (15.11). It contains an extra
signed sum over the ordered partitions p of the set ∆Q. The reader might find it
an interesting combinatorial exercise to prove directly that this formula reduces to
(15.11).

We shall say that a class χ ∈ X is unramified if for every pair (P, π) in χ, the
stabilizer of π in W (aP , aP ) is {1}. This is obviously completely parallel to the
corresponding geometric definition in §11. Assume that χ is unramified, and that
(P, π) is a fixed pair in χ. We shall use Proposition 15.3 to evaluate the distribution
Jχ(f).

Suppose that φ and φ′ are two vectors in the subspace H0
P,cusp,π of HP . This

represents the special case of Proposition 15.3 with P ′ = P . The factor
(
M(s, λ)φ,M(s′, λ′)φ′

)

in (15.11) vanishes if s 6= s′, since M(s, λ)φ and M(s′, λ′)φ′ lie in the orthogonal
subspaces HQ,cusp,sπ and HQ,cusp,s′π of HQ. We use the resulting simplification
to compute the inner product (15.1). We have of course to interchange the roles
of (φ, λ) and (φ′, λ′), and then let λ′ approach a fixed point λ ∈ ia∗P . Writing
λ′ = λ+ ζ, for a small point ζ ∈ ia∗P in general position, we obtain

(
MT
P,χ(λ)φ

′, φ
)

= lim
ζ→0

∫

G(Q)\G(A)1
ΛTE(x, φ′, λ+ ζ)ΛTE(x, φ, λ)dx

= lim
ζ→0

∑

Q

∑

s∈W (aP ,aQ)

θQ(sζ)−1e(sζ)(T )
(
M(s, λ+ ζ)φ′,M(s, λ)φ

)
.

In particular, the last limit exists, and takes values in a finite dimensional space of
functions of the highly regular point T ∈ (aG0 )+. (This is also easy to show directly.)
We can therefore extend both the limit and the operator MT

P,χ(λ) to all values of

T ∈ aGP0
so that the identity remains valid. Now, let M(w̃s, λ) be the operator on

HP defined by analytic continuation from the analogue of (7.2) in which ws has
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been replaced by the representative w̃s of s in K. Since M(s, λ) is unitary, we see
easily from the definition (9.4) that

(
M(s, λ+ ζ)φ′,M(s, λ)φ

)
=
(
M(s, λ)−1M(s, λ+ ζ)φ′, φ

)

= e−(sζ)(T0)
(
M(w̃s, λ)

−1M(w̃s, λ+ ζ)φ′, φ
)
.

It follows that
(
MT0

P,χ(λ)φ
′, φ
)

= lim
ζ→0

∑

Q

∑

s

θQ(sζ)−1
(
M(w̃s, λ)

−1M(w̃s, λ+ ζ)φ′, φ
)
.

This formula does not depend on the choice of π. To compute the value

(15.12) tr
(
MT0

P,χ(λ)IP,χ(λ, f)
)

at T = T0 of the integrand in (15.2), we need only replace φ′ by IP,χ(λ, f)φ, and
then sum φ over a suitable orthonormal basis of HP,χ.

Recall that IP (πλ) denotes the representation of G(A) obtained by parabolic
induction from the representation

πλ(m) = π(m)eλ(HP (m)), m ∈M(A),

of MP (A). We can also write M(w̃s, πλ) for the intertwining operator from IP (πλ)
to IQ(sπλ) associated to an element s ∈ W (aP , aQ). Finally, let mcusp(π) denote
the multiplicity of π in the representation RMP ,cusp. Since

HP,χ =
⊕

s∈W (aP ,aP )

HP,cusp,sπ,

the representation IP,χ(λ) is then isomorphic to a direct sum of

(15.13) |W (aP , aP )|mcusp(π)

copies of the representation IP (πλ). The trace (15.12) is therefore equal to the
product of (15.13) with

tr
(
MP (πλ)IP (πλ, f)

)
,

where MP (πλ) is the operator on underlying Hilbert space of IP (πλ) defined ex-
plicitly in terms of intertwining operators by

(15.14) MP (πλ) = lim
ζ→0

(∑

Q

∑

s∈W (aP ,aQ)

θQ(sλ)−1M(w̃s, πλ)
−1M(w̃s, πλ+ζ)

)
.

Since P has been fixed, we shall let P1 index the sum over standard parabolic
subgroups in the formula (15.2) for JTχ (f). If P1 does not belong to Pχ, it turns
out that HP1,χ = {0}. This is a consequence of Langlands’s construction [Lan5,
§7] of the full discrete spectrum in terms of residues of cuspidal Eisenstein series.
For the construction includes a description of the inner product on the residual
discrete spectrum in terms of residues of cuspidal self-intertwining operators. Since
χ is unramified, there are no such operators, and the residual discrete spectrum
associated to χ is automatically zero. This leaves only groups P1 in the set Pχ. For
any such P1, the value at T = T0 of the corresponding integral in (15.2) equals the
integral over λ ∈ ia∗M of (15.11). Since

n−1
P |Pχ||W (aP , aP )| = 1,

we obtain the following theorem.
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Theorem 15.4. Suppose that χ = {(P, π)} is unramified. Then

(15.15) Jχ(f) = mcusp(π)

∫

ia∗
P

tr
(
MP (πλ)IP (πλ, f)

)
dλ.

�



Part II. Refinements and Applications

16. The first problem of refinement

We have completed the general steps outlined in §6. The coarse geometric
expansion of §10 and the coarse spectral expansion of §14 give us an identity

(16.1)
∑

o∈O

Jo(f) =
∑

χ∈X

Jχ(f), f ∈ C∞
c

(
G(A)

)
,

that holds for any reductive group G. We have also seen how to evaluate the
distributions Jo(f) and Jχ(f) explicitly for unramified classes o and χ.

From now on, we shall generally work over an arbitrary number field F , whose
adele ring AF we denote simply by A. We write S∞ for the set of archimedean
valuations of F , and we let qv denote the order of the residue class field of the
nonarchimedean completion Fv attached to any v 6∈ S∞. We are now taking G to
be a fixed, connected reductive algebraic group over F . We write Sram = Sram(G)
for the finite set of valuations of F outside of which G is unramified. Thus, for any
v 6∈ Sram, G is quasisplit over Fv, and splits over some finite unramified extension
of Fv.

The notation of Part I carries over with F in place of Q. So do the results, since
they are valid for the group G1 = RF/QG over Q obtained from G by restriction
of scalars. For example, the real vector space aG1 is canonically isomorphic to its
analogue aG for G. The kernel G(A)1 of the canonical mapping HG: G(A) → aG
is isomorphic to G1(A)1. It is a factor in a direct product decomposition

G(A) = G(A)1 ×A+
∞,

whose other factor

A+
∞ = AG1(R)0

embeds diagonally in the connected, abelian Lie group
∏

v∈S∞

AG(Fv)
0.

We shall apply the notation and results of Part I without further comment.
The results in Part I that culminate in the identity (16.1) are the content

of the papers [A3], [A4] and [A5, §1–3], and a part of [A1, §1–3]. We note in
passing that there is another possible approach to the problem, which was used
more recently in a local context [A19]. It exploits the cruder truncation operation
of simply multiplying functions by the local analogue of the characteristic function
FG(·, T ). Although the methods of [A19] have not been applied globally, they could
conceivably shorten some of the arguments. On the other hand, such methods are
perhaps less natural in the global context. They would lead to functions of T that
are asymptotic to the relevant polynomials, rather than being actually equal to
them.

The identity (16.1) can be regarded as a first approximation to a general trace
formula. Let us write Xcusp for the set of cuspidal classes in X . A class χ ∈ Xcusp is
thus of the form (G, π), where π is a cuspidal automorphic representation of G(A)1.
For any such χ, the explicit formula of §15 specializes to

Jχ(f) = aG(π)fG(π),

89
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where

fG(π) = tr
(
π(f)

)
= tr

( ∫

G(A)1
f(x)π(x)dx

)

and
aG(π) = mcusp(π).

Recall that mcusp(π) is the multiplicity of π in the representation Rcusp of G(A)1

on L2
cusp

(
G(Q)\G(A)1

)
. In particular,

tr
(
Rcusp(f)

)
=

∑

χ∈Xcusp

Jχ(f).

The identity (16.1) can thus be written as a trace formula

(16.1)′ tr
(
Rcusp(f)

)
=
∑

o∈O

Jo(f)−
∑

χ∈X−Xcusp

Jχ(f).

The problem is that the explicit formulas we have obtained so far do not apply to
all of the terms on the right.

It is also easy to see that (16.1) generalizes the Selberg trace formula (1.3) for
compact quotient. Let us write Oanis for the set of anisotropic classes in O. A class
o ∈ Oanis is thus of form {γ}, where γ represents an anisotropic conjugacy class in
G(Q). (Recall that an anisotropic class is one that does not intersect P (Q) for any
proper P ( G.) For any such o, the explicit formula of §11 specializes to

Jo(f) = aG(γ)fG(γ),

where

fG(γ) =

∫

G(A)γ\G(A)

f(x−1γx)dx

and
aG(γ) = vol

(
G(F )γ\G(A)1γ

)
.

The identity (16.1) can therefore be written
(16.1)′′∑

γ∈Γanis(G)

aG(γ)fG(γ)+
∑

o∈O−Oanis

Jo(f) =
∑

π∈Πcusp(G)

aG(π)fG(π)+
∑

χ∈X−Xcusp

Jχ(f),

where Γanis(G) is the set of conjugacy classes in G(F ) that do not intersect any
proper group P (F ), and Πcusp(G) is the set of equivalence classes of cuspidal au-
tomorphic representations of G(A)1. Recall that G(F )\G(A)1 is compact if and
only if G has no proper rational parabolic subgroup P . In this case O = Oanis and
X = Xcusp, and (16.1)′′ reduces to the trace formula for compact quotient discussed
in §1.

For general G, the equivalent formulas (16.1), (16.1)′, and (16.1)′′ are of limited
use as they stand. Without explicit expressions for all of the distributions Jo(f) and
Jχ(f), one cannot get much information about the discrete (or cuspidal) spectrum.
In the language of [CLL], we need to refine the coarse geometric and spectral
expansions we have constructed.

What exactly are we looking for? The unramified cases solved in §11 and §15
will serve as guidelines.

The weighted orbital integral on the right hand side of the formula (11.9) is
defined explicitly in terms of f . It is easier to handle than the original global
construction of the distribution Jo(f) on the left hand side of the formula. We
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would like to have a similar formula in general. The problem is that the right hand
side of (11.9) does not make sense for more general classes o ∈ O. It is in fact not
so simple to define weighted orbital integrals for arbitrary elements in M . We shall
do so in §18. Then in §19, we shall describe a general formula for Jo(f) as a linear
combination of weighted orbital integrals.

The weighted character on the right hand side of (15.15) is also defined ex-
plicitly in terms of f . It is again easier to handle than the global construction
of the distribution Jχ(f) on the left hand side. Weighted characters are actually
rather easy to define in general. However, this advantage is accompanied by a del-
icate analytic problem that does not occur on the geometric side. It concerns an
interchange of two limits that arises when one tries to evaluate Jχ(f) for general
classes χ ∈ X . We shall describe the solution of the analytic problem in §20. In
§21 we shall give a general formula for Jχ(f) as a linear combination of weighted
characters.

We adjust our focus slightly in Part II, which is to say, for the rest of the paper.
We have already agreed to work over a general number field F instead of Q. We
shall make three further changes, all minor, in the conventions of Part I.

The first is a small change of notation. If H is a connected algebraic group over
a given field k, and γ belongs to H(k), we shall denote the centralizer of γ in H by
Hγ,+ instead of Hγ . We reserve the symbolHγ for the Zariski connected component
of 1 in Hγ,+. Then Hγ is a connected algebraic group over k, which is reductive if
H is reductive and γ is semisimple. This convention leads to a slightly different way
of writing the formula (11.9) for unramified classes o ∈ O. In particular, suppose
that o is anisotropic. Then

Jo(f) = aG(γ)fG(γ),

where we now write

aG(γ) = vol
(
Gγ(F )\Gγ(A)1

)

and

fG(γ) =

∫

Gγ(A)\G(A)

f(x−1γx)dx.

This would seem to be in conflict with the notation of (16.1)′′, since the group
Gγ(A)1 here is of finite index in the group denoted G(A)1γ above. There is in fact

no discrepancy, for the reason that the two factors aG(γ) and fG(γ) depend in
either case on an implicit and unrestricted choice of Haar measure on the given
isotropy group.

The second change is to make the discussion more canonical by allowing the
minimal parabolic subgroup P0 to vary. We have, after all, shown that the distribu-
tions Jo(f) and Jχ(f) are independent of P0. Some new notation is required, which
we may as well formulate for an arbitrary field k that contains F . We can of course
regard G as a reductive algebraic group over k. Parabolic subgroups certainly make
sense in this context, as do other algebraic objects we have discussed.

By a Levi subgroup of G over k, we mean an k-rational Levi component of
some k-rational parabolic subgroup of G. Any such group M is reductive, and
comes with a maximal k-split central torus AM , and a corresponding real vector
space aM . (A Levi subgroup M of G over F is also a Levi subgroup over k, but
AM and aM depend on the choice of base field. Failure to remember this can lead
to embarrassing errors!) Given M , we write L(M) = LG(M) for the set of Levi
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subgroups of G over k that containM , and F(M) = FG(M) for the set of parabolic
subgroups of G over k that contain M . Any element Q ∈ F(M) has a unique Levi
component MQ in L(M), and hence a canonical Levi decomposition Q = MQNQ.
We write P(M) for the subset of groups Q ∈ F(M) such that MQ = M . For any

P ∈ P(M), the roots of (P,AM ) determine an open chamber a+
P in the vector space

aM . Similarly, the corresponding coroots determine a chamber (a∗M )+P in the dual
space a∗M .

The sets P(M), L(M) and F(M) are all finite. They can be described in terms
of the geometry on the space aM . To see this, we use the singular hyperplanes in
aM defined by the roots of (G,AM ). For example, the correspondence P → a+

P is
a bijection from P(M) onto the set of connected components in the complement in
aM of the set of singular hyperplanes. We shall say that two groups P, P ′ ∈ P(M)
are adjacent if their chambers share a common wall. The mapping L → aL is
a bijection from L(M) onto the set of subspaces of aM obtained by intersecting
singular hyperplanes. The third set F(M) is clearly the disjoint union over L ∈
L(M) of the sets P(L). The mapping Q→ a+

Q is therefore a bijection from F(M)
onto the set of “facets” in aM , obtained from chambers of subspaces aL. Since any
element in aM belongs to a unique facet, there is a surjective mapping from aM to
F(M).

Suppose for example thatG is the split group SL(3), that k is any field, and that
M = M0 is the standard minimal Levi subgroup. The singular hyperplanes in the
two dimensional space aM are illustrated in Figure 16.1. The set P(M) is bijective
with the six open chambers in the diagram. The set L(M) has five elements,
consisting of the two-dimensional space aM , the three one-dimensional lines, and
the zero-dimensional origin. The set F(M) has thirteen elements, consisting of six
open chambers, six half lines, and the origin. The intuition gained from Figure
16.1, simple though it is, is often useful in understanding operations we perform in
general.

Figure 16.1. The three singular hyperplanes in the two dimensional

space aM = a0 attached to G = SL(3).

Suppose now that k = F . Even though we do not fix the minimal parabolic
subgroup as in Part I, we shall work with a fixed minimal Levi subgroup M0 of G
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over Q. We denote the associated sets L(M0) and F(M0) by L = LG and F = FG,
respectively.

The variance formulas (10.6) and (14.7) can be written without reference to P0.
The reason is that for a given P0 ∈ P(M0), any group R ∈ F is the image under
some element in the restricted Weyl group W0 = WG

0 of a unique group Q ∈ F
with Q ⊃ P0. It is an easy consequence of the definitions that JMR

o (fR,y) equals

J
MQ

o (fQ,y) for any o, and that JMR
χ (fR,y) equals J

MQ
χ (fQ,y) for any χ. The order

of the preimage of Q in F is equal to the quotient |WMQ

0 ||WG
0 |−1. Letting Q now

stand for an arbitrary group in F , we can write the earlier formulas as

(16.2) Jo(f
y) =

∑

Q∈F

|WMQ

0 ||WG
0 |−1J

MQ

o (fQ,y), o ∈ O,

and

(16.3) Jχ(f
y) =

∑

Q∈F

|WMQ

0 ||WG
0 |−1JMQ

χ (fQ,y), χ ∈ X .

The third point is a slight change of emphasis. The distributions Jo(f) and
Jχ(f) in (16.1) depend only on the restriction of f to G(A)1. We have in fact
identified f implicitly with its restriction to G(A)1, in writing Rcusp(f) above for
example. Let us now formalize the convention by setting C∞

c

(
G(A)1

)
equal to the

space of functions on G(A)1 obtained by restriction of functions in C∞
c

(
G(A)

)
. We

can then take the test function f to be an element in C∞
c

(
G(A)1

)
rather than

C∞
c

(
G(A)

)
, thereby regarding (16.1) as an identity of distributions on G(A)1. This

adjustment is obviously quite trivial. However, as we shall see in §22, it raises an
interesting philosophical question that is at the heart of some key operations on
the trace formula.

17. (G,M)-families

The terms in the refined trace formula will have some interesting combinato-
rial properties. To analyze them, one introduces the notion of a (G,M)-family of
functions. We shall see that among other things, (G,M)-families provide a partial
unification of the study of weighted orbital integrals and weighted characters.

We are now working in the setting of the last section. Then G is defined over
the fixed number field F , and hence over any given extension k of F . Let M be a
Levi subgroup of G over k. Suppose that for each P ∈ P(M),

cP (λ), λ ∈ ia∗M ,
is a smooth function on the real vector space ia∗M . The collection

{cP (λ) : P ∈ P(M)}
is called a (G,M)-family if cP (λ) = cP ′(λ), for any pair of adjacent groups P, P ′ ∈
P(M), and any point λ in the hyperplane spanned by the common wall of the
chambers i(a∗M )+P and i(a∗M )+P ′ . We shall describe a basic operation that assigns a
supplementary smooth function cM (λ) on ia∗M to any (G,M)-family {cP (λ)}.

The algebraic definitions of §4 and §5 of course hold with the field k in place of
Q. In particular, for any P ∈ P(M) we have the simple roots ∆P of (P,AM ), and

the associated sets ∆∨
P , ∆̂P and (∆̂P )∨. We are assuming we have fixed a suitable
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Haar measure on the subspace aGM = aGP of aM . We then define a homogeneous
polynomial

θP (λ) = vol
(
aGM/Z(∆∨

P )
)−1 ·

∏

α∈∆P

λ(α∨), λ ∈ ia∗M ,

on ia∗M , where Z(∆∨
P ) is the lattice spanned by the basis ∆∨

P of aGM .

Lemma 17.1. For any (G,M)-family {cP (λ)}, the sum

(17.1) cM (λ) =
∑

P∈P(M)

cP (λ)θP (λ)−1

extends to a smooth function of λ ∈ ia∗M .

The only possible singularities of cM (λ) are simple poles along hyperplanes
in ia∗M of the form λ(α∨) = 0. These in turn come from adjacent pairs P and
P ′ for which α and α′ = (−α) are respective simple roots. Using the fact that
cP (λ) = cP ′(λ) for any λ on the hyperplane, one sees directly that the simple poles
cancel, and therefore that cM (λ) does extend to a smooth function. (See [A5,
Lemma 6.2].) �

We often write cM = cM (0) for the value of cM (λ) at λ = 0. It is in this form
that the (G,M)-families from harmonic analysis usually appear.

We shall first describe a basic example that provides useful geometric intuition.
Suppose that

Y = {YP : P ∈ P(M)}
is a family of points in aM parametrized by P(M). We say that Y is a positive,
(G,M)-orthogonal set if for every pair P and P ′ of adjacent groups in P(M),
whose chambers share the wall determined by the uniquely determined simple root
α ∈ ∆P ,

YP − YP ′ = rαα
∨,

for a nonnegative number rα. Assume that this condition holds. The collection

(17.2) cP (λ,Y) = eλ(YP ), λ ∈ ia∗M , P ∈ P(M),

is then a (G,M)-family of functions, which extend analytically to all points λ in the
complex space a∗M,C. As with any (G,M)-family, the associated smooth function

cM (λ,Y) depends on the choice of Haar measure on aGM . In this case, the function
has a simple interpretation.

Observe first that

YP = Y GP + YG, Y GP ∈ aGP , YG ∈ aG,

where YG is independent of the choice of P ∈ P(M). Subtracting the fixed point
YG ∈ aG from each YP , we can assume that YP ∈ aGM . Now in §11, we attached
a sign εP (Λ) and a characteristic function φP (Λ, ·) on aM to each P ∈ P(M) and
Λ ∈ aM . Suppose that Λ is in general position, and that λ is any point in a∗M,C

whose real part equals Λ. The function

εP (Λ)φP (Λ, H − YP )eλ(H), H ∈ aGM ,

is then rapidly decreasing. By writing

H =
∑

α∈∆P

tαα
∨, tα ∈ R,



17. (G,M)-FAMILIES 95

we deduce easily that the integral of this function over H equals

eλ(YP )θP (λ)−1 = cP (λ,Y)θP (λ)−1.

It then follows that

(17.3)
∑

P∈P(M)

eλ(YP )θP (λ)−1 =

∫

aGM

ψM (H,Y)eλ(H)dH,

where
ψM (H,Y) =

∑

P∈P(M)

εP (Λ)φP (Λ, H − YP ).

Lemma 17.2. The function

H −→ ψM (H,Y), H ∈ aGM ,

is the characteristic function of the convex hull in aGM of Y.

The main step in the proof of Lemma 17.2 is the combinatorial lemma of
Langlands mentioned at the end of §8. This result asserts that

(17.4)
∑

Q⊃P

εQP (Λ)φQP (Λ, H)τQ(H) =

{
1, if Λ(α∨) > 0, α ∈ ∆P ,

0, otherwise,

for any P ∈ P(M) and H ∈ aM , where εQP and φQP denote objects attached to
the parabolic subgroup P ∩MQ of MQ. Langlands’s geometric proof of (17.4) was
reproduced in [A1, §2]. There is a different combinatorial proof [A3, Corollary
6.3], which combines an induction argument with (8.10) and Identity 6.2. Given
the formula (17.4), one then observes that ψM (H,Y) is independent of the point
Λ. This follows inductively from the expression obtained by summing the left hand
side of (17.4) over P ∈ P(M) [A1, Lemma 3.1]. Finally, by varying Λ, one shows
that

ψM (H,Y) =

{
1, if ̟(H − YP ) ≤ 0, ̟ = ∆̂P , P ∈ P(M),

0, otherwise.

The inequalities on the right characterize the convex hull of Y, according to the
Krein-Millman theorem. (See [A1, Lemma 3.2].) �

The convex hull of Y is of course compact. It follows that the integral on the
right hand side of (17.3) converges absolutely, uniformly for λ ∈ ia∗M,C. We can

therefore identify the smooth function cM (λ,Y) with the Fourier transform of the
characteristic function of the convex hull of Y. Its value cM (Y) at λ = 0 is simply
the volume of the convex hull. We have actually been assuming that the point
YG ∈ aG attached to Y equals zero. However, if YG is nonzero, the convex hull of
Y represents a compactly supported distribution in the affine subspace YG + aGM of
aM . The last two assertions therefore remain valid for any Y.

Consider the case that G = SL(3) and M equals the standard minimal Levi
subgroup. The convex hull of a typical set Y is illustrated in Figure 17.1, a diagram
on which one could superimpose six convex cones, as in the earlier special case of
Figure 11.1. The six points YP are the six vertices in the diagram. We have chosen
them here to lie in the associated chambers a+

P . Notice that with this condition,

the intersection of the convex hull with the closure of a chamber a+
P equals a set

of the kind illustrated in Figure 9.2. This suggests that the characteristic function
ψM (H,Y) is closely related to the functions Γ′

P (·, YP ) defined in §9.
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YP

Figure 17.1. The convex hull of six points {YP } in the two dimen-

sional space a0 attached to SL(3). Observe that its intersection with

any of the six chambers a+
P in the diagram is a region like that in

Figure 9.2.

Suppose that X is any point in aGM . According to Lemma 9.2, the function
H → Γ′

P (H,X) on aGM is compactly supported for any P ∈ P(M). The integral

(17.5)

∫

aG
M

Γ′
P (H,X)eλ(H)dH

therefore converges uniformly to an analytic function of λ ∈ a∗M,C. To compute it,

we first note that for any P ∈ P(M),
∑

Q⊃P

(−1)dim(AQ/AG)τQP (H)τ̂Q(H −X)

=
∑

Q⊃P

(−1)dim(AQ/AG)τQP (H)
∑

Q′⊃Q

(−1)dim(AQ′/AG)τ̂Q
′

Q (H)Γ′
Q′(H,X)

=
∑

Q′⊃P

( ∑

{Q:P⊂Q⊂Q′}

(−1)dim(AQ/AQ′ )τQP (H)τ̂Q
′

Q (H)
)
Γ′
Q(H,X)

=Γ′
P (H,X),

by the inductive definition (9.1) and the formula (8.10). Suppose that the real part
of λ lies in the negative chamber −(a∗M )+P . Then the integral

∫

aG
M

τQP (H)τ̂Q(H −X)eλ(H)dH

converges. Changing variables by writing

H =
∑

̟∈b∆Q
P

t̟̟
∨ +

∑

α∈∆Q

tαα
∨, t̟, tα ∈ R,

one sees without difficulty that the integral equals

(−1)dim(AP /AG)eλQ(X)θ̂QP (λ)−1θQ(λQ)−1,

where λQ is the projection of λ onto a∗Q,C, and

θ̂QP (λ) = θ̂P∩MQ
(λ) = vol

(
a
Q
P /Z

(
(∆̂Q

P )∨
))−1 ∏

̟∈b∆Q
P

λ(̟∨).
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(See [A5, p. 15].) It follows that the original integral (17.5) equals

(17.6)
∑

Q⊃P

(−1)dim(AP /AQ)eλQ(X)θ̂QP (λ)−1θQ(λQ)−1.

In particular, the function (17.6) extends to an analytic function of λ ∈ a∗M,C.

Suppose now that for a given P ∈ P(M), cP (λ) is an arbitrary smooth function
of λ ∈ ia∗M . Motivated by the computation above, we set

(17.7) c′P (λ) =
∑

Q⊃P

(−1)dim(AP /AQ)cQ(λQ)θ̂QP (λ)−1θQ(λQ)−1,

where cQ is the restriction of cP to ia∗Q, and λQ is again the projection of λ onto

ia∗Q. Then c′P is defined on the complement of a finite set of hyperplanes in ia∗M .

Lemma 17.3. c′Q(λ) extends to a smooth function of λ ∈ ia∗M .

The lemma is not surprising, given what we have established in the special case
that cP (λ) = eλ(X). One can either adapt the discussion above to the more general
case, as in [A3, Lemma 6.1], or approximate cP (λ) by functions of the form eλ(X),
and apply the results above directly. �

Assume now that {cP (λ) : P ∈ P(M)} is a general (G,M)-family. There
are two restriction operations that give rise to two new families. Suppose that
Q ∈ F(M). If R belongs to PMQ(M), we set

cQR(λ) = cQ(R)(λ),

where Q(R) is the unique group in P(M) that is contained in Q, and whose inter-

section with MQ equals R. Then {cQR(λ) : R ∈ PMQ(M)} is an (MQ,M)-family.
The other restriction operation applies to a given group L ∈ L(M). If λ lies in the
subspace ia∗L of ia∗M , and Q is any group in P(L), we set

cQ(λ) = cP (λ),

for any group P ∈ P(M) with P ⊂ Q. Since we started with a (G,M)-family, this
function is independent of the choice of P , and the resulting collection
{cQ(λ) : Q ∈ P(L)} is a (G,L)-family. Observe that the definition (17.7) can
be applied to any Q. It yields a smooth function c′Q(λ) on ia∗L that depends only

on cQ(λ). Again, we often write d′Q = d′Q(0) for the value of d′Q(λ) at λ = 0.

Let {dP (λ) : P ∈ P(M)} be a second (G,M)-family. Then the pointwise
product

(cd)P (λ) = cP (λ)dP (λ), P ∈ P(M),

is also a (G,M)-family.

Lemma 17.4. The product (G,M)-family satisfies the splitting formula

(cd)M (λ) =
∑

Q∈P(M)

cQM (λ)d′Q(λQ).

In particular the values at λ = 0 of the functions in the formula satisfy

(17.8) (cd)M =
∑

Q∈F(M)

cQMd
′
Q.
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The lemma is an easy consequence of a formula

(17.9) cP (λ)θP (λ)−1 =
∑

Q⊃P

c′Q(λQ)θQP (λ)−1, P ∈ P(M),

where θQP = θP∩MQ
, which we obtain by inverting the definition (17.7). To derive

(17.9), we write
∑

Q⊃P

c′Q(λQ)θQP (λ)−1

=
∑

Q⊃P

∑

Q′⊃Q

(−1)dim(AQ/AQ′ )cQ′(λQ′ )θ̂Q
′

Q (λQ)−1θQ′(λQ′ )−1θQP (λ)−1

=
∑

Q′⊃P

cQ′(λQ′ )θQ′(λQ′ )−1
( ∑

{Q:P⊂Q⊂Q′}

(−1)dim(AQ/AQ′ )θQP (λ)−1θ̂Q
′

Q (λQ)−1
)
.

The expression in the brackets may be written as a Fourier transform
∫

a
Q′

P

( ∑

{Q:P⊂Q⊂Q′}

(−1)dim(AP /AQ)τ̂QP (H)τQ
′

Q (H)
)
eλ(H)dH,

provided that the real part of λ lies in −(a∗M )+P . The identity (8.11) tells us that
the expression equals 0 or 1, according to whether Q′ properly contains P or not.
The formula (17.9) follows. Once we have (17.9), we see that

(cd)M (λ) =
∑

P∈P(M)

cP (λ)dP (λ)θP (λ)−1

=
∑

P

cP (λ)
∑

Q⊃P

d′Q(λQ)θQP (λ)−1

=
∑

Q∈F(M)

( ∑

{P∈P(M):P⊂Q}

cP (λ)θQP (λ)−1
)
d′Q(λQ)

=
∑

Q∈F(M)

cQM (λ)d′Q(λQ),

as required. (See [A3, Lemma 6.3].) �

Suppose for example that cP (λ) = 1 for each P and λ. This is the family

attached to the trivial positive (G,M)-orthogonal set Y = 0. Then cQM (λ) equals
0 unless Q lies in the subset P(M) of F(M), in which case it equals 1. It follows
that

(17.10) dM (λ) =
∑

P∈P(M)

d′P (λ).

In the case that dP (λ) is of the special form (17.2), this formula matches the
intuition we obtained from Figure 17.1 and Figure 9.2. For general {dP (λ)}, and
for {cP (λ)} subject only to a supplementary condition that the numbers

(17.11) cLM = cQM , L ∈ L(M), Q ∈ P(L),

be independent of the choice of Q, (17.10) can be applied to the splitting formula
(17.8). We obtain a simpler splitting formula

(17.12) (cd)M =
∑

L∈L(M)

cLMdL
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Suppose that {cP (λ)} and {dP (λ)} correspond to positive (G,M)-orthogonal
sets Y = {YP } and Z = {ZP }. Then the product family {(cd)P (λ)} corresponds
to the sum Y +Z = {YP +ZP }. In this case, (17.8) is similar to a classical formula
for mixed volumes. In the case that G = SL(3) and M is minimal, it is illustrated
in Figure 17.2.

Figure 17.2. The entire region is the convex hull of six points {YP+
ZP } in the two dimensional space a0 attached to SL(3). The inner

shaded region is the convex hull of the six points {YP }. For any P ,

the area of the darker shaded region with vertex YP equals the area

of a region in Figure 9.2. The areas of the six rectangular regions

represent mixed volumes between the sets {YP } and {ZP }.

In addition to the splitting formula (17.8), there is a descent formula that relates
the two restriction operations we have defined. It applies in fact to a generalization
of the second operation.

Suppose that M contains a Levi subgroup M1 of G over some extension k1 of
k. Then aM is contained in the vector space aM1 attached to M1. Suppose that
{cP1(λ1) : P1 ∈ P(M1)} is a (G1,M1)-family. If P belongs to P(M) and λ lies in
the subspace ia∗M of ia∗M1

, we set

cP (λ) = cP1(λ)

for any P1 ∈ P(M1) with P1 ⊂ P . This function is independent of the choice
of P1, and the resulting collection {cP (λ) : P ∈ P(M)} is a (G,M)-family. We
would like to express the supplementary function cM (λ) in terms of corresponding

functions cQ1

M1
(λ1) attached to groups Q1 ∈ F(M1). A necessary step is of course

to fix Haar measures on each of the spaces aL1

M1
, as L1 = LQ1 ranges over L(M1).

For example, we could fix a suitable Euclidean inner product on the space aM1 ,

and then take the Haar measure on aL1

M1
attached to the restricted inner product.

For each L1, we introduce a nonnegative number dGM1
(M,L1) to make the relevant

measures compatible. We define dGM1
(M,L1) to be 0 unless the natural map

aMM1
⊕ aL1

M1
−→ aGM1
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is an isomorphism, in which case dGM1
(M,L1) is the factor by which the product

Haar measure on aLM1
⊕ aL1

M1
must be multiplied in order to be equal to the Haar

measure on aGM1
. (The measure on aMM1

is the quotient of the chosen measures on

aGM1
and aGM .)
There is one other choice to be made. Given M and M1, we select a small

vector ξ in general position in aMM1
. If L1 is any group L(M1) with dGM1

(M,L1) 6= 0,

the affine space ξ + aGM intersects aGL1
at one point. This point is nonsingular, and

so belongs to a chamber a+
Q1

, for a unique group Q1 ∈ P(L1). The point ξ thus
determines a section

L1 −→ Q1, L1 ∈ L(M1), d
G
M1

(M,L1) 6= 0,

from L1 to its fibre P(L1).

Lemma 17.5. For F1 ⊃ F , M1 ⊂M , and {cP1(λ1)} as above, we have

cM (λ) =
∑

L1∈L(M1)

dGM1
(M,L1)c

Q1

M1
(λ), λ ∈ ia∗M .

In particular, the values at λ = 0 of these functions satisfy

(17.13) cM =
∑

L1∈L(M1)

dGM1
(M,L1)c

Q1

M1
.

Lemma 17.5 is proved under slightly more general conditions in [A13, Propo-
sition 7.1]. We shall be content to illustrate it geometrically in a very special case.
Suppose that k = k1, G = SL(3), M is a maximal Levi subgroup, M1 is a minimal
Levi subgroup, and {cP1(λ1)} is of the special form (17.2). The points {YP1} are
the six vertices of the polytope in Figure 17.3. They are of course bijective with the
set of minimal parabolic subgroups P1 ∈ P(M1). The six edges in the polytope are
bijective with the six maximal parabolic subgroups Q1 ∈ F(M1). The two vertical
edges are perpendicular to aM , so the corresponding coefficients dGM1

(M,L1) van-
ish. The remaining four edges occur in pairs, corresponding to two pairs of groups
Q1 ∈ P(L1) attached to the two maximal Levi subgroups L1 6= M . However, the
upward pointing vector ξ ∈ aMM1

singles out the upper two edges. The projections of
these two edges onto the line aM are disjoint (apart from the interior vertex), with
union equal to the line segment obtained by intersecting aM with the polytope.
The length of this line segment is the sum of the lengths of the two upper edges,
scaled in each case by the associated coefficient dGM1

(M,L1).
If this simple example is not persuasive, the reader could perform some slightly

more complicated geometric experiments. Suppose that dim(aM1) = 3 and {cP1(λ1)}
is of the special form (17.2), but that k, G, k1, and M1 are otherwise arbitrary. It
is interesting to convince oneself geometrically of the validity of the lemma in the
two cases dim aM = 1 and dim aM = 2. The motivation for the general proof is
based on these examples. �

We sometimes use a variant of Lemma 17.5, which is included in the general
formulation of [A13, Propositon 7.1]. It concerns the case that F = F1, but where
M is embedded diagonally in the Levi subgroupM = M ×M of G = G×G. Then
aM is embedded diagonally in the space aM = aM ⊕aM . Elements in L(M) consist
of pairs L = (L1, L2), for Levi subgroups L1, L2 ∈ L(M) of G. (We have written
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aM

aM

M1

ξ

Figure 17.3. An illustration of the proof of Lemma 17.5, with

G = SL(3), M maximal, and M1 = M0 minimal. The two up-

per edges of the polytope project onto the two interior intervals on

the horizontal axis. In each case, the projection contracts the length

by the appropriate determinant dGM1
(M,L1).

M, G, and L in place of M1, G1, and L1, since we are now using L1 to denote the
first component of L.) The corresponding coefficient in (17.13) satisfies

dGM(M,L) = 2
1
2 dim(aGM)dGM (L1, L2),

while if P belongs to P(M), the pair P = (P, P ) in P(M) satisfies

θP(λ) = 2
1
2 dim(aGM )θP (λ), λ ∈ ia∗M .

We choose a small point ξ in general position in the space

aMM = {(H,−H) : H ∈ aM},

and let

(L1, L2) −→ (Q1, Q2), L1, L2 ∈ L(M), dGM (L1, L2) 6= 0,

be the corresponding section from (L1, L2) to its fibre P(L1)×P(L2). If ξ is written
in the form 1

2ξ1− 1
2ξ2, Qi is in fact the group in P(Li) such that ξi belongs to a+

Qi
.

Lemma 17.6. The product (G,M)-family of Lemma 17.4 satisfies the alternate
splitting formula

(cd)M (λ) =
∑

L1,L2∈L(M)

dGM (L1, L2)c
Q1

M (λ)cQ2

M (λ).

In particular, the values at λ = 0 of the functions in the formula satisfy

(17.14) (cd)M =
∑

L1,L2∈L(M)

dGM (L1, L2)c
Q1

M dQ1

M .

(See [A13, Corollary 7.4].) �
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18. Local behaviour of weighted orbital integrals

We now consider the refinement of the coarse geometric expansion (10.7). In
this section, we shall construct the general weighted orbital integrals that are to be
the local ingredients. In the next section, we shall describe how to expand J(f) as
a linear combination of weighted orbital integrals, with certain global coefficients.

Recall that invariant orbital integrals (1.4) arose naturally at the beginning of
the article. Weighted orbital integrals are noninvariant analogues of these distribu-
tions. We define them by scaling the invariant measure dx with a function vM (x)
obtained from a certain (G,M)-family.

The simplest case concerns the setting at the end of §16, in which k is a com-
pletion Fv of F . Then M is a Levi subgroup of G over Fv. We also have to fix a
suitable maximal compact subgroup Kv of G(k) = G(Fv). If xv is an element in
G(Fv), and P belongs to P(M), we form the point HP (xv) in aM as in §4. It is a
consequence of the definitions that

{YP = −HP (xv) : P ∈ P(M)}.
is a positive (G,M)-orthogonal set. The functions

vP (λ, xv) = e−λ(HP (xv), λ ∈ ia∗M , P ∈ P(M),

then form a (G,M)-family. The associated smooth function

vM (λ, xv) =
∑

P∈P(M)

vP (λ, xv)θP (λ)−1

is the Fourier transform of the characteristic function of the convex hull in aGM of
the projection onto aGM of the points {−HP (xv) : P ∈ P(M)}. The number

vM (xv) = vM (0, xv) = lim
λ→0

∑

P∈P(M)

vP (λ, xv)θP (λ)−1

equals the volume of this convex hull.
For the trace formula, we need to consider the global case that k = F . Until

further notice, the maximal compact subgroup K =
∏
Kv of G(A) will remain

fixed. Suppose that M is a Levi subgroup in the finite set L = L(M0), and that x
belongs to G(A). The collection

(18.1) vP (λ, x) = e−λ(HP (x)), λ ∈ ia∗M , P ∈ P(M),

is then a (G,M)-family of functions. The limit

(18.2) vM (x) = lim
λ→0

∑

P∈P(M)

vP (λ, x)θP (λ)−1

exists and equals the volume of the convex hull in aGM of the projection of the points
{−HP (x) : P ∈ P(M)}. To see how this function is related to the discussion of
§11, choose a parabolic subgroup P ∈ P(M), and a minimal parabolic subgroup P0

of G over Q that is contained in P . The correspondence

(P ′, s) −→ Q = w−1
s P ′ws, P ′ ⊃ P0, s ∈W (aP , aP ′),

is then a bijection from the disjoint union over P ′ of the sets W (aP , aP ′) onto the
set P(M), with the property that

s−1HP ′(w̃sx) = HQ(x).

It follows that vM (x) equals the weight function vP (x) of Theorem 11.2.
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The local and global cases are of course related. For any x ∈ G(A), we can
write

HP (x) =
∑

v

HP (xv), P ∈ P(M),

where xv is the component of x in G(Fv). For almost every valuation v, xv lies in
Kv, and HP (xv) = 0. We obtain a finite sum

HP (x) =
∑

v∈S

HP (xv),

where S is a finite set of valuations that contains the set S∞ of archimedean valu-
ations. We may therefore fix S, and take x to be a point in the product

G(FS) =
∏

v∈S

G(Fv).

The (G,M)-family {vP (λ, x)} decomposes into a pointwise product

vP (λ, x) =
∏

v∈S

vP (λ, xv), λ ∈ ia∗M , P ∈ P(M),

of (G,M)-families {vP (λ, xv)}. We can therefore use the splitting formula (17.14)
and the descent formula (17.13) (with k = F and k1 = Fv) to express the volume
vM (x) in terms of volumes associated to the points xv ∈ G(Fv).

We fix the Levi subgroup M of G over F . We also fix an arbitrary finite set S
of valuations, and write KS =

∏
v∈S

Kv for the maximal compact subgroup of G(FS).

Suppose that γ =
∏
γv is an element in M(FS). Our goal is to construct a weighted

orbital integral of a function f ∈ C∞
c

(
G(FS)

)
over the space of FS-valued points

in the conjugacy class of G induced from γ. More precisely, let γG be the union
of those conjugacy classes in G(FS) that for any P ∈ P(M) intersect γNP (FS) in
a nonempty open set. We shall define the weighted orbital integral attached to M
and γ by means of a canonical, noninvariant Borel measure on γG.

For any v, the connected centralizer Gγv is an algebraic group over Fv. We
regard the product Gγ =

∏
v∈S

Gγv as a scheme over FS , which is to say simply that

Gγ(FS) =
∏

v∈S

Gγv (Fv).

It is known [R] that this group is unimodular, and hence that there is a right invari-
ant measure dx on the quotient Gγ(FS)\G(FS). The correspondence
x→ x−1γx is a surjective mapping from Gγ(FS)\G(FS) onto the conjugacy class of
γ in G(FS), with finite fibres (corresponding to the connected components in the full
centralizer Gγ,+(FS)). Now if γ is not semisimple, the preimage in Gγ(FS)\G(FS)
of a compact subset of the conjugacy class of γ (in the topology induced from
G(FS)) need not be compact. Nevertheless, a theorem of Deligne and Rao [R] as-
serts that the measure dx defines a G(FS)-invariant Borel measure on the conjugacy
class of γ. We obtain a continuous G(FS)-invariant linear form

f −→
∫

Gγ(FS)\G(FS)

f(x−1γx)dx, f ∈ C∞
c (FS),

on C∞
c

(
G(FS)

)
.
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Suppose first that Gγ is contained in M . In other words, Gγ = Mγ . This
condition holds for example if γ is the image in M(FS) of an element in M(F ) that
represents an unramified class o ∈ O, as in Theorem 11.2. With this condition, we
define the weighted orbital integral

JM (γ, f) = JGM (γ, f)

of f ∈ C∞
c

(
G(FS)

)
at γ by

(18.3) JM (γ, f) = |D(γ)| 12
∫

Gγ(FS)\G(FS)

f(x−1γx)vM (x)dx.

The normalizing factor

D(γ) = DG(γ) =
∏

v∈S

DG(γv)

is the generalized Weyl discriminant
∏

v∈S

det
(
1−Ad(σv)

)
g/gσv

,

where σv is the semisimple part of γv, and gσv is the Lie algebra ofGσv . Its presence
in the definition simplifies some formulas. Since Gγ is contained in M , and vM (mx)
equals vM (x) for any m ∈M(FS), the integral is well defined.

Lemma 18.1. Suppose that y is any point in G(FS). Then

(18.4) JM (γ, fy) =
∑

Q∈F(M)

J
MQ

M (γ, fQ,y),

where

(18.5) fQ,y(m) = δQ(m)
1
2

∫

KS

∫

NQ(FS)

f(k−1mnk)u′Q(k, y)dndk,

for m ∈MQ(FS), and

(18.6) u′Q(k, y) =

∫

aGQ

Γ′
Q

(
H,−HQ(ky)

)
dH.

This formula is Lemma 8.2 of [A5]. It probably does not come as a surprise,
since the global distributions Jo(f) satisfy a similar formula (16.2), and Theorem
11.2 tells us that for many o, Jo(f) is a weighted orbital integral.

To prove the lemma, we first write

JM (γ, fy) = |D(γ)| 12
∫

Gγ(FS)\G(FS)

f(yx−1γxy−1)vM (x)dx

= |D(γ)| 12
∫

Gγ(FS)\G(FS)

f(x−1γx)vM (xy)dx.

We then observe that

vP (λ, xy) = e−λ(HP (xy)) = e−λ(HP (x))e−λ(HP (kP (x)y))

= vP (λ, x)uP (λ, x, y),

where

uP (λ, x, y) = e−λ(HP (kP (x)y)),
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and kP (x) is the pointKS such that xkP (x)−1 belongs to P (FS). It is a consequence
of Lemma 17.4 that

vM (xy) =
∑

Q∈F(M)

vQM (x)u′Q(x, y).

If k belongs to KS, it follows from the definition (18.6) of u′Q(k, y), and the equality

of (17.5) with (17.6) established in §17, that u′Q(k, y) is indeed of the form (17.7).

Making two standard changes of variables in the integral over x in Gγ(FS)\G(FS),
we write

|D(γ)| 12
∫
f(x−1γx)vM (xy)dx

=
∑

Q∈F(M)

|D(γ)| 12
∫
f(x−1γx)vQM (x)u′Q(x, y)dx

=
∑

Q

|D(γ)| 12
∫ ∫ ∫

f(k−1n−1m−1γmnk)vQM (m)u′Q(k, y)dmdndk

=
∑

Q

|DM (γ)| 12 δQ(γ)
1
2

∫ ∫ ∫
f(k−1m−1γmnk)vQM (m)u′Q(k, y)dndkdm

=
∑

Q

|DM (γ)| 12
∫
fQ,y(m

−1γm)vQM (m)dm,

for integrals over m, n, and k in MQ,γ(FS)\MQ(F ), NQ(FS), and KS respectively.
This equals the right hand side of (18.4), as required. �

The distribution (18.3) is to be regarded as a local object, despite the fact that
M is a Levi subgroup of G over F . It can be reduced to the more elementary
distributions

JMv
(γv, fv), γv ∈Mv(Fv), fv ∈ C∞

c

(
G(Fv)

)
,

defined for Levi subgroups Mv of G over Fv by the obvious analogues of (18.3).
Suppose for example that S is a disjoint union of two sets of valuations S1 and

S2. Suppose that

f = f1f2, fi ∈ C∞
c

(
G(FSi)

)

and that

γ = γ1γ2, γi ∈M(FSi).

We continue to assume that Gγ = Mγ , so that Gγi = Mγi for i = 1, 2. We apply
the general splitting formula (17.14) to the (G,M)-family

vP (λ, x1, x2) = vP (λ, x1)vP (λ, x2), P ∈ P(M), xi ∈ G(FSi).

We then deduce from (18.3) that

(18.7) JM (γ, f) =
∑

L1,L2∈L(M)

dGM (L1, L2)J
L1

M (γ1, fQ1)J
L2

M (γ2, fQ2),

where (L1, L2)→ (Q1, Q2) is the section in (17.14), and

fi,Qi(mi) = δQi(mi)
1
2

∫

KSi

∫

NQi (FSi )

fi(k
−1
i miniki), dnidki,
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formi ∈MQi(FSi). If we apply this result inductively, we can reduce the compound
distributions (18.3) to the simple case that S contains one element.

Suppose that S does consist of one element v. Assume that Mv is a Levi
subgroup of G over Fv, and that γv is an element in Mv(Fv) with Gγv = Mv,γv .
Then Mv,γv = Mγv and Mγv = Gγv . The first of these conditions implies that the
induced class γMv equals the conjugacy class of γv in M(Fv). The second implies
that the distribution

JM (γMv , fv) = JM (γv, fv)

is defined by (18.3), for any fv ∈ C∞
c

(
G(Fv)

)
. We apply the general descent formula

(17.13) to the (G,M)-family

vP (λ, xv), P ∈ P(M), xv ∈ G(Fv).

We then deduce from (18.3) that

(18.8) JM (γMv , fv) =
∑

Lv∈L(Mv)

dGMv
(M,Lv)J

Lv
Mv

(γv, fv,Qv ),

where Lv → Qv is the section in (17.13). The two formulas (18.7) and (18.8)
together provide the required reduction of (18.3).

Suppose now that γ ∈ M(FS) is arbitrary. In the most extreme case, for
example, γ could be the identity element in M(FS). The problem of defining a
weighted orbital integral is now much harder. We cannot form the integral (18.3),
since vM (x) is no longer a well defined function on Gγ(FS)\G(FS). Nor can we
change the domain of integration to Mγ(FS)\G(FS), since the integral might then
not converge.

What we do instead is to replace γ by a point aγ, for a small variable point
a ∈ AM (FS) in general position. Then Gaγ = Maγ , so we can define JM (aγ, f) by
the integral (18.3). The idea is to construct a distribution JM (γ, f) from the values
taken by JM (aγ, f) around a = 1. This is somewhat subtle. To get an idea of what
happens, let us consider the special case of GL(2).

Assume that F = Q, G = GL(2), M = M0 is minimal, S is the archimedean

valuation v∞, and γ = 1. Then aγ = a =

(
t1 0
0 t2

)
, for distinct positive real

numbers t1 and t2. Since

Gaγ(R)\G(R) = M(R)\P (R)KR
∼= NP (R)KR,

where P is the standard Borel subgroup of upper triangular matrices, the integral
(18.3) can be written as

(18.9) JM (a, f) = |D(a)| 12
∫

KR

∫

NP (R)

f(k−1n−1ank)vM (n)dndk.

It is easy to compute the function vM (n). We first write

vM (n) = lim
λ→0

(
e−λ(HP (n))θP (λ)−1 + e−λ(HP (n))θP (λ)−1

)

= lim
λ→0

(1 − e−λ(HP̄ (n)))θP (λ)−1

= lim
λ→0

λ
(
HP (n)

)
λ(α∨)−1vol

(
aGM/Z(α∨)

)

= e∗1
(
HP (n)

)
,
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where P is the Borel subgroup of lower triangular matrices, α is the simple root
of (P,AP ), e∗1 is the linear form on aM ∼= R2 defined by projecting R2 onto the
first component, and the measure on aGM =

{
(H,−H) : H ∈ R

}
is defined by

Lebesgue measure on R. We then note that n lies in a set NP (R)

(
u 0
0 u−1

)
KR,

for a positive real number u, and hence that

e∗1
(
HP (n)

)
= log |u| = log ‖(1, 0)n‖.

It follows that if n =

(
1 x
0 1

)
, then

(18.10) vM (n) = log ‖(1, x)‖ =
1

2
log(1 + x2).

We make the standard change of variables

(18.11) n −→ ν = a−1n−1an =

(
1 x(1 − t−1

1 t2)
0 1

)
=

(
1 ξ
0 1

)

in the last integral over NP (R). This entails multiplying the factor |D(a)| 12 by the
Jacobian determinant

|D(a)|− 1
2 eρP (a) = |D(a)|− 1

2 (t1t
−1
2 )

1
2

of the transformation. We conclude that JM (a, f) equals

(t1t
−1
2 )

1
2

∫

KR

∫

R

f
(
k−1

(
t1 0
0 t2

)(
1 ξ
0 1

)
k
)(1

2
log
(
1 + ξ2(1 − t−1

1 t2)
−2
))

dξdk.

The logarithmic factor in the last expression for JM (a, f) blows up at a = 1.
However, we can modify it by adding a logarithmic factor

rGM (a) = log |α(a) − α(a)−1| = log |t1t−1
2 − t−1

1 t2|
that is independent of ξ. This yields a locally integrable function

ξ −→ 1

2
log
(
(t1t

−1
2 + 1)2

(
(1− t−1

1 t2)
2 + ξ2

))
, ξ ∈ R,

whose integral over any compact subset of R is bounded near a = 1. Observe that

(t1t
−1
2 )

1
2

∫

KR

∫

R

f
(
k−1

(
t1 0
0 t2

)(
1 ξ
0 1

)
k
)
dξdk

= |D(a)| 12
∫

KR

∫

NP (R)

f(k−1n−1ank)dndk

= JG(a, f).

It follows from the dominated convergence theorem that the limit

lim
a→1

(
JM (a, f) + rGM (a)JG(a, f)

)

exists, and equals the integral

JM (1, f) =

∫

KR

∫

R

f
(
k−1

(
1 ξ
0 1

)
k
)

log(2|ξ|)dξdk.

This is how we define the weighted orbital integral in the case G = GL(2). As
a distribution on GL(2,R), it is given by a noninvariant Borel measure on the

conjugacy class 1G of the matrix

(
1 1
0 1

)
.
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For arbitrary F , G, M , S, and γ, the techniques are more elaborate. However,
the basic method is similar. One begins with the general analogue of the formula
(18.9), valid for a fixed group P ∈ P(M). One then computes the function vM (n) as
above, using a variable irreducible right G-module over F in place of the standard
two-dimensional GL(2)-module, and a highest weight vector in place of (1, 0). If

ν −→ n = n(ν, γa)

is the inverse of the bijection n→ (γa)−1n−1(γa)n of NP (R), the problem becomes
that of understanding the behaviour of the function

vM
(
n(ν, γa)

)

near a = 1. This leads to general analogues of the factor rGM (a) defined above for
GL(2).

Theorem 18.2. For any F , G, M , S, and γ ∈ M(FS), there are canonical
functions

rLM (γ, a), L ∈ L(M),

defined for small points a ∈ AM (FS) in general position, such that the limit

(18.12) JM (γ, f) = lim
a→1

∑

L∈L(M)

rLM (γ, a)JL(aγ, f)

exists and equals the integral of f with respect to a Borel measure on the set γG.

This is Theorem 5.2 of [A12], one of the principal results of [A12]. There are
two basic steps in its proof. The first is construct the functions rLM (γ, a). The
second is to establish the existence and properties of the limit.

The function rLM (γ, a) is understood to depend only on L, M , γ, and a (and
not G), so we need only construct it when L = G. In this case, the function is
defined as the limit

rGM (γ, a) = lim
λ→0

( ∑

P∈P(M)

rP (λ, γ, a)θP (λ)−1
)

associated to a certain (G,M)-family

rP (λ, γ, a) =
∏

v∈S

∏

βv

rβv

(
1
2λ, uv, av

)
, λ ∈ ia∗M .

The factors in this last product are defined in terms of the Jordan decomposition
γv = σvuv of the v-component of γ. Let Pσv be the parabolic subgroup P ∩Gσv of
Gσv . The indices βv then range over the reduced roots of (Pσv , AMσv

). Any such
βv determines a Levi subgroup Gσv ,βv of Gσv , and a maximal parabolic subgroup
Pσv ,βv = Pσv ∩ Gσv ,βv of Gσv ,βv with Levi component Mσv . We will not describe
the factors in the product further, except to say that they are of the form

rβv (Λ, uv, av) = |aβvv − a−βvv |ρ(βv ,uv)Λ(β∨
v ), Λ = 1

2λ,

for positive constants ρ(βv, uv), and that they are defined by subjecting Gσv ,βv ,
Mσv , and uv to an analysis similar to that of the special case GL(2), M0, and 1
(with v = v∞) above.

The existence of the limit (18.12) is more subtle. The functions rβv (Λ, uv, av)
are defined so as to make the associated limits for Gσv ,βv , Mσv , and uv exist.
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However, these limits are simpler. They concern a variable av that is essentially one-
dimensional (since Mσv is a maximal Levi subgroup in Gσv ,βv), while the variable
a in (18.12) is multidimensional (since M is an arbitrary Levi subgroup of G).
The existence of the general limit depends on algebraic geometry, specifically a
surprising application by Langlands of Zariski’s main theorem [A12, §4], and some
elementary analysis [A12, Lemma 6.1]. The fact that the resulting distribution
f → JM (γ, f) is a measure is a consequence of the proof of the existence of the
limit. �

Once we have defined the general distributions JM (γ, f), we can extend the
properties established in the special case that Gγ = Mγ . First of all, we note that
JM (γ, f) depends only on the conjugacy class of γ in M(FS). It is also easy to see
from the definition (18.12) that

JM1(γ1, f) = JM (γ, f),

where γ1 = wsγw
−1
s = w̃sγw̃

−1
s and M1 = wsMw−1

s , for elements γ ∈ M(FS) and
s ∈W0.

Suppose that y lies in G(FS), and that γ ∈M(FS) is arbitrary. It then follows
from (18.12) and Lemma 18.1 that

JM (γ, fy) = lim
a→1

∑

L∈L(M)

rLM (γ, a)JL(aγ, fy)

= lim
a→1

∑

L∈L(M)

∑

Q∈F(L)

rLM (γ, a)J
MQ

L (aγ, fQ,y)

= lim
a→1

∑

Q∈F(M)

( ∑

L∈LMQ(M)

rLM (γ, a)J
MQ

L (aγ, fQ,y)
)

=
∑

Q∈F(L)

J
MQ

M (γ, fQ,y).

The formula (18.4) therefore holds in general.
The splitting formula (18.7) and the descent formula (18.8) also hold in gen-

eral. In particular, the general distributions JM (γ, f) can be reduced to the more
elementary local distributions JMv

(γv, fv). The proof entails application to the
general definition (18.12) of the special cases of these formulas already established.
One has to also apply Lemmas 17.5 and 17.6 to the coefficients rLM (γ, a) in (18.12).
The argument is not difficult, but is more complicated than the general proof of
(18.4) above. We refer the reader to the proofs of Theorem 8.1 and Proposition 9.1
of [A13].

19. The fine geometric expansion

We now turn to the global side of the problem. It would be enough to express
the distribution Jo(f) in explicit terms, for any o ∈ O. We solved the problem
for unramified classes o in §11 by writing Jo(f) as a weighted orbital integral. We
would like to have a similar formula that applies to an arbitrary class o.

The general weighted orbital integrals defined in the last section are linear
forms on the space C∞

c

(
G(FS)

)
, where S is any finite set of valuations. Assume

that S is a large finite set that contains the archimedean valuations S∞, and write
C∞
c

(
G(FS)1

)
for the space of functions on G(FS)1 = G(FS) ∩ G(A)1 obtained by

restriction of functions in C∞
c

(
G(FS)

)
. If γ belongs to the intersection of M(FS)
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with G(FS)1, we can obviously define the corresponding weighted orbital integral
as a linear form on C∞

c

(
G(FS)1

)
. Let

χS =
∏

v 6∈S

χv

be the characteristic function of the maximal compact subgroup

KS =
∏

v 6∈S

Kv

of G(AS). The mapping f → fχS is then an injection of C∞
c

(
G(FS)1

)
into

C∞
c

(
G(A)1

)
. We shall identify C∞

c

(
G(FS)1

)
with its image in C∞

c

(
G(A)1

)
. We

can thus form the distribution Jo(f) for any f ∈ C∞
c

(
G(FS)1

)
. Our goal is to write

it explicitly in terms of weighted orbital integrals of f .
Suppose first that o consists entirely of unipotent elements. Then o = ounip =

UG(F ), where UG is the closed variety of unipotent elements in G. It is this class
in O that is furthest from being unramified, and which is consequently the most
difficult to handle. In general, there are infinitely many G(F )-conjugacy classes in
UG(F ). However, we say that two elements γ1, γ2 ∈ UG(F ) are (G,S)-equivalent if
they are G(FS)-conjugate. The associated set

(
UG(F )

)
G,S

of equivalence classes is

then finite. The next theorem gives an expansion of the distribution

Junip(f) = JGunip(f) = JGounip
(f)

whose terms are indexed by the finite sets
(
UM (F )

)
M,S

.

Theorem 19.1. For any S as above, there are uniquely determined coefficients

aM (S, u), M ∈ L, u ∈
(
UM (F )

)
M,S

,

with

(19.1) aM (S, 1) = vol
(
M(F )\M(A)1

)
,

such that

(19.2) Junip(f) =
∑

M∈L

|WM
0 ||WG

0 |−1
∑

u∈(UM(F ))M,S

aM (S, u)JM (u, f),

for any f ∈ C∞
c

(
G(FS)1

)
.

This is the main result, Theorem 8.1, of the paper [A10]. The full proof is too
long for the space we have here. However, the basic idea is easy to describe.

Assume inductively that the theorem is valid if G is replaced by any proper
Levi subgroup. It is understood that the coefficients aM (S, u) depend only on M
(and not G). The induction hypothesis therefore implies that the coefficients have
been defined whenever M is proper in G. We can therefore set

Tunip(f) = Junip(f)−
∑

M∈L
M 6=G

|WM
0 ||WG

0 |−1
∑

u∈(UM (F ))M,S

aM (S, u)JM (u, f),

for any f ∈ C∞
c

(
G(FS)1

)
. Suppose that y ∈ G(FS). By (16.2) and (18.4), we can

write the difference

Tunip(f
y)− Tunip(f)
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as the difference between the global expression

Junip(f
y)− Junip(f) =

∑

Q∈F
Q 6=G

|WMQ

0 ||WG
0 |−1J

MQ

unip(fQ,y)

and the local expression
∑

M 6=G

|WM
0 ||WG

0 |−1
∑

u∈(UM (Q))M,S

aM (S, u)
(
JM (u, fy)− JM (u, f)

)

=
∑

M 6=G

∑

Q∈F(M)
Q 6=G

|WMQ

0 ||WG
0 |−1

∑

u

|WM
0 ||W

MQ

0 |−1aM (S, u)J
MQ

M (u, fQ,y).

The difference between Tunip(f
y) and Tunip(f) is therefore equal to the sum over

Q ∈ F with Q 6= G of the product of |WMQ

0 ||WG
0 |−1 with the expression

J
MQ

unip(fQ,y)−
∑

M∈LMQ

|WM
0 ||W

MQ

0 |−1
∑

u∈(UM (F ))M,S

aM (S, u)J
MQ

M (u, fQ,y).

The last expression vanishes by our induction assumption. It follows that Tunip(f
y)

equals Tunip(f), and therefore that the distribution Tunip on G(FS)1 is invariant.
Recall that Junip(f) is the value at T = T0 of the polynomial

JTunip(f) =

∫

G(F )\G(A)1
kTunip(x, f)dx,

where

kTunip(x, f) =
∑

P⊃P0

(−1)dim(AP /AG)
∑

δ∈P (F )\G(F )

KP,unip(δx, δx)τ̂P
(
HP (δx)− T

)

and

KP,unip(δx, δx) =
∑

u∈UM (F )

∫

NP (A)

f(x−1δ−1unδx)dn.

It follows that Junip(f) vanishes for any function f ∈ C∞
c

(
G(A)1

)
that vanishes

on the unipotent set in G(FS)1. For any such function, the distributions JM (u, f)
all vanish as well, according to Theorem 18.2. We conclude that the invariant
distribution Tunip annihilates any function in C∞

c

(
G(FS)1

)
that vanishes on the

unipotent set. It follows from this that

Tunip(f) =
∑

u

aG(S, u)JG(u, f),

for coefficients aG(S, u) parametrized by unipotent classes u in G(FS).
It remains to show that aG(S, u) vanishes unless u is the image of a unipotent

class in G(F ), and to evaluate aG(S, u) explicitly as a Tamagawa number in the case
that u = 1. This is the hard part. The two assertions are plausible enough. The
integrand kTunip(x, f) above is supported on the space ofG(A)-conjugacy classes that

come from F -rational unipotent classes. Moreover, the contribution to kTunip(x, f)

from the class 1 equals f(1), which is obviously independent of x and T . The
integral over G(F )\G(A)1 of this contribution converges, and equals the product

vol
(
G(F )\G(A)1

)
f(1) = vol

(
G(F )\G(A)1

)
JG(1, f).

However, Junip(f) is defined in terms of the polynomial JTunip(f), which depends

on a fixed minimal parabolic subgroup P0 ∈ P(M0), and is equal to an integral
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whose convergence we can control only for suitably regular points T ∈ a+
P0

. Among

other difficulties, the dependence of JTunip(f) on the local components fv is not at
all transparent. It is therefore not trivial to deduce the remaining two assertions
from the intuition we have.

There are two steps. The first is to approximate JTunip(f) by the integral of the
function

Kunip(x, x) =
∑

u∈UG(F )

f(x−1ux)

over a compact set. The assertion is that

(19.3)
∣∣∣JTunip(f)−

∫

G(F )\G(A)1
FG(x, T )Kunip(x, x)dx

∣∣∣ ≤ e−
1
2dP0 (T ),

where FG(·, T ) is the compactly supported function on G(F )\G(A)1 defined in §8,
and

dP0(T ) = inf
α∈∆P0

α(T ).

This inequality is Theorem 3.1 of [A10]. Its proof includes an assertion that
FG(·, T ) equals the image of the constant function 1 on G(F )\G(A)1 under the
truncation operator ΛT [A10, Lemma 2.1]. The estimate (19.3), incidentally, is
reminiscent of our remarks on the local trace formula at the beginning of §16.

The second step is to solve a kind of lattice point problem. Let U be a unipotent
conjugacy class in G(F ). If v is a valuation in S and ε > 0, one can define a function
fεU,v ∈ C∞

c

(
G(A)1

)
that, roughly speaking, truncates the function f(x) whenever

the distance from xv to the G(Fv)-conjugacy class of U is greater than ε. (See the
beginning of §4 of [A10]. The function fεU,v equals f at any point in G(A)1 that

is conjugate to any point in U(F ), where U is the Zariski closure of U .) One then
establishes an inequality

(19.4)

∫

G(F )\G(A)1
FG(x, T )

∑

γ∈G(F )−U(F )

|fεU,v(x−1γx)|dx ≤ εr‖f‖(1 + ‖T ‖)d0,

where ‖ · ‖ is a continuous seminorm on C∞
c

(
G(A)1

)
, and d0 = dim(a0). This

inequality is the main technical result, Lemma 4.1, of the paper [A10]. Its proof
in §5-6 of [A10] relies on that traditional technique for lattice point problems, the
Poisson summation formula.

The inequalities (19.3) and (19.4) are easily combined. By letting ε approach
0, one deduces the remaining two assertions of Theorem 19.1 from the definition of
Junip(f) = JT0

unip(f) in terms of JTunip(f). (See [A10, §4].) �

Remark. The explicit formula (19.1) for aM (S, 1) is independent of the set
S. For nontrivial elements u ∈ UM (F ), the coefficients aM (S, u) do depend on S.
One sees this in the case G = GL(2) from the term (v) on p. 516 of [JL]. As
a matter of fact, it is only in the case G = GL(2) that the general coefficients
aM (S, u) have been evaluated. It would be very interesting to understand them
better in other examples, although this does not seem to be necessary for presently
conceived applications of the trace formula.

The case o = ounip we have just discussed is the the most difficult. It is the
furthest from the unramified case solved explicitly in §11. For a general class o, one
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fashions a descent argument from the techniques of §11. This reduces the problem
of computing Jo(f) to the unipotent case of Theorem 19.1.

We need a couple of definitions before we can state the general result. We say
that a semisimple element σ ∈ G(F ) is F -elliptic if AGσ equals AG. In the case
G = GL(n), for example, a diagonal element σ in G(F ) is F -elliptic if and only if
it is a scalar.

Suppose that γ is an element in G(F ) with semisimple Jordan component σ,
and that S is a large finite set of valuations of F that contains S∞. We shall say
that a second element γ′ in G(F ) is (G,S)-equivalent to γ if there is a δ ∈ G(F )
with the following two properties.

(i) σ is also the semisimple Jordan component of δ−1γ′δ.
(ii) The unipotent elements σ−1γ and σ−1δ−1γ′δ inGσ(F ) are (Gσ, S)-equivalent,

in the sense of the earlier definition.

There could be several classes u ∈
(
UGσ(F )

)
Gσ,S

such that σu is (G,S)-equivalent

to γ. The set of such u, which we write simply as {u : σu ∼ γ}, has a transitive
action under the finite group

ιG(σ) = Gσ,+(F )/Gσ(F ).

We define

(19.5) aG(S, γ) = εG(σ)|ιG(σ)|−1
∑

{u:σu∼γ}

aGσ(S, u),

where

εG(σ) =

{
1, if σ is F -elliptic in G,

0, otherwise.

Then aG(S, γ) depends only on the (G,S)-equivalence class of γ. If γ is semisimple,
we can use (19.1) to express aG(S, γ). In this case, we see that

(19.6) aG(S, γ) = εG(γ)|ιG(γ)|−1vol
(
Gγ(F )\Gγ(A)1

)
,

and in particular, that aG(S, γ) is independent of S.

Theorem 19.2. Suppose that o is any class in O. Then there is a finite set So

of valuations of F that contains S∞ such that for any finite set S ⊃ So and any
function f ∈ C∞

c

(
G(FS)1

)
,

(19.7) Jo(f) =
∑

M∈L

|WM
0 ||WG

0 |−1
∑

γ∈(M(F )∩o)M,S

aM (S, γ)JM (γ, f),

where
(
M(F ) ∩ o

)
M,S

is the finite set of (M,S)-equivalence classes in M(F ) ∩ o,

and JM (γ, f) is the general weighted orbital integral of f defined in §18.

This is the main result, Theorem 8.1, of the paper [A11]. The strategy is to
establish formulas of descent that reduce each side of the putative formula (19.7)
to the unipotent case (19.2). We are speaking of what might be called “semisimple
descent” here. It pertains to the Jordan decomposition, and is therefore different
from the property of “parabolic descent” in the formula (18.8). We shall attempt
to give a brief idea of the proof.
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The reduction is actually a generalization of the unramified case treated in §11.
In particular, it begins with the formula

JTo (f) =

∫

G(F )\G(A)1
k̃To (x, f)dx

of Theorem 11.1. We recall that

k̃To (x, f) =
∑

P⊃P0

(−1)dim(AP /AG)
∑

δ∈P (F )\G(F )

K̃P,o(δx, δx)τ̂P
(
HP (δx)− T

)
,

where P0 ∈ P(M0) is a fixed minimal parabolic subgroup. The definition (11.1)

expresses K̃P,o(δx, δx) in terms of f , and the Jordan decomposition of elements
γ ∈MP ∩ o. The formula contains integrals over unipotent adelic groups NR(A) =
NP (A)γs , where R is the parabolic subgroup P ∩ Gγs of Gγs . It is therefore quite

plausible that JTo (f) can be reduced to unipotent distributions JH,THunip (Φ) attached

to reductive subgroups H of G, and functions Φ ∈ C∞
c

(
H(A)1

)
obtained from

f and T by descent. However, the combinatorics of the reduction are somewhat
complicated.

One begins as in §11 by fixing a pair (P1, α1) that represents the anisotropic
rational datum of o. Then P1 is a parabolic subgroup, which is standard relative
to the fixed minimal parabolic subgroup P0 ∈ P(M0) used to construct Jo(f). One
also fixes an element σ = γ1 in the anisotropic (semisimple) conjugacy class α1 in
MP1(F ). Then P1σ = P1 ∩ Gσ is a minimal parabolic subgroup of Gσ, with Levi
component M1σ = MP1 ∩Gσ. The groups H above are Levi subgroups Mσ of Gσ
in the finite set Lσ = LGσ (M1σ). The corresponding functions Φ = Φy of descent
in C∞

c

(
Mσ(A)1

)
depend on T , and among other things, a set of representatives y

of Gσ(A)\G(A) in G(A). (See [A11, p. 199].)
We take So to be any finite set of valuations of F that contains S∞, and such

that any v 6∈ So satisfies the following four conditions.

(i) |DG(σ)|v = 1.
(ii) The intersection Kσ,v = Kv ∩ Gσ(Fv) is an admissible maximal compact

subgroup of Gσ(Fv).
(iii) σKvσ

−1 = Kv.
(iv) If yv ∈ G(Fv) is such that y−1

v σUGσ (Fv)yv meets σKv, then yv belongs to
Gσ(Fv)Kv.

(See [A11, p. 203].) We choose S ⊃ So and f ∈ C∞
c

(
G(F )1

)
, as in the statement

of the theorem. It then turns out that for any group Mσ ∈ Lσ, the corresponding
functions of descent Φy all lie in the subspace C∞

c

(
Mσ(FS)1

)
of C∞

c

(
Mσ(A)1

)
.

Recall that Jo(f) is the value at T = T0 of the polynomial JT (f). The unipotent

distribution JMσ

unip(Φy) is the value of a polynomial JMσ ,Tσ
unip (Φy) of Tσ in a subspace

a1σ of a0 at a fixed point T0σ. In the descent formula, the groups Mσ are of the
form MR, where R ranges over the set Fσ = FGσ(M1σ). The formula is

(19.8) Jo(f) = |ιG(σ)|−1

∫

Gσ(A)\G(A)

( ∑

R∈Fσ

|WMR

0 ||WGσ
0 |−1JMR

unip(ΦR,y,T1)
)
dy,

where ΦR,y,T1 is obtained from the general descent function Φy by specializing T
to the point T1 = T0 − T0σ [A11, Lemma 6.2]. Since the general functions Φy
and their specializations ΦR,y,T1 are somewhat technical, we have not attempted to
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define them. However, their construction is formally like that of the functions fQ,y
in (18.5). In particular, it relies on the splitting formula of Lemma 17.4.

The formula (19.8) of geometric descent has an analogue for weighted orbital
integrals. Suppose that M is a Levi subgroup of G that contains M1 = MP1 . Then
σ is contained in M(F ). Set γ = σu, where u is a unipotent element in Mσ(FS).
The formula is

(19.9) JM (γ, f) =

∫

Gσ(FS)\G(FS)

( ∑

R∈Fσ(Mσ)

JMR

Mσ
(u,ΦR,y,T1)

)
dy,

where f is any function in C∞
c

(
G(FS)1

)
, and Fσ(Mσ) = FGσ(Mσ) ([A11, Corol-

lary 8.7]).
The formulas (19.8) and (19.9) of geometric descent must seem rather murky,

given the limited extent of our discussion. However, the reader will no doubt agree
that the existence of such formulas is plausible. Taking them for granted, one
can well imagine that an application of Theorem 19.1 to the distributions in these
formulas would lead to an expansion of Jo(f). The required formula (19.7) for Jo(f)
does indeed follow from Theorem 19.1, used in conjunction with the definition (19.5)
of the coefficients aM (S, γ). �

If ∆ is a compact neighbourhood of 1 in G(A)1, we write C∞
∆

(
G(A)1

)
for the

subspace of functions in C∞
c

(
G(A)1

)
that are supported on ∆. For example, we

could take ∆ to be the set

∆N = {x ∈ G(A) : log ‖x‖ ≤ N}
attached to a positive number N . In this case we write C∞

N

(
G(A)1

)
in place of

C∞
∆N

(
G(A)1

)
. For any ∆, we can certainly find a finite set S of valuations of F

containing S∞, such that ∆ is the product of a compact neighbourhood of 1 in
G(FS)1 with KS . We write S0

∆ for the minimal such set. We also write

C∞
∆

(
G(FS)1

)
= C∞

∆

(
G(A)1

)
∩C∞

c

(
G(FS)1

)
,

for any finite set S ⊃ S0
∆. The fine geometric expansion is given by the following

corollary of the last theorem.

Corollary 19.3. Given a compact neighbourhood ∆ of 1 in G(A)1, we can
find a finite set S∆ ⊃ S0

∆ of valuations of F such that for any finite set S ⊃ S∆,
and any f ∈ C∞

∆

(
G(FS)1

)
,

(19.10) J(f) =
∑

M∈L

|WM
0 ||WG

0 |−1
∑

γ∈(M(F ))M,S

aM (S, γ)JM (γ, f),

where
(
M(F )

)
M,S

is the set of (M,S)-equivalence classes in M(F ). The summands

on the right hand side of (19.10) vanish for all but finite many γ.

The corollary is Theorem 9.2 of [A11]. It follows immediately from Theorem
19.2 above, once we know that there is a finite subset of O outside of which Jo(f)
vanishes for any f ∈ C∞

∆

(
G(A)1

)
. This property follows immediately from [A11,

Lemma 9.1], which asserts that there are only finitely many classes o ∈ O such that
the set

{x−1γx : x ∈ G(A), γ ∈ o}
meets ∆, and is proved in the appendix of [A11]. �
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20. Application of a Paley-Wiener theorem

The next two sections will be devoted to the refinement of the coarse spectral
expansion (14.8). These sections are longer and more intricate than anything so
far. For one reason, there are results from a number of different sources that we
need to discuss. Moreover, we have included more details than in some of the
earlier arguments. The refined spectral expansion is deeper than its geometric
counterpart, dependent as it is on Eisenstein series, and we need to get a feeling for
the techniques. In particular, it is important to understand how global intertwining
operators intervene in the “discrete part” of the spectral expansion.

The spectral side is complicated by the presence of a delicate analytic problem,
with origins in the theory of Eisenstein series. It can be described as that of
interchanging two limits. We shall see how to resolve the problem in this section.
The computations of the fine spectral expansion will then be treated in the next
section.

In order to use the results of Part I, we shall work for the time being with a
fixed minimal parabolic subgroup P0 ∈ P(M0). Suppose that χ ∈ X indexes one
of the summands in the coarse spectral expansion. According to Theorem 15.1,

JTχ (f) =
∑

P⊃P0

n−1
P

∫

ia∗
P

tr
(
MT
P,χ(λ)IP,χ(λ, f)

)
dλ,

where T ∈ a+
P0

is suitably regular, and MT
P,χ(λ) is the operator on HP,χ defined

by the inner product (15.1) of truncated Eisenstein series. In the next section,
we shall see that the explicit inner product formula for truncated Eisenstein series
in Proposition 15.3 holds in general, provided it is interpreted as an asymptotic
formula in T . We might therefore hope to compute JTχ (f) as an explicit polynomial
in T by letting the distance

dP0(T ) = inf
α∈∆P0

α(T )

approach infinity. However, any such computation seems to require estimates for
the derivatives of MT

P,χ(λ) that are uniform in λ. This would amount to estimating
derivatives in λ of Eisenstein series outside the domain of absolute convergence,
something that is highly problematical. On the other hand, if we could multiply
the integrand in the formula for JTχ (f) above by a smooth, compactly supported
cut-off function in λ, the computations ought to be manageable. The analytic
problem is to show that one can indeed insert such a cut-off function.

In the formula for JTχ(f) we have just quoted from Part I, f belongs to

C∞
c

(
G(A)

)
. We are now taking f to be a function in C∞

c

(
G(A)1

)
. For any such f ,

the integrand in the formula is a well defined function of λ in ia∗P /ia
∗
G. The

formula remains valid for f ∈ C∞
c

(
G(A)1

)
, so long as we take the integral over

λ ∈ ia∗P/ia∗G.
The class χ ∈ X will be fixed for the rest of this section. We shall first state

three preliminary lemmas, all of which are consequences of Theorem 14.1 and its
proof. For any P ⊃ P0, we write

HP,χ =
⊕

π

HP,χ,π,

where π ranges over the set Πunit

(
MP (A)1

)
of equivalence classes of irreducible

unitary representations of MP (A)1, and HP,χ,π is the intersection of HP,χ with
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the subspace HP,π of vectors φ ∈ HP such that for each x ∈ G(A), the function
φx(m) = φ(mx) in L2

disc

(
MP (Q)\MP (A)1

)
is a matrix coefficient of π. We write

IP,χ,π(λ, f) for the restriction of IP,χ(λ, f) to HP,χ,π . We then set

ΨT
π (λ, f) = n−1

P tr
(
MT
P,χ(λ)IP,χ,π(λ, f)

)
,

for any f ∈ C∞
c

(
G(A)1

)
and λ ∈ ia∗P /ia∗G.

Lemma 20.1. There are positive constants C0 and d0 such that for any
f ∈ C∞

c

(
G(A)1

)
, any n ≥ 0, and any T ∈ a0 with dP0(T ) > C0,

∑

P⊃P0

∫

ia∗
P
/ia∗

G

∑

π

|ΨT
π (λ, f)|(1 + ‖λ‖)ndλ ≤ cn,f (1 + ‖T ‖)d0,

for a constant cn,f that is independent of T .

The lemma is a variant of Proposition 14.1(a). One obtains the factor
(1 + ‖λ‖)n in the estimate by choosing a suitable differentiable operator ∆ on
G(R), and applying the arguments of Theorem 14.1(a) to ∆f in place of f . (See
[A7, Proposition 2.1]. One can in fact take d0 = dim a0.) �

Lemma 20.2. There is a constant C0 such that for any N > 0 and any
f ∈ C∞

N

(
G(A)1

)
, the expression

(20.1)
∑

P⊃P0

∑

π

∫

ia∗
P /ia

∗
G

ΨT
π (λ, f)dλ

equals JTχ (f), and is hence a polynomial in T of degree bounded by d0 = dim a0,
whenever

dP0(T ) > C0(1 +N).

The expression equals
∫

G(F )\G(A)1
ΛT1 ΛT2Kχ(x, x)dx =

∫

G(F )\G(A)1
ΛT2Kχ(x, x)dx.

The lemma follows from Theorem 14.1(c), and an analysis of how the proof of this
result depends quantitatively on the support of f . (See [A7, Proposition 2.2].) �

If τ1, τ2 ∈ Πunit(KR) are irreducible unitary representations of KR, set

fτ1,τ2(x) =

∫

KR

∫

KR

tr
(
τ1(k1)

)
f(k−1

1 xk−1
2 )tr

(
τ2(k2)

)
dk1dk2,

for any function f ∈ C∞
c

(
G(A)1

)
. Then

f(x) =
∑

τ1,τ2

fτ1,τ2(x).

Lemma 20.3. There is a decomposition

JTχ (f) =
∑

τ1,τ2

JTχ (fτ1,τ2).
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The lemma follows easily from an inspection of how the estimates of the proof
of Theorem 14.1 depend on left and right translation of f by KR. (See [A7, Propo-
sition 2.3].) �

The last three lemmas form the backdrop for our discussion of the analytic
problem. The third lemma allows us to assume that f belongs to the Hecke algebra

H(G) = H
(
G(A)1

)
= H

(
G(A)1,K

)

of K-finite functions in C∞
c

(
G(A)1

)
. We recall that f is K-finite if the space of

functions on G(A)1 spanned by left and rightK-translates of f is finite dimensional.
The second lemma describes the qualitative behaviour of JTχ (f) as a function of T ,
quantitatively in terms of the support of f . If we could somehow construct a family
of new functions in H(G) in terms of the operators IP,χ,π(f), with some control
over their supports, we might be able to bring this lemma to bear on our analytic
difficulties.

Our rescue comes in the form of a Paley-Wiener theorem, or rather a corollary
of the theorem that deals with multipliers. Multipliers are defined in terms of
infinitesimal characters. To describe them, we have to fix an appropriate Cartan
subalgebra.

For each archimedean valuation v ∈ S∞ of F , we fix a real vector space

hv = ibv ⊕ a0,

where bv is a Cartan subalgebra of the compact Lie group Kv ∩M0(Fv). We then
set

h = h∞ =
⊕

v∈S∞

hv.

This space can be identified with a split Cartan subalgebra of the Lie groupG∗
s(F∞),

where
F∞ = FS∞

=
⊕

v∈S∞

Fv,

and G∗
s is a split F -form of the group G. In particular, the complex Weyl group

W = W∞ of the Lie group G(F∞) acts on h. The space h comes with a canonical
projection h 7→ aP , for any standard parabolic subgroup P ⊃ P0, whose transpose
is an injection a∗P ⊂ h∗ of dual spaces. It is convenient to fix a positive definite,
W -invariant inner product (·, ·) of h. The corresponding Euclidean norm ‖ · ‖ on h

restricts to a W0-invariant Euclidean norm on a0. We assume that it is dominated
by the height function on G(A) fixed earlier, in the sense that

‖H‖ ≤ log ‖ exp H‖, H ∈ a0.

The infinitesimal character of an irreducible representation π∞ ∈ Π
(
G(F∞)

)
is

represented by a W -orbit νπ∞
in the complex dual space h∗C of h. It satisfies

π∞(zf∞) = 〈h(z), νπ∞
〉π∞(f∞), z ∈ Z∞, f∞ ∈ C∞

c

(
G(F∞)

)
,

where h: Z∞ → S(hC)W is the isomorphism of Harish-Chandra, from the algebra
Z∞ of bi-invariant differential operators on G(F∞) onto the algebra of W -invariant
polynomials on h∗C, that plays a central role in his work on representations of real
groups. The algebra Z∞ acts on the Hecke algebra H

(
G(A)

)
of G(A) through

the G(F∞)-component of a given function f . However, the space of functions zf ,
z ∈ Z∞, is not rich enough for us to exploit Lemma 20.2.
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Let E(h)W be the convolution algebra of W -invariant, compactly supported
distributions on h. According to the classical Paley-Wiener theorem, the adjoint
Fourier transform α→ α̂ is an isomorphism from E(h)W onto the algebra of entire,
W -invariant functions α̂(ν) on h∗C of exponential type that are slowly increasing on
cylinders

{ν ∈ h∗C : ‖Re(ν)‖ ≤ r}, r ≥ 0.

The subalgebra C∞
c (h)W is mapped onto the subalgebra of functions α̂ that are

rapidly decreasing on cylinders. (By the adjoint Fourier transform α̂ we mean
the transpose-inverse of the standard Fourier transform on functions, rather than
simply the transpose. In other words,

α̂(ν) =

∫

h

α(H)eν(H)dH,

in case α is a function.)
We writeH

(
G(F∞)

)
= H

(
G(F∞),K∞

)
for the Hecke algebra ofK∞ =

∏
v∈S∞

Kv

finite functions in C∞
c

(
G(F∞)

)
, and HN

(
G(F∞)

)
for the subspace of functions in

H
(
G(F∞)

)
supported on the set

{x∞ ∈ G(F∞) : log ‖x∞‖ ≤ N}.
Theorem 20.4. There is a canonical action

α : f∞ −→ f∞,α, α ∈ E(h)W , f∞ ∈ H
(
G(F∞)

)
,

of E(h)W on H
(
G(F∞)

)
with the property that

π∞(f∞,α) = α̂(νπ∞
)π∞(f∞),

for any π∞ ∈ Π
(
G(F∞)

)
. Moreover, if f∞ belongs to HN

(
G(F∞)

)
and α is

supported on the subset of points H ∈ h with ‖H‖ ≤ Nα, then f∞,α lies in
HN+Nα

(
G(F∞)

)
.

(See [A9, Theorem 4.2].) �

This is the multiplier theorem we will apply to the expression (20.1). We shall
treat (20.1) as a linear functional of f in the Hecke algebra H(G) = H

(
G(A)1

)
. If

h1 is the subspace of points in h whose projection onto aG vanishes, we shall take
α to be in the subspace E(h1)W of distributions in E(h)W supported on h1. If f
belongs to the Hecke algebra H

(
G(A)

)
on G(A), we define fα to be the function

in H
(
G(A)

)
obtained by letting α act on the archimedean component of f . The

restriction of fα to G(A)1 will then depend only on the restriction of f to G(A)1. In
other words, fα ∈ H(G) is defined for any f ∈ H(G). We shall substitute functions
of this form into (20.1).

Suppose that P ⊃ P0 and π ∈ Πunit

(
MP (A)1

)
are as in (20.1). Then π is the

restriction to MP (A)1 of a unitary representation

π∞ ⊗ πfin, π∞ ∈ Πunit

(
MP (F∞)

)
, πfin ∈ Πunit

(
MP (Afin)

)
,

of MP (A). We obtain a linear form νπ = νπ∞
on hC, which we decompose

νπ = Xπ + iYπ, Xπ, Yπ ∈ h∗,

into real and imaginary parts. These points actually stand for orbits in h∗ of the
complex Weyl group of MP (F∞), but we can take them to be fixed representatives
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of the corresponding orbits. Then Xπ is uniquely determined by π, while the
imaginary part Yπ is determined by π only modulo a∗P . However, we may as well
identify Yπ with the unique representative in h∗ of the coset in h∗/a∗P of smallest
norm ‖Yπ‖. This amounts to taking the representation π∞ of MP (F∞) to be
invariant under the subgroup A+

MP ,∞
of MP (F∞), a convention that is already

implicit in the notation HP,π above.
If B is any W -invariant function on ih∗, we define a function

Bπ(λ) = B(iYπ + λ), λ ∈ ia∗P ,
on ia∗P . We also write

Bε(ν) = B(εν), ν ∈ ih∗,
for any ε > 0. We shall wantB to be rapidly decreasing on ih∗/ia∗G. An obvious can-
didate would be the Paley-Wiener function α̂ attached to a function α ∈ C∞

c (h1)W .
However, the point of this exercise is to allow B to be an arbitrary element in the
space S(ih∗/ia∗G)W of W -invariant Schwartz functions on ih∗/ia∗G.

The next theorem provides the way out of our analytic difficulties.

Theorem 20.5. (a) For any B ∈ S(ih∗/ia∗G)W and f ∈ H(G), there is a unique
polynomial PT (B, f) in T such that the difference

(20.2)
∑

P⊃P0

∫

ia∗
P
/ia∗

G

∑

π

ΨT
π (λ, f)Bπ(λ)dλ − PT (B, f)

approaches 0 as T approaches infinity in any cone

arP0
= {T ∈ a0 : dP0(T ) > r‖T ‖}, r > 0.

(b) If B(0) = 1, then

JTχ (f) = lim
ε→0

PT (Bε, f).

This is the main result, Theorem 6.3, of the paper [A7]. We shall sketch the
proof.

The idea is to approximate B by Paley-Wiener functions α̂, for α ∈ C∞
c (h1)W .

Assume that f belongs to the space

HN (G) = H(G) ∩C∞
N

(
G(A)1

)
,

for some fixed N > 0, and that α is a general element in E(h1)W . Then fα lies in
HN+Nα(G). For any P ⊃ P0 and λ ∈ ia∗P , IP (λ, fα) is an operator on HP whose
restriction to HP,χ,π equals

α̂(νπ + λ)IP,χ,π(λ, f).

Applying Lemma 20.2 with fα in place of f , we see that the expression

(20.3)
∑

P⊃P0

∫

ia∗
P
/ia∗

G

∑

π

α̂(νπ + λ)ΨT
π (λ, f)dλ

equals JTχ (fα) whenever dP0(T ) > C0(1+N +Nα), and is hence a polynomial in T
in this range. The sum over π in (20.3) can actually be taken over a finite set that
depends only on χ and f . This is implicit in Langlands’s proof of Theorem 7.2,
specifically his construction of the full discrete spectrum from residues of cuspidal
Eisenstein series.



20. APPLICATION OF A PALEY-WIENER THEOREM 121

Suppose that α belongs to the subspace C∞
c (h1)W of E(h1)W . Then JTχ (fα)

equals
∑

P⊃P0

∫

ia∗
P
/ia∗

G

∑

π

∫

h1

ΨT
π (λ, f)e(νπ+λ)(H)α(H)dHdλ.

By Lemma 20.1, integral

ψTπ (H, f) =

∫

ia∗
P
/ia∗

G

ΨT
π (λ, f)eλ(H)dλ

converges to a bounded, smooth function of H ∈ h1. It follows that

JTχ (fα) =

∫

h1

( ∑

P⊃P0

∑

π

ψTπ (H, f)eνπ(H)
)
α(H)dH,

whenever dP0(T ) > C0(1+N+Nα). Since C∞
c (h1)W is dense in E(h1) (in the weak

topology), the assertion actually holds for any α ∈ E(h1)W (with the integral being
interpreted as evaluation of the distribution α).

If H is any point in h1, let δH be the Dirac measure on h1 at H . The sym-
metrization

αH = |W |−1
∑

s∈W

δs−1H

belongs to E(h1)W . The function

pT (H, f) = JTχ (fαH )

is therefore a well defined polynomial in T , of degree bounded by d0. The support
of αH is contained in the ball about the origin of radius ‖H‖, so we can take
NαH = ‖H‖. It follows that

(20.4) pT (H, f) =
∑

P⊃P0

∑

π

|W |−1
∑

s∈W

ψTπ (s−1H, f)eνπ(s−1H),

for all H and T with dP0(T ) > C0(1 +N + ‖H‖). The right hand expression may
be regarded as a triple sum over a finite set. It follows that pT (H, f) is a smooth
function of H ∈ h1 for all T in the given domain, and hence for all T , by polynomial
interpolation. Observe that α0 = δ0, and therefore that fα0 = f . It follows that

pT (0, f) = JTχ (f).

To study the right hand side of (20.4), we group the nonzero summands with
a given real exponent Xπ. More precisely, we define an equivalence relation on the
triple indices of summation in (20.4) by setting (P ′, π′, s′) ∼ (P, π, s) if s′Xπ′ =
sXπ. If Γ is any equivalence class, we set XΓ = sXπ, for any (P, π, s) ∈ Γ. We also
define

ψTΓ (H, f) = |W |−1
∑

(P,π,s)∈Γ

eiYπ(s−1H)ψTπ (s−1H, f).

Then ψTΓ (H, f) is a bounded, smooth function of H ∈ h1 that is defined for all T
with dP0(T ) greater than some absolute constant. In fact, Lemma 20.1 implies that
for any invariant differential operator D on h1, there is a constant cD,f such that

(20.5) |DψTΓ (H, f)| ≤ cD,f(1 + ‖T ‖)d0, H ∈ h1, dP0(T ) > C0,

for constants C0 and d0 independent of f . In particular, we can assume that the
constants C0 in (20.4) and (20.5) are the same. Let E = Ef be the finite set of
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equivalence classes Γ such that the function ψTΓ (H, f) is not identically zero. It
then follows from (20.4) that

∑

Γ∈E

eXΓ(H)ψTΓ (H, f)− pT (H, f) = 0,

whenever dP0(T ) > C0(1 + N + ‖H‖). The proof of Theorem 20.5 rests on an
argument that combines this last identity with the inequality (20.5). We shall
describe it in detail for a special case.

Suppose that there is only one class Γ, and that XΓ = 0. In other words, if π
indexes a nonzero summand in (20.4), Xπ vanishes. The identity (20.4) becomes

(20.6) ψTΓ (H, f)− pT (H, f) = 0, dP0(T ) > C0(1 +N + ‖H‖).

It is easy to deduce in this case that pT (H, f) is a slowly increasing function of H .
In fact, we claim that for every invariant differential operator D on h1, there is a
constant cD,f such that

(20.7) |DpT (H, f)| ≤ cD,f(1 + ‖H‖)d0(1 + ‖T ‖)d0,

for all H ∈ h1 and T ∈ a0. Since pT (H, f) is a polynomial in T whose degree
is bounded by d0, it would be enough to establish an estimate for each of the
coefficients of pT (H, f) as functions of H . For any H , we choose T so that dP0(T )
is greater than C0(1 + N + ‖H‖), but so that ‖T ‖ is less than C1(1 + ‖H‖), for
some large constant C1 (depending on C0 and N). It follows from (20.6) and (20.5)
that

|DpT (H, f)| = |DψTΓ (H, f)| ≤ cD,f(1 + ‖T ‖)d0

≤ cD,f
(
1 + C1(1 + ‖H‖)

)d0 ≤ c′D,f(1 + ‖H‖)d0,

for some constant c′D,f . Letting T vary within the chosen domain, we obtain a sim-

ilar estimate for each of the coefficients of pT (H, f) by interpolation. The claimed
inequality (20.7) follows.

We shall now prove Theorem 20.5(a), in the special case under consideration.
We can write

B(ν) =

∫

h1

eν(H)β(H)dH,

where β ∈ S(h1)W is the standard Fourier transform B̂ of the given function B ∈
S(ih∗/ia∗G)W . We then form the integral

PT (B, f) = pT (β, f) =

∫

h1

pT (H, f)β(H)dH,

which converges by (20.7). This is the required polynomial in T . We have to show
that it is asymptotic to the expression

(20.8)
∑

P⊃P0

∫

ia∗
P /ia

∗
G

∑

π

ΨT
π (λ, f)Bπ(λ)dλ.
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We write the expression (20.8) as

∑

P

∫

ia∗
P
/ia∗

G

∑

π

ΨT
π (λ, f)

∫

h1

e(iYπ+λ)(H)β(H)dHdλ

=

∫

h1

∑

P

∑

π

ψTπ (H, f)eiYπ(H)β(H)dH

=

∫

h1

∑

P

∑

π

|W |−1
∑

s∈W

ψTπ (s−1H, f)eiYπ(s−1H)β(H)dH

=

∫

h1

ψTΓ (H, f)β(H)dH,

by the definition of Bπ(λ), the definition of ψTπ (H, f), the fact that β(H) is W -
symmetric, and our assumption that XΓ = 0. It follows that the difference (20.2)
between pT (B, f) and (20.8) has absolute value bounded by the integral

∫

h1

|ψTΓ (H, f)− pT (H, f)||β(H)|dH.

We can assume that T lies in a fixed cone arP0
, and is large. If dP0(T ) is greater

than C0(1+N +‖H‖), the integrand vanishes by (20.6). We may therefore restrict
the domain of integration to the subset of points H ∈ h1 with

‖H‖ ≥ C−1
0 dP0(T )− (1 +N) ≥ C−1

0 r‖T ‖ − (1 +N) ≥ r1‖T ‖,
for some fixed positive number r1. For any such H , we have

|ψTΓ (H, f)− pT (H, f)| ≤ |ψTΓ (H, f)|+ |pT (H, f)|
≤ c1(1 + ‖H‖)2d0,

for some c1 > 0, by (20.5) and (20.7). We also have

|β(H)| ≤ c2(1 + ‖H‖)−(1+2d0+2dim h1), H ∈ h1,

for some c2 > 0. The integral is therefore bounded by

c1c2

∫

‖H‖≥r1‖T‖

(1 + ‖H‖)2d0(1 + ‖H‖)−(1+2d0+2 dim h1)dH,

a quantity that is in turn bounded by an expression

c1c2r
−1
1 ‖T ‖−1

∫

h1

(1 + ‖H‖)−2 dim h1

dH

that approaches 0 as T approaches infinity. It follows that the difference (20.2)
approaches 0 as T approaches infinity in arP0

. We have established Theorem 20.5(a),
in the special case under consideration, by combining (20.5), (20.6), and (20.7).

Next we prove Theorem 20.5(b), in the given special case. Recall that JTχ (f)

is the value of pT (H, f) at H = 0. We have to show that this equals the limit of
PT (Bε, f) as ε approaches 0, under the assumption that B(0) = 1. Now

(B̂ε)(H) = (B̂)ε(H) = βε(H),

where

βε(H) = ε−(dim h1)β(ε−1H).
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Therefore

PT (Bε, f) = pT (βε, f) =

∫

h1

pT (H, f)βε(H)dH

= JTχ (f) +

∫

h1

(
pT (H, f)− pT (0, f)

)
βε(H)dH,

since JTχ (f) = pT (0, f), and
∫
βε = Bε(0) = 1. But if we combine the mean value

theorem with (20.7), we see that

|pT (H, f)− pT (0, f)| ≤ c‖H‖(1 + ‖H‖)d0(1 + ‖T ‖)d0,
for some fixed c > 0, and all H and T . We can assume that ε ≤ 1. Then

∫

h1

|pT (H, f)− pT (0, f)||βε(H)|dH

= ε− dim(h1)

∫

h1

|pT (H, f)− pT (0, f)||β(ε−1H)|dH

=

∫

h1

|pT (εH, f)− pT (0, f)||β(H)|dH

≤ c
∫

h1

ε‖H‖(1 + ‖εH‖)d0(1 + ‖T ‖)d0|β(H)|dH

≤ c′ε(1 + ‖T ‖)d0,
where

c′ = c

∫

h1

‖H‖(1 + ‖H‖)d0|β(H)|dH.

It follows that

lim
ε→0

(
pT (Bε, f)− JTχ (f)

)
= 0,

as required.
We have established Theorem 20.5 in the special case that there is only one

class Γ ∈ E , and that XΓ = 0. In general, there are several classes, so there can be
nonzero points XΓ. In place of (20.6), we have the more general identity

∑

Γ

eXΓ(H)ψTΓ (H, f)− pT (H, f) = 0, dP0(T ) > C0(1 +N + ‖H‖).

In particular, pT (H, f) can have exponential growth in H , and need not be tem-
pered. It cannot be integrated against a Schwartz function β of H . Now each
function ψTΓ (H, f) is tempered in H , by (20.7). The question is whether it is as-
ymptotic to a polynomial in T . In other words, does the polynomial pT (H, f) have
a Γ-component eXΓ(H)pTΓ (H, f)?

To answer the question, we take HΓ to be the point in h1 such that the inner
product (HΓ, H) equals XΓ(H), for each H ∈ h. We claim that for fixed H , the
function

t −→ ψTΓ (tHΓ +H, f), t ∈ R,

is a finite linear combination of unitary exponential functions. To see this, we first
note that the function equals

|W |−1
∑

(P,π,s)∈Γ

eiYπ(s−1(tHΓ+H))ψTπ
(
s−1(tHΓ +H), f

)
.
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For any (P, π, s) ∈ Γ, the linear form Xπ = s−1XΓ is the real part of the in-
finitestimal character of a unitary representation π of MP (A)1. It follows that the
corresponding point s−1HΓ in h1 lies in the kernel hP of the projection of h onto
aP . On the other hand, the function

ψTπ (H, f) =

∫

ia∗
P
/ia∗

G

ΨT
π (λ, f)eλ(H)dλ

is invariant under translation by hP . Consequently

ψTπ
(
s−1(tHΓ +H)

)
= ψTπ (s−1H).

The claim follows.
It is now pretty clear that we can construct the Γ-component of the polynomial

pT (H, f) =
∑

Γ∈E

eXΓ(H)ψTΓ (H, f), dP0(T ) ≥ C0(1 +N + ‖H‖),

in terms of its direction of real exponential growth. If one examines the question
more closely, taking into consideration the derivation of (20.7) above, one obtains
the following lemma.

Lemma 20.6. There are functions

pTΓ (H, f) H ∈ h1, Γ ∈ E ,
which are smooth in H and polynomials in T of degree at most d0, such that

pT (H, f) =
∑

Γ∈E

eXΓ(H)pTΓ (H, f),

and such that if D is any invariant differential operator on h1, then

(20.6)′
∣∣D
(
ψTΓ (H, f)− pTΓ (H, f)

)∣∣ ≤ cD,fe−δdP0(T )(1 + ‖T ‖)d0,
for all H and T with dP0(T ) > C0(1 +N + ‖H‖), and

(20.7)′ |DpTΓ (H, f)| ≤ cD,f(1 + ‖H‖)d0(1 + ‖T ‖)d0,
for all H and T , with C0, δ and cD,f being positive constants.

See [A7, Proposition 5.1]. �

Given Lemma 20.6, we set

pTΓ (β, f) =

∫

h1

pTΓ (H, f)β(H)dH,

for any function β ∈ S(h1)W and any Γ ∈ E . We then argue as above, using the
inequalities (20.5), (20.6)′ and (20.7)′ in place of (20.5), (20.6), and (20.7). We
deduce that for any Γ and β,

(20.9(a)) lim
T→∞

(∫

h1

ψTΓ (H, f)β(H)dH − pTΓ (β, f)
)

= 0, T ∈ arP0
,

and that

(20.9(b)) lim
ε→0

pTΓ (βε, f) = pTΓ (0, f),

if
∫
β = 1, exactly as in the proofs of (a) and (b) in the special case of Theorem

20.5 above. (See [A7, Lemmas 6.2 and 6.1].)
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To establish Theorem 20.5 in general, we set

PT (B, f) =
∑

Γ∈E

pTΓ (β, f), β = B̂.

Then, as in the proof of the special case of Theorem 20.5(a) above, we deduce that
∑

P

∫

ia∗
P
/ia∗

G

∑

π

ΨT
π (λ, f)Bπ(λ)dλ =

∑

Γ∈E

∫

h1

ψTΓ (H, f)β(H)dH.

It follows from (20.9(a)) that the difference between the expression on the right
hand side of this identity and PT (B, f) approaches 0 as T approaches infinity in
arP0

. The same is therefore true of the difference between the expression on the left

hand side of the identity and PT (B, f). This gives Theorem 20.5(a). For Theorem
20.5(b), we use (20.9(b)) to write

lim
ε→0

PT (Bε, f) = lim
ε→0

∑

Γ∈E

pTΓ (βε, f)

=
∑

Γ∈E

pTΓ (0, f) = pT (0, f) = JTχ (f),

if B(0) =
∫
β = 1. This completes our discussion of the proof of Theorem 20.5. �

21. The fine spectral expansion

We have taken care of the primary analytic obstruction to computing the distri-
butions Jχ(f). Its resolution is contained in Theorem 20.5, which applies to objects
χ ∈ X , P0 ∈ P(M0), f ∈ H(G), and B ∈ S(ih∗/ia∗G)W , with B(0) = 1. We take B
to be compactly supported. The function

Bπ(λ) = B(iYπ + λ), λ ∈ ia∗P ,
attached to any P ⊃ P0 and π ∈ Πunit

(
MP (A)1

)
then belongs to C∞

c (ia∗P /ia
∗
G).

Suppose that aT and bT are two functions defined on some cone dP0(T ) > C0

in a0. We shall write aT ∼ bT if aT − bT approaches 0 as T approaches infinity in
any cone arP0

. Theorem 20.5(a) tells us that

PT (B, f) ∼
∑

P⊃P0

∫

ia∗
P /ia

∗
G

∑

π

ΨT
π (λ, f)Bπ(λ)dλ

=
∑

P⊃P0

n−1
P

∑

π

∫

ia∗
P /ia

∗
G

tr
(
MT
P,χ(λ)IP,χ,π(λ, f)

)
Bπ(λ)dλ,

where PT (B, f) is a polynomial in T that depends linearly on B. The fact that
each Bπ(λ) has compact support is critical. It removes the analytic problem of
reconciling an asymptotic limit in T with an integral in λ over a noncompact space.
Our task is to compute PT (B, f) explicitly, as a bilinear form in the functions
{Bπ(λ)} and the operators {IP,χ,π(λ, f)}. We will then obtain an explicit formula
for JTχ (f) from the assertion

JTχ (f) = lim
ε→0

PT (Bε, f)

of Theorem 20.5(b).
The operator MT

P,χ(λ) is defined by (15.1) in terms of an inner product of
truncated Eisenstein series attached to P . Proposition 15.3 gives the explicit inner
product formula of Langlands, which applies to the special case that the Eisenstein
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series are cuspidal. It turns out that the same formula holds asymptotically in T
for arbitrary Eisenstein series.

Theorem 21.1. Suppose that φ ∈ H0
P and φ′ ∈ H0

P ′ , for standard parabolic
subgroups P, P ′ ⊃ P0. Then the difference between the inner product

∫

G(F )\G(A)1
ΛTE(x, φ, λ)ΛTE(x, φ′, λ′)dx

and the sum

(21.1)
∑

Q

∑

s

∑

s′

θQ(sλ+ s′λ
′
)−1e(sλ+s′λ

′
)(T )
(
M(s, λ)φ,M(s′, λ′)φ′

)

over Q ⊃ P0, s ∈ W (aP , aQ), and s′ ∈W (aP ′ , aQ) is bounded by a product

c(λ, λ′, φ, φ′)e−εdP0 (T ),

where ε > 0, and c(λ, λ′, φ, φ′) is a locally bounded function on the set of points
λ ∈ a∗P,C and λ′ ∈ a∗P ′,C at which the Eisenstein series are analytic.

This is [A6, Theorem 9.1], which is the main result of the paper [A6]. The
proof begins with the special case already established for cuspidal Eisenstein series
in Proposition 15.3. One then uses the results of Langlands in [Lan5, §7], which
express arbitrary Eisenstein series in terms of residues of cuspidal Eisenstein series.
This process is not canonical in general. Nevertheless, one can still show that (21.1)
is an asymptotic approximation for the expression obtained from the appropriate
residues of the corresponding formula for cuspidal Eisenstein series. �

Let us write ωT (λ, λ′, φ, φ′) for the expression (21.1). If Bχ is any function in
C∞
c (ia∗P /ia

∗
G), the theorem tells us that

∫

ia∗
P
/ia∗

G

(
MT
P,χ(λ)IP,χ(λ, f)φ, φ

)
Bχ(λ)dλ

∼
∫

ia∗
P /ia

∗
G

ωT
(
λ, λ, IP,χ(λ, f)φ, φ

)
Bχ(λ)dλ.

We shall apply this asymptotic formula to the functions Bχ = Bπ. Since f is K-
finite, IP,χ(λ, f)φ vanishes for all but finitely many vectors φ in the orthonormal
basis BP,χ of HP,χ. This is a consequence of Langlands’ construction of the discrete
spectrum, as we have noted earlier. We assume that BP,χ is a disjoint union of
orthonormal bases BP,χ,π of the spaces HP,χ,π. It then follows that

PT (B, f)

∼
∑

P⊃P0

n−1
P

∑

π

(∫

ia∗
P /ia

∗
G

∑

φ∈BP,χ,π

ωT
(
λ, λ, IP,χ,π(λ, f)φ, φ

)
Bπ(λ)dλ

)
.

The problem is to find an explicit polynomial function of T , for any P and π, which
is asymptotic in T to the expression in the brackets.

Suppose that P , π, and φ are fixed, and that λ lies in ia∗P . Changing the indices
of summation in the definition (21.1), we write

ωT
(
λ, λ, IP,χ,π(λ, f)φ, φ

)
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as the limit as λ′ approaches λ of the expression

ωT
(
λ′, λ, IP (λ, f)φ, φ

)

=
∑

P1

∑

t′

∑

t

θP1(t
′λ′ − tλ)−1e(t′λ′−tλ)(T )

(
M(t′, λ′)IP (λ, f)φ,M(t, λ)φ

)

=
∑

s

∑

P1

∑

t

θP1

(
t(sλ′ − λ)

)−1
e(t(sλ′−λ))(T )

(
M(ts, λ′)IP (λ, f)φ,M(t, λ)φ

)
,

for sums over P1 ⊃ P0 and t′, t ∈ W (aP , aP1), and for s = t−1t′ ranging over
the group W (MP ) = W (aP , aP ). Since λ is purely imaginary, the adjoint of the
operator M(t, λ) equals M(t, λ)−1. The sum

(21.2)
∑

φ∈BP,χ,π

ωT
(
λ, λ, IP,χ,π(λ, f)φ, φ

)

therefore equals the limit as λ′ approaches λ of
∑

s

∑

(P1,t)

θP1

(
t(sλ′ − λ)

)−1
e(t(sλ′−λ))(T )tr

(
M(t, λ)−1M(ts, λ′)IP,χ,π(λ, f)

)
.

Set M = MP . The correspondence

(P1, t) −→ Q = w−1
t P1wt, P1 ⊃ P0, t ∈W (aP , aP1),

is then a bijection from the set of pairs (P1, t) in the last sum onto the set P(M). For
any group Q ∈ P(M) and any element s ∈ W (M), there is a unitary intertwining
operator

MQ|P (s, λ) : HP −→ HQ, λ ∈ ia∗M .
It is defined by analytic continuation from the analogue of the integral formula
(7.2), in which P ′ is replaced by Q. If (P1, t) is the preimage of Q, it is easy to see
from the definitions that

M(ts, λ′) = tMQ|P (s, λ′)e(sλ′+ρQ)(T0−t
−1T0),

where t: HQ →HP1 is the operator defined by

(tφ)(x) = φ(w−1
t x), φ ∈ HP .

The point T0 is used as in §15 to measure the discrepancy between the two repre-
sentatives wt and w̃t of the element t ∈ W0. (See [A8, (1.4)].) It follows that

M(t, λ)−1M(ts, λ′) = MQ|P (λ)−1MQ|P (s, λ′)e(sλ′−λ)(T0−t
−1T0),

where MQ|P (λ) = MQ|P (1, λ). Next, we define a point YQ(T ) to be the projection
onto aM of the point

t−1(T − T0) + T0.

Then
e(t(sλ′−λ))(T )e(sλ′−λ)(T0−t

−1T0) = e(sλ′−λ)(YQ(T )).

Finally, it is clear that

θP1

(
t(sλ′ − λ)

)−1
= θQ(sλ′ − λ)−1.

It follows that (21.2) equals the limit as λ′ approaches λ of the sum over s ∈W (M)
of

(21.3)
∑

Q∈P(M)

tr
(
MQ|P (λ)−1MQ|P (s, λ′)IP,χ,π(λ, f)

)
e(sλ′−λ)(YQ(T ))θQ(sλ′−λ)−1.
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The expression (21.3) looks rather like the basic function (17.1) we have at-
tached to any (G,M)-family. We shall therefore study it as a function of the
variable

Λ = sλ′ − λ.
The expression becomes

∑

Q∈P(M)

cQ(Λ)dQ(Λ)θQ(Λ)−1,

where
cQ(Λ) = eΛ(YQ(T )),

and
dQ(Λ) = tr

(
MQ|P (λ)−1MQ|P (s, λ′)IP,χ,π(λ, f)

)
.

It follows easily from the definition of YQ(T ) that {cQ(Λ)} is a (G,M)-family. The
operators MQ|P (s, λ′) in the second factor satisfy a functional equation

MQ′|P (s, λ′) = MQ′|Q(sλ′)MQ|P (s, λ′), Q′ ∈ P(M).

It follows easily from this that {dQ(Λ)} is also a (G,M)-family. (See [A8, p. 1298].
Of course dQ(Λ) depends on the kernel of the mapping (λ′, λ)→ Λ as well as on Λ,
but at the moment we are only interested in the variable Λ.) The expression (21.3)
therefore reduces to something we have studied, namely the function (cd)M (Λ)
attached to the (G,M)-family {(cd)Q(Λ)}. By Lemma 17.1, the function has no
singularities in Λ. It follows that the expression (21.3) extends to a smooth function
of (λ′, λ) in ia∗M × ia∗M .

Remember that we are supposed to take the limit, as λ′ approaches λ, of the
sum over s ∈W (M) of (21.3). We will then want to integrate the product of Bπ(λ)
with the resulting function of λ over the space ia∗M/ia

∗
G. From what we have just

observed, the integral and limit may be taken inside the sum over s. It turns out
that the asymptotic limit in T may also be taken inside the sum over s. In other
words, it is possible to find an explicit polynomial in T that is asymptotic to the
integral over λ of the product Bπ(λ) with value at λ′ = λ of (21.3). We shall
describe how to do this, using the product formula of Lemma 17.4.

Suppose that s ∈W (M) is fixed. Let L be the smallest Levi subgroup in L(M)
that contains a representative of s. Then aL equals the kernel of s in aM . The
element s therefore belongs to the subset

WL(M)reg = {t ∈WL(M) : ker(t) = aL},
of regular elements in WL(M). Given s, we set λ′ = λ+ ζ, where ζ is restricted to
lie in the subspace ia∗L of ia∗M associated to s. Then sζ = ζ, and

Λ = (sλ− λ) + ζ

is the decomposition of Λ relative to the direct sum

ia∗M = i(aLM )∗ ⊕ ia∗L.
If λL is the projection of λ onto ia∗L, the mapping

(λ, ζ) −→ (Λ, λL), λ ∈ ia∗M , ζ ∈ ia∗L,
is a linear automorphism of the vector space ia∗M ⊕ ia∗L. In particular, the points λ
and λ′ = λ+ ζ are uniquely determined by Λ and λL. Let us write

cQ(Λ, T ) = eΛ(YQ(T ))
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and

dQ(Λ, λL) = tr
(
MQ|P (λ)−1MQ|P (s, λ+ ζ)IP,χ,π(λ, f)

)
,

in order to keep track of our two (G,M)-families on the supplementary variables.
They of course remain (G,M)-families in the variable Λ. For λ′ = λ+ ζ as above,
the expression (21.3) equals

∑

Q∈F(M)

cQ(Λ, T )dQ(Λ, λL)θQ(Λ)−1 =
∑

S∈F(M)

cSM (Λ, T )d′S(ΛS , λL),

by the product formula of Lemma 17.4. To evaluate (21.3) at λ′ = λ, we set ζ = 0.
This entails simply replacing Λ by sλ− λ. The value of (21.3) at λ′ = λ therefore
equals ∑

S∈F(M)

cSM (sλ− λ, T )d′S
(
(sλ− λ)S , λL

)
.

We have therefore to consider the integral

(21.4)

∫

ia∗
M
/ia∗

G

( ∑

S∈F(M)

cSM (sλ− λ, T )d′S
(
(sλ− λ)S , λL

))
Bπ(λ)dλ,

for M = MP , π ∈ Πunit

(
M(A)1

)
, L ∈ L(M) and s ∈ WL(M)reg, and for T in a

fixed domain arP0
. We need to show that the integral is asymptotic to an explicit

polynomial in T . This will allow us to construct PT (B) simply by summing the
product of this polynomial with n−1

P over P ⊃ P0, π, L, and s.
We first decompose the integral (21.4) into a double integral over i(aLM )∗ and

ia∗L/ia
∗
G. If λ belongs to ia∗M , sλ − λ depends only on the projection µ of λ onto

i(aLM )∗. Since the mapping

Fs : µ −→ sµ− µ
is a linear isomorphism of i(aLM )∗, (21.4) equals the product of the inverse

| det(s− 1)aL
M
|−1

of the determinant of this mapping with the sum over S ∈ F(M) of

(21.5)

∫

i(aLM )∗

∫

ia∗
L/ia

∗
G

cSM (µ, T )d′S(µS , λ)Bπ
(
F−1
s (µ) + λ

)
dλdµ.

Next, we note that the dependence of the integral on T is through the term
cSM (µ, T ). For fixed S, the set

YSM (T ) = {YS(R)(T ) : R ∈ PMS (M)}
is a positive (MS ,M)-orthogonal set of points in aM , which all project to a common
point YS(T ) in aS. It follows from Lemma 17.2 that

cSM (µ, T ) =

∫

YS(T )+a
MS
M

ψSM (H,T )eµ(H)dH,

where ψSM (·, T ) is the characteristic function of the convex hull in aM of YSM (T ).
We can therefore write (21.5) as

(21.6)

∫

YS(T )+a
MS
M

ψSM (H,T )φS(H)dH,
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where

φS(H) =

∫

i(aL
M

)∗

∫

ia∗
L
/ia∗

G

eµ(H)d′S(µS , λ)Bπ
(
F−1
s (µ) + λ

)
dλdµ,

for any H ∈ aM . Since d′S(·, ·) is smooth, and Bπ(·) is both smooth and compactly
supported, φS(H) is a Schwartz function on aM/aL.

There are two cases to consider. Suppose first that S does not belong to the
subset F(L) of F(M). Then aS is not contained in aL, and YS(T ) projects to a
nonzero point YS(T )LM in aLM . In fact, it follows easily from the fact that T lies in
arP0

that

‖YS(T )LM‖ ≥ r1‖T ‖,
for some r1 > 0. The function ψSM (·, T ) is supported on a compact subset of the

affine space YS(T ) + aMS

M whose volume is bounded by a polynomial in T . One
combines this with the fact that φS(H) is a Schwartz function on aM/aL to show
that (21.6) approaches 0 as T approaches infinity in arP0

. (See [A8, p. 1306].)
We can therefore assume that S belongs to F(L). Then

aMS

M = aLM ⊕ aMS

L .

Since φS is aL-invariant, we are free to write (21.6) as
∫

YS(T )+a
MS
L

( ∫

aL
M

φS(U)ψSM (U +H,T )dU
)
dH.

As it turns out, we can simplify matters further by replacing

ψSM (U +H,T )

with ψSL(H,T ), where ψSL(H,T ) is the characteristic function in aL of the set YSL (T )
obtained in the obvious way from YSM (T ). More precisely, the difference between
the last expression and the product

(21.7)

∫

aL
M

φS(U)dU ·
∫

YS(T )+a
MS
L

ψSL(H,T )dH

approaches 0 as T approaches infinity in arP0
. Suppose for example that G = SL(3),

M = M0 is minimal, MS = G, and that L is a standard maximal Levi subgroup
M1. Then YS(T ) = 0, and the difference

ψSL(H,T )− ψSM (U +H,T ), U ∈ aLM , H ∈ aL,

is the characteristic function of the darker shaded region in Figure 21.1. Since
φS(U) is rapidly decreasing on the vertical aLM -axis in the figure, the integral over
(U,H) of its product with the difference above does indeed approach 0. In the
general case, the lemmas in [A8, §3] show that the convex hull of YSM (T ) has the
same qualitative behaviour as is Figure 21.1. (See [A8, p. 1307–1308].)

The problem thus reduces to the computation of the product (21.7), for any
element S ∈ F(L). The first factor in the product can be written as

∫

aL
M

φS(U)dU =

∫

ia∗
L
/ia∗

G

d′S(0, λ)Bπ(λ)dλ,

by the Fourier inversion formula in aLM . The second factor equals
∫

YS(T )+a
MS
L

ψSL(H,T )dH = cSL(0, T )



132 JAMES ARTHUR

aL

aL

M

YP0(T ) = T

Figure 21.1. The vertices represent the six points YP (T ), as P
ranges over P(M0). Since T ranges over a set arP0

, the distance from

any vertex to the horizontal aL-axis is bounded below by a positive

multiple of ‖T ‖.

by Lemma 17.2, and is therefore a polynomial in T . In particular, (21.7) is already
a polynomial in T . To express its contribution to the asymptotic value of (21.4), we
need only sum S over F(L). We conclude that (21.4) differs from the polynomial

(21.8)
∣∣ det(s− 1)aLM

∣∣−1
∫

ia∗
L
/ia∗

G

( ∑

S∈F(L)

cSL(0, T )d′S(0, λ)
)
Bπ(λ)dλ

by an expression that approaches 0 as T approaches infinity in arP0
.

The sum

(21.9)
∑

S∈F(L)

cSL(0, T )d′S(0, λ)

in (21.8) comes from a product

cQ1(Λ, T )dQ1(Λ, λ), Q1 ∈ P(L), Λ ∈ ia∗L,
of (G,L)-families. By Lemma 17.4, it equals the value at Λ = 0 of the sum

∑

Q1∈P(L)

cQ1(Λ, T )dQ1(Λ, λ)θQ1 (Λ)−1.

Recall the definition of the (G,M)-family {dQ(Λ, λ)} of which the (G,L)-family
{dQ1(Λ, λ)} is the restriction. Since λ and Λ lie in the subspace ia∗L of ia∗M , λL
equals λ, and

ζ = Λ− (sλ− λ) = Λ.

It follows from the definitions and the functional equations of the global intertwining
operators that

dQ(Λ, λ) = tr
(
MQ|P (λ)−1MQ|P (s, λ+ Λ)IP,χ,π(λ, f)

)

= tr
(
MQ|P (λ)−1MQ|P (λ+ Λ)MP |P (s, λ+ Λ)IP,χ,π(λ, f)

)
,
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for any Q ∈ P(M). Since the point λ + Λ lies in the space ia∗L fixed by s, the
operator

MP (s, 0) = MP |P (s, λ+ Λ)

is independent of λ and Λ. To deal with the other operators, we define

MQ(Λ, λ, P ) = MQ|P (λ)−1MQ|P (λ + Λ),

and

MT
Q(Λ, λ, P ) = eΛ(YQ(T ))MQ|P (λ)−1MQ|P (λ+ Λ)

= cQ(Λ, T )MQ(Λ, λ, P ),

for any Q ∈ P(M). As functions of Λ in the larger domain ia∗M , these objects form
two (G,M)-families as Q varies over P(M). With Λ restricted to ia∗L as above, the
functions

MT
Q1

(Λ, λ, P ) =MT
Q(Λ, λ, P ), Q1 ∈ P(L), Q ⊂ Q1,

form a (G,L)-family as Q1 varies over P(L). It follows from the definitions that
(21.9) equals

lim
Λ→0

∑

Q1∈P(L)

cQ1(Λ, T )dQ1(Λ, λ)θQ1(Λ)−1

= lim
Λ→0

∑

Q1∈P(L)

tr
(
MT

Q1
(Λ, λ, P )MP (s, 0)IP,χ,π(λ, f)

)
θQ1(Λ)−1

= lim
Λ→0

tr
(
MT

L(Λ, λ, P )MP (s, 0)IP,χ,π(λ, f)
)

= tr
(
MT

L(λ, P )MP (s, 0)IP,χ,π(λ, f)
)
.

We substitute this formula into (21.8). The resulting expression is the required
polynomial approximation to (21.4).

The following proposition is Theorem 4.1 of [A8]. We have completed a rea-
sonably comprehensive sketch of its proof.

Proposition 21.2. For any f ∈ H(G) and B ∈ C∞
c (ih∗/ia∗G)W , the polyno-

mial PT (B, f) equals the sum over P ⊃ P0, π ∈ Πunit

(
MP (A)1

)
, L ∈ L(MP ), and

s ∈WL(MP )reg of the product of

n−1
P | det(s− 1)aLP

|−1

with
∫

ia∗
L
/ia∗

G

tr
(
MT

L(λ, P )MP (s, 0)IP,χ,π(λ, f)
)
Bπ(λ)dλ. �

Recall that

JTχ (f) = lim
ε→0

PT (Bε, f),

where Bε(ν) = B(εν), and B(0) is assumed to be 1. Therefore

Jχ(f) = JT0
χ (f) = lim

ε→0
PT0(Bε, f).
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Now

MT0

L (λ, P ) = lim
Λ→0

∑

Q1∈P(L)

cQ1(Λ, T0)MQ1(Λ, λ, P )θQ1(Λ)−1

= lim
Λ→0

∑

Q1∈P(L)

eΛ(YQ1 (T0))MQ1(Λ, λ, P )θQ1(Λ)−1

= lim
Λ→0

eΛ(T0)
∑

Q1∈P(L)

MQ1(Λ, λ, P )θQ1(Λ)−1

=ML(λ, P ),

since YQ1(T0) is just the projection of T0 onto aL. We substitute this into the
formula above. The canonical point T0 ∈ a0 is independent of the minimal parabolic
subgroup P0 ∈ P(M0) we fixed at the beginning of the section. Moreover, if M =
MP , the function

tr
(
ML(λ, P )MP (s, 0)IP,χ,π(λ, f)

)

is easily seen to be independent of the choice of P ∈ P(M). We can therefore
rewrite the formula of Proposition 21.2 in terms of Levi subgroups M ∈ L rather
than standard parabolic subgroups P ⊃ P0. Making the appropriate adjustments
to the coefficients, one obtains the following formula as a corollary of the last one.
(See [A8, Theorem 5.2].)

Corollary 21.3. For any f ∈ H(G), the linear form Jχ(f) equals the limit as
ε approaches 0 of the expression obtained by taking the sum over M ∈ L, L ∈ L(M),
π ∈ Πunit

(
M(A)1

)
, and s ∈WL(M)reg of the product of

|WM
0 ||WG

0 |−1| det(s− 1)aLM
|−1

with ∫

ia∗
L
/ia∗

G

tr
(
ML(λ, P )MP (s, 0)IP,χ,π(λ, f)

)
Bεπ(λ)dλ. �

The final step is to get rid of the function BE
π and the associated limit in ε.

Recall that B had the indispensable role of truncating the support of integrals that
would otherwise be unmanageable. The function

Bεπ(λ) = B
(
ε(iYπ + λ)

)

is compactly supported in λ ∈ ia∗L/ia∗G, but converges pointwise to 1 as ε approaches
0. If we can show that the integral

(21.10)

∫

ia∗
L
/ia∗

G

tr
(
ML(λ, P )MP (s, 0)IP,χ,π(λ, f)

)
dλ

converges absolutely, we could remove the limit in ε by an appeal to the dominated
convergence theorem. One establishes absolute convergence by normalizing the
intertwining operators from which the operatorML(λ, P ) is constructed.

Suppose that πv ∈ Π
(
M(Fv)

)
is an irreducible representation of M(Fv), for a

Levi subgroup M ∈ L and a valuation v of F . We write

πv,λ(mv) = πv(mv)e
λ(HM (mv)), mv ∈M(Fv),

as usual, for the twist of πv by an element λ ∈ a∗M,C. If P ∈ P(M), IP (πv,λ)

denotes the corresponding induced representation of G(Fv), acting on a Hilbert
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space HP (πv) of vector valued functions on Kv. If Q ∈ P(M) is another parabolic
subgroup, and φ belongs to HP (πv), the integral

∫

NQ(Fv)∩NP (Fv)\NQ(Fv)

φ(nvxv)e
(λ+ρP )(HP (nvxv))e−(λ+ρQ)(HQ(xv))dnv

converges if the real part of λ is highly regular in the chamber (a∗M )+P . It defines
an operator

JQ|P (πv,λ) : HP (πv) −→ HQ(πv)

that intertwines the local induced representations IP (πv,λ) and IQ(πv,λ). One
knows that JQ|P (πv,λ) can be analytically continued to a meromorphic function of
λ ∈ a∗M,C with values in the corresponding space of intertwining operators. (See

[Har5], [KnS], and [Sha1].) This is a local analogue of Langlands’ analytic contin-
uation of the global operators MQ|P (λ). Unlike the operators MQ|P (λ), however,

the local operators JQ|P (πv,λ) are not transitive in Q and P . For example, if P is
the group in P(M) opposite to P , Harish-Chandra has proved that

JP |P̄ (πv,λ)JP̄ |P (πv,λ) = µM (πv,λ)
−1,

where µM (πv,λ) is a meromorphic scalar valued function that is closely related to
the Plancherel density. To make the operators JQ|P (πv,λ) have better properties,
one must multiply them by suitable scalar normalizing factors.

Theorem 21.4. For any M , v, and πv ∈ Π
(
M(Fv)

)
, one can choose mero-

morphic scalar valued functions

rQ|P (πv,λ), λ ∈ a∗M,C, P,Q ∈ P(M),

such that the normalized intertwining operators

(21.11) RQ|P (πv,λ) = rQ|P (πv,λ)
−1JQ|P (πv,λ)

have the following properties.

(i) RQ′|P (πv,λ) = RQ′|Q(πv,λ)RQ|P (πv,λ), Q′, Q, P ∈ P(M).

(ii) The Kv-finite matrix coefficients of RQ|P (πv,λ) are rational functions of
the variables {λ(α∨) : α ∈ ∆P } if v is archimedean, and the variables

{q−λ(α∨)
v : α ∈ ∆P } if v is nonarchimedean.

(iii) If πv is unitary, the operator RQ|P (πv,λ) is unitary for λ ∈ ia∗M , and
hence analytic.

(iv) If G is unramified at v, and φ ∈ H(πv) is the characteristic function of
Kv, RQ|P (πv,λ)φ equals φ.

See [A15, Theorem 2.1] and [CLL, Lecture 15]. The factors rQ|P (πv,λ) are
defined as products, over reduced roots β of (Q,AM ) that are not roots of (P,AM ),
of meromorphic functions rβ(πλ) that depend only on λ(β∨). The main step is to
establish the property

(21.12) rP |P̄ (πv,λ)rP̄ |P (πv,λ) = µM (πv,λ)
−1,

in the case that M is maximal. �

Remarks. 1. The assertions of the theorem are purely local. They can be
formulated for Levi subgroups and parabolic subgroups that are defined over Fv.
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2. Suppose that
⊗
v
πv is an irreducible representation of M(A), whose restric-

tion to M(A)1 we denote by π. The product

(21.13) RQ|P (πλ) =
⊗

v

RQ|P (πv,λ)

is then a well defined transformation of the dense subspace H0
P (π) of K-finite

vectors in HP (π). Indeed, for any φ ∈ H0
P (π), RQ|P (πλ)φ can be expressed as a

finite product by (iv). If π is unitary and λ ∈ ia∗M , RQ|P (πλ) extends to a unitary
transformation of the entire Hilbert space HP (π).

Suppose that π ∈ Πunit

(
M(A)1

)
is any representation that occurs in the dis-

crete part RM,disc of RM . In other words, the subspaceHP,π of HP is nonzero. The
restriction of the global intertwining operator MQ|P (λ) to HP,π can be expressed in
terms of the local intertwining operators above. It is isomorphic to mdisc(π)-copies
of the operator

JQ|P (πλ) =
⊗

v

JQ|P (πv,λ),

defined for any unitary extension
⊗
v
πv of π to M(A) by analytic continuation in

λ. If {rQ|P (πv,λ)} is any family of local normalizing factors that for each v satisfy
the conditions of Theorem 21.4, the scalar-valued product

(21.14) rQ|P (πλ) =
∏

v

rQ|P (πv,λ)

is also defined by analytic continuation in λ, and is analytic for λ ∈ ia∗M . Let
RQ|P (λ) be the operator on HP whose restriction to any subspace HP,π equals

the product of rQ|P (πλ)
−1 with the restriction of MQ|P (λ). In other words, the

restriction of RQ|P (λ) to HP,π is isomorphic to mdisc(π)-copies of the operator
(2.13). We define

(21.15) rQ(Λ, πλ, P ) = rQ|P (πλ)
−1rQ|P (πλ+Λ), HP,π 6= {0},

and

RQ(Λ, λ, P ) = RQ|P (λ)−1RQ|P (λ+ Λ),

for points Λ and λ in ia∗M . Then {rQ(Λ, πλ)} and {RQ(Λ, λ, P )} are new (G,M)-
families of Λ. They give rise to functions rL(πλ, P ) and RL(λ, P ) of λ for any
L ∈ L(M). We write rL(πλ) = rL(πλ, P ), since this function is easily seen to be
independent of the choice of P .

Lemma 21.5. (a) There is a positive integer n such that
∫

ia∗
M
/ia∗

G

|rL(πλ)|(1 + ‖λ‖)−ndλ <∞.

(b) The integral (21.10) converges absolutely.

The integrand in (21.10) depends only on the restriction ML(λ, P )χ,π of the
operator ML(λ, P ) to HP,χ,π. But ML(λ, P )χ,π can be defined in terms of the
product of the two new (G,M)-families above. Moreover, we are free to apply
the simpler version (17.12) of the usual splitting formula. This is because for any
S ∈ F(L) and Q ∈ P(S), the number

rSL(πλ) = rQL (πλ)
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is independent of the choice of Q [A8, Corollary 7.4]. Therefore

ML(λ, P )χ,π =
∑

S∈F(L)

rSL(πλ)RS(λ, P )χ,π ,

where RS(λ, P )χ,π denotes the restriction of RS(λ, P ) to HP,χ,π. The integral
(21.10) can therefore be decomposed as a sum

(21.16)
∑

S∈F(L)

∫

ia∗
L
/ia∗

G

rSL(πλ)tr
(
RS(λ, P )MP (s, 0)IP,χ,π(λ, f)

)
dλ.

Since f lies in the Hecke algebra H(G), the operator IP,χ,π(λ, f) is supported on
a finite dimensional subspace of HP,χ,π. Moreover, it is an easy consequence of
the conditions (ii)–(iv) of Theorem 21.4 that any matrix coefficient of the operator

RS(λ, P ) is a rational function in finitely many complex variables {λ(α∨), q
−λ(α∨)
v },

which is analytic for λ ∈ ia∗M . Since IP,χ,π(λ, f) is rapidly decreasing in λ, part (b)
of the lemma follows inductively from (a). (See [A8, §8].)

It is enough to establish part (a) in the case thatM is a maximal Levi subgroup.
This is because for general M and L, rLM (πλ) can be written as a finite linear
combination of products

rM1

M (πλ) . . . r
Mp

M (πλ),

for Levi subgroups M1, . . . ,Mp in L(M), with dim(aM/aMi
) = 1, such that the

mapping

aM/aG −→
p⊕

i=1

(aM/aMi
)

is an isomorphism. (See [A8, §7].) In caseM is maximal, one combines (21.16) with
estimates based on Selberg’s positivity argument used to prove Theorem 14.1(a).
(See [A8, §8–9].) �

It is a consequence of Langlands’ construction of the discrete spectrum of M in
terms of residues of cuspidal Eisenstein series that the sum over π ∈ Πunit

(
M(A)1

)

in Corollary 21.3 can be taken over a finite set. Lemma 21.5(b) asserts that for any
π, the integral (21.10) converges absolutely. Combining the dominated convergence
theorem with the formula of Corollary 21.3, we obtain the following theorem.

Theorem 21.6. For any f ∈ H(G), the linear form Jχ(f) equals the sum over
M ∈ L, L ∈ L(M), π ∈ Πunit

(
M(A)1

)
, and s ∈WL(M)reg of the product of

(21.17) |WM
0 ||WG

0 |−1| det(s− 1)aGM
|−1

with ∫

ia∗
L
/ia∗

G

tr
(
ML(λ, P )MP (s, 0)IP,χ,π(λ, f)

)
dλ.

(See [A8, Theorem 8.2].) �

Remarks. 3. There is an error in [A8, §8]. It is the ill-considered inequality
stated on p. 1329 of [A8], three lines above the expression (8.4), which was taken
from [A5, (7.6)]. The inequality seems to be false if f lies in the complement of
H(G) in C∞

c

(
G(A)1

)
, and π is nontempered. Consequently, the last formula for

Jχ(f) does not hold if f lies in the complement of H(G) in C∞
c

(
G(A)1

)
.
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The fine spectral expansion of J(f) is the sum over χ ∈ X of the formulas for
Jχ(f) provided by the last theorem. It is convenient to express this expansion in
terms of infinitesimal characters.

A representation π ∈ Πunit

(
M(A)1

)
has an archimedean infinitesimal character,

consisting of a W -orbit of points νπ = Xπ + iYπ in h∗C/ia
∗
G. The imaginary part Yπ

is really an a∗M -coset in h∗, but as in §20, we can identify it with the unique point
in the coset for which the norm ‖Yπ‖ is minimal. We then define

Πt,unit

(
M(A)1

)
=
{
π ∈ Πunit

(
M(A)1

)
: ‖Im(νπ)‖ = ‖Yπ‖ = t

}
,

for any nonnegative real number t.
Recall that a class χ ∈ X is a W0-orbit of pairs (M1, π1), with π1 being a

cuspidal automorphic representation of M1(A)1. Setting νχ = νπ1 , we define a
linear form

Jt(f) =
∑

{χ∈X :‖Im(νχ)‖=t}

Jχ(f), t ≥ 0, f ∈ H(G),

in which the sum may be taken over a finite set. Then

J(f) =
∑

t≥0

Jt(f).

We also write IP,t(λ, f) for the restriction of the operator IP (λ, f) to the invariant
subspace

HP,t =
⊕

{(χ,π):‖Im(νχ)‖=t}

HP,χ,π,

ofHP . It is again a consequence of Langlands’ construction of the discrete spectrum
that if ‖Im(νχ)‖ = t, the space HP,χ,π vanishes unless π belongs to Πt,unit

(
M(A)1

)
.

In other words, the representation IP,t(λ) is equivalent to a direct sum of induced
representations of the form IP (πλ), for π ∈ Πt,unit

(
M(A)1

)
. The fine spectral

expansion is then given by the following corollary of Theorem 21.6.

Corollary 21.7. For any f ∈ H(G), the linear form J(f) equals the sum
over t ≥ 0, M ∈ L, L ∈ L(M), and s ∈ WL(M)reg of the product of the coefficient
(21.17) with the linear form

(21.18)

∫

ia∗
L
/ia∗

G

tr
(
ML(λ, P )MP (s, 0)IP,t(λ, f)

)
dλ. �

The fine spectral expansion is thus an explicit sum of integrals. Among these
integrals, the ones that are discrete have special significance. They correspond to
the terms with L = G. The discrete part of the fine spectral expansion attached to
any t equals the linear form
(21.19)

It,disc(f) =
∑

M∈L

|WM
0 ||WG

0 |−1
∑

s∈W (M)reg

| det(s− 1)aG
M
|−1tr

(
MP (s, 0)IP,t(0, f)

)
.

It contains the t-part of the discrete spectrum, as well as singular points in the t-
parts of continuous spectra. Observe that we have not shown that the sum over t of
these distributions converges. To do so, one would need to extend Müller’s solution
of the trace class conjecture [Mul], as has been done in the case G = GL(n) by
Müller and Speh [MS]. It is only after It,disc(f) has been enlarged to the linear
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form Jt(f), by including the corresponding continuous terms, that the spectral
arguments we have discussed yield the absolute convergence of the sum over t.
However, it turns out that this circumstance does not effect our ability to use trace
formulas to compare discrete spectra on different groups.

22. The problem of invariance

In the last four sections, we have refined both the geometric and spectral sides
of the original formula (16.1). Let us now step back for a moment to assess the
present state of affairs. The fine geometric expansion of Corollary 19.3 is transpar-
ent in its overall structure. It is a simple linear combination of weighted orbital
integrals, taken over Levi subgroups M ∈ L. The fine spectral expansion of Corol-
lary 21.7 is also quite explicit, but it contains a more complicated double sum over
Levi subgroups M ⊂ L. In order to focus our discussion on the next stage of devel-
opment, we need to rewrite the spectral side so that it is parallel to the geometric
side.

We shall first revisit the fine geometric expansion. This expansion is a sum
of products of local distributions JM (γ, f) with global coefficients aM (S, γ), where
S ⊃ Sram is a large finite set of valuations depending on the support of f , and
γ ∈

(
M(F )

)
M,S

is an (M,S)-equivalence class. Let us write

(22.1) Γ(M)S =
(
M(F )

)
M,S

, S ⊃ Sram,

in order to emphasize that this set is a quotient of the set Γ(M) of conjugacy
classes in M(F ). The semi-simple component γs of a class γ ∈ Γ(M)S can be
identified with a semisimple conjugacy class in M(F ). By choosing S to be large,
we guarantee that for any class γ with JM (γ, f) 6= 0, the set

Int
(
M(AS)

)
γs = {m−1γsm : m ∈M(AS)}

intersects the maximal compact subgroup KS
M of M(AS). If S is any finite set

containing Sram, and γ is a class in Γ(M)S , we shall write

(22.2) aM (γ) =

{
aM (S, γ), if Int

(
M(AS)

)
γs ∩KS

M 6= 0,

0, otherwise.

If f belongs to H(G) = H
(
G(A)1

)
, we also write

JM (γ, f) = JM (γ, fS),

where fS is the restriction of f to the subgroupG(FS)1 of G(A)1. We can then write
the fine geometric expansion slightly more elegantly as the limit over increasing sets
S of expressions

∑

M∈L

|WM
0 ||WG

0 |−1
∑

γ∈Γ(M)S

aM (γ)IM (γ, f).

The limit stabilizes for large finite sets S.
To write the spectral expansion in parallel form, we have first to introduce

suitable weighted characters JM (π, f). Suppose that π belongs to Πunit

(
M(A)1

)
.

Then π can be identified with an orbit πλ of ia∗M in Πunit

(
M(A)

)
. In the last

section, we defined normalized intertwining operators RQ|P (πλ) in terms (21.11)
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and (21.13) of a suitable choice of local normalizing factors {rQ|P (πv,λ)}. We now
introduce the corresponding (G,M)-family

RQ(Λ, πλ, P ) = RQ|P (πλ)
−1RQ|P (πλ+Λ), Q ∈ P(M), Λ ∈ ia∗M ,

of operators on HP (π), which we use to define the linear form

(22.3) JM (πλ, f̃) = tr
(
RM (πλ, P )IP (πλ, f̃)

)
f̃ ∈ H

(
G(A)

)
,

on H
(
G(A)

)
. We then set

(22.4) JM (π, f) =

∫

ia∗
M

JM (πλ, f̃)dλ, f ∈ H(G),

where f̃ is any function in H
(
G(A)

)
whose restriction to G(A)1 equals f . The

last linear form does indeed depend only on π and f . It is the required weighted
character.

The core of the fine spectral expansion is the t-discrete part It,disc(f), defined
for any t ≥ 0 and f ∈ H(G) by (21.19). The term “discrete” refers obviously to the
fact that we can write the distribution as a linear combination

(22.5) It,disc(f) =
∑

π∈Πt,unit(G(A)1)

aGdisc(π)fG(π)

of irreducible characters, with complex coefficients aGdisc(π). It is a consequence of
Langlands’ construction of the discrete spectrum that for any f , the sum may be
taken over a finite set. (See [A14, Lemmas 4.1 and 4.2].) Let Πt,disc(G) be the
subset of irreducible constituents of induced representations

σGλ , M ∈ L, σ ∈ Πt,unit

(
M(A)1

)
, λ ∈ ia∗M/ia∗G,

of G(A)1, where the representation σλ of M(A)∩G(A)1 satisfies the two conditions.

(i) aMdisc(σ) 6= 0.
(ii) there is an element s ∈WG(aM )reg such that sσλ = σλ.

As a discrete subset of Πt,unit

(
G(A)1

)
, Πt,disc(G) is a convenient domain for the

coefficients aGdisc(π).
It is also useful to introduce a manageable domain of induced representations

in Πt,unit

(
G(A)1

)
. We define a set

(22.6) Πt(G) = {πGλ : M ∈ L, π ∈ Πt,disc(M), λ ∈ ia∗M/ia∗G},
equipped with the measure dπGλ for which

(22.7)

∫

Πt(G)

φ(πGλ )dπGλ =
∑

M∈L

|WM
0 ||WG

0 |−1
∑

π∈Πt,disc(M)

∫

ia∗
M
/ia∗

G

φ(πGλ )dλ,

for any reasonable function φ on Πt(G). If π belongs to a set Πt,disc(M), the global
normalizing factors rQ|P (πλ) can be defined by analytic continuation of a product
(21.14). We can therefore form the (G,M)-family {rQ(Λ, πλ)} as in (21.15). The
associated function rM (πλ) = rGM (πλ) is analytic in λ, and satisfies the estimate of
Lemma 21.5(a). We define a coefficient function on Πt(G) by setting

(22.8) aG(πGλ ) = aMdisc(π)rGM (πλ), M ∈ L, π ∈ Πt,disc(M), λ ∈ ia∗M/ia∗G.
It is not hard to show that the right hand side of this expression depends only on
the induced representation πGλ , at least on the complement of a set of measure 0 in
Πt(G).
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For any M ∈ L, we write Π(M) for the union over t ≥ 0 of the sets Πt(M).
The analogues of (22.7) and (22.8) for M provide a measure dπ and a function
aM (π) on Π(M). Since we have now terminated our relationship with the earlier
parameter of truncation, we allow ourselves henceforth to let T stand for a positive
real number. With this notation, we write Π(M)T for the union over t ≤ T of the
sets Πt(M). The refined spectral expansion then takes the form of a limit, as T
approaches infinity, of a sum of integrals over the sets Π(M)T .

We can now formulate the refined trace formula as an identity between two
parallel expansions. We state it as a corollary of the results at the end of §19 and
§21.

Corollary 22.1. For any f ∈ H(G), J(f) has a geometric expansion

(22.9) J(f) = lim
S

∑

M∈L

|WM
0 ||WG

0 |−1
∑

γ∈Γ(M)S

aM (γ)JM (γ, f)

and a spectral expansion

(22.10) J(f) = lim
T

∑

M∈L

|WM
0 ||WG

0 |−1

∫

Π(M)T
aM (π)JM (π, f)dπ.

The geometric expansion (22.9) is essentially that of Corollary 19.3, as we
noted above. The spectral expansion (22.10) is a straightforward reformulation of
the expansion of Corollary 21.7, which is established in the first part of the proof
of Theorem 4.4 of [A14]. One applies the appropriate analogue of the splitting
formula (21.16) to the integral (21.18). This gives an expansion of Jt(f) as a triple
sum over Levi subgroups M ⊂ L ⊂ S and a simple sum over s ∈WL(aM )reg. One
then observes that the sum over M gives rise to a form of the distribution ILt,disc,

for which one can substitute the analogue of (22.5). Having removed the original
sum over M , we are free to write M in place of the index S. The expression (21.18)
becomes a sum over M ∈ L(L) and an integral over λ ∈ ia∗L/ia∗G. The last step
is to rewrite the integral as a double integral over the product of ia∗L/ia

∗
M with

ia∗M/ia
∗
G. The spectral expansion (22.10) then follows from the definitions of the

linear forms JM (π, f), the coefficients aM (π), and the measure dπ. �

Although the refined trace formula of Corollary 22.1 is a considerable improve-
ment over its predecessor (16.1), it still has defects. There are of course the ques-
tions inherent in the two limits. These difficulties were mentioned briefly in §19 (in
the remark following Theorem 19.1) and in §21 (at the end of the section). The
spectral problem has been solved for GL(n), while the geometric problem is open
for any group other than GL(2). Both problems will be relevant to any attempt to
exploit the trace formula of G in isolation. However, they seem to have no bearing
on our ability to compare trace formulas on different groups. We shall not discuss
them further.

Our concern here is with the failure of the linear forms JM (γ, f) and JM (π, f)
to be invariant. There is also the disconcerting fact that they depend on a non-
canonical choice of maximal compact subgroup K of G(A). Of course, the domain
H(G) of the linear forms already depends on K, through its archimedean com-
ponent K∞. However, even when we can extend the linear forms to the larger
domain C∞

c

(
G(A)1

)
, which we can invariably do in the geometric case, they are

still fundamentally dependent on K.
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To see why the lack of invariance is a concern, we recall the Jacquet-Langlands
correspondence described in §3. Their mapping π → π∗ of automorphic repre-
sentations was governed by a correspondence f → f∗ from functions f on the
multiplicative group G(A) of an adelic quaternion algebra, and functions f∗ on
the adelic group G∗(A) attached to G∗ = GL(2). The correspondence of functions
was defined by identifying invariant orbital integrals. It is expected that for any
G, the set of strongly regular invariant orbital integrals spans a dense subspace
of the entire space of invariant distributions. (The same is expected of the set of
irreducible tempered characters.) We might therefore be able to transfer invariant
distributions between suitably related groups. However, we cannot expect to be
able to transfer distributions that are not invariant.

The problem is to transform the identity between the expansions (22.9) and
(22.10) into a more canonical formula, whose terms are invariant distributions. How
can we do this? The first thing to observe is that the weighted orbital integrals in
(22.9) and the weighted characters in (22.10) fail to be invariant in a similar way.
By the construction of §18, the weighted orbital integrals satisfy the relation

JM (γ, fy) =
∑

Q∈F(M)

J
MQ

M (γ, fQ,y),

for any f ∈ C∞
c

(
G(A)1

)
, γ ∈ Γ(M)S , and y ∈ G(A). A minor technical lacuna

arises here when we restrict f to the domain H(G) of the weighted characters, since
the transformation f → fy does not send H(G) to itself. However, the convolutions
Lhf = h ∗ f and Rhf = f ∗ h of f by a fixed function h ∈ H(G) do preserve H(G).
We define a linear form on H(G) to be invariant if for any such h it assumes the
same values at Lhf and Rhf . The relation above is equivalent to a formula

(22.11) JM (γ, Lhf) =
∑

Q∈F(M)

J
MQ

M (γ,RQ,hf),

where

RQ,hf =

∫

G(A)1
h(y)(Ry−1f)Q,hdy

and (Ry−1f)(x) = f(xy), which applies equally well to functions f in either

C∞
c

(
G(A)1

)
or H(G). It is no surprise to discover that the weighted characters sat-

isfy a similar formula, since we know that the original distributions Jo(f) and Jχ(f)
satisfy the parallel variance formulas (16.2) and (16.3). It follows from Lemma 6.2
of [A15] that

(22.12) JM (π, Lhf) =
∑

Q∈F(M)

J
MQ

M (π,RQ,hf),

for any f ∈ H(G), π ∈ Π(M) and h ∈ H(G).
We have just seen that the two families of linear forms in the trace formula

satisfy parallel variance formulas. It seems entirely plausible that we could con-
struct an invariant distribution by taking a typical noninvariant distribution from
one of the two families, and subtracting from it some combination of noninvariant
distributions from the other family. Two questions arise. What would be the pre-
cise mechanics of the process? At a more philosophical level, should we subtract
some combination of weighted characters from a given weighted orbital integral, or
should we start with a weighted character and subtract from it some combination
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of weighted orbital integrals? We shall discuss the second question in the rest of
this section, leaving the first question for the beginning of the next section.

Consider the example that G = GL(2), and M is the minimal Levi subgroup
GL(1) × GL(1) of the diagonal matrices. Suppose that f ∈ H(G), and that S
is a large finite set of valuations. We can then identify f with a function on
H
(
G(FS)1

)
. The weighted orbital integral γ → JM (γ, f) is a compactly supported,

locally integrable function on the group

M(FS)1 = {(a, b) ∈ FS × FS : |a| = |b| = 1}.
The weighted character π → JM (π, f) is a Schwartz function on the group
Πunit

(
M(FS)1

)
of unitary characters on M(FS)1. We could form the distribution

(22.13) JM (γ, f)−
∫

Πunit(M(FS)1)

π(γ−1)JM (π, f)dπ, γ ∈M(FS)1,

by modifying the weighted orbital integral. We could also form the distribution

(22.14) JM (π, f)−
∫

M(FS)1
π(γ)JM (γ, f)dγ, π ∈ Πunit

(
M(FS)1

)
,

by modifying the weighted character. According to the variance formulas above,
each of these distributions is invariant. Which one should we take?

The terms in the trace formula for G = GL(2) that are not invariant are the
ones attached to our minimal Levi subgroup M . They can be written as

1

2
vol
(
M(oS)\M(FS)1

) ∑

γ∈M(oS)

JM (γ, f)

and
1

2

∑

π∈Π(M(oS)\M(FS)1)

JM (π, f)

respectively, for the discrete, cocompact subring

oS = {γ ∈ F : |γ|v ≤ 1, v 6∈ S}
of FS . Can we apply the Poisson summation formula to either of these expressions?
Such an application to the first expression would yield an invariant trace formula
for GL(2) with terms of the form (22.14). An application of Poisson summation
to the second expression would yield an invariant trace formula with terms of the
form (22.13).

We need to be careful. Continuing with the example G = GL(2), suppose

that f̃ lies in the Hecke algebra H
(
G(FS)

)
on G(FS), and consider JM (γ, f̃) and

JM (π, f̃) as functions on the larger groups M(FS) and Πunit

(
M(FS)

)
respectively.

The function JM (γ, f̃) is still compactly supported. However, it has singularities
at points γ whose eigenvalues at some place v ∈ S are equal. Indeed, in the
example v = R examined in §18, we saw that the weighted orbital integral had a
logarithmic singularity. If the logarithmic term is removed, the resulting function
of γ is bounded, but it still fails to be smooth. Langlands showed that the function
was nevertheless well enough behaved to be able to apply the Poisson summation
formula. He made the trace formula for GL(2) invariant in this way, using the
distributions (22.14) in his proof of base change for GL(2) [Lan9]. A particular
advantage of this approach is a formulation of the contribution of weighted orbital
integrals in terms of a continuous spectral variable, which can be separated from the
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discrete spectrum. For groups of higher rank, however, the singularities of weighted
orbital integrals seem to be quite unmanageable.

The other function JM (π, f̃) belongs to the Schwartz space on Πunit

(
M(FS)

)
,

but it need not lie in the Paley-Wiener space. This is because the operator-valued
weight factor

RM (π, P ), π ∈ Πunit

(
M(FS)

)
,

is a rational function in the continuous parameters of π, which acquires poles in the

complex domain Π
(
M(FS)

)
. Therefore JM (π, f̃) is not the Fourier transform of a

compactly supported function on M(FS). This again does not preclude applying
Poisson summation in the case under consideration. However, it does not seem to
bode well for higher rank.

What is one to do? I would argue that it is more natural in general to work with
the geometric invariant distributions (22.13) than with their spectral counterparts
(22.14). Weighted characters satisfy splitting formulas analogous to (18.7). In the
example under consideration, the formula is

JM (π, f̃) =
∑

v∈S

(
JM (πv, fv) ·

∏

w 6=v

fw,G(πw)
)
,

where π =
⊗
v∈S

πv and f̃ =
∏
v∈S

fv, and JM (πv, fv) is the local weighted character

defined by the obvious analogue of (22.3). It follows from this that the Fourier
transform

J∧
M (γ, f̃) =

∫

Πunit(M(FS))

π∨(γ)JM (π, f̃)dπ, γ ∈M(FS),

of JM (π, f̃) is equal to a sum of products

J∧
M (γ, f̃) =

∑

v∈S

(
J∧
M (γv, fv) ·

∏

w 6=v

fw,G(γw)
)
,

for γ =
∏
v∈S

γv. The invariant orbital integrals fw,G(γw) are all compactly sup-

ported, even though the functions J∧
M (γv, fv) are not. Remember that we are

supposed to take the Poisson summation formula for the diagonal subgroup

M(FS)1 =
{
γ ∈M(FS) : HM (γ) =

∑

v∈S

HM (γv) = 0
}

of M(FS). The intersection of this subgroup with any set that is a product of a
noncompact subset of M(Fv) with compact subsets of each of the complementary
groups M(Fw) is compact. It follows that if f belongs to H

(
G(FS)1

)
, the weighted

character

JM (π, f) =

∫

ia∗
M

JM (πλ, f̃)dλ, π ∈ Πunit

(
M(FS)1

)
,

that actually occurs in the trace formula belongs to the Paley-Wiener space on
Πunit

(
M(FS)1

)
after all.

Suppose now that G is arbitrary. It turns out that the phenomenon we have
just described for GL(2) holds in general. The underlying reason again is the fact
that the weighted characters occur on the spectral side in the form of integrals
(22.4), rather than as a discrete sum of linear forms (22.3). Otherwise said, the fine
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spectral expansion of Corollary 21.7 is composed of continuous integrals (21.18),
while the fine geometric expansion of Corollary 19.3 is given by a discrete sum.

What if it had been the other way around? What if the weighted orbital
integrals had occurred on the geometric side in the form of integrals

∫

A+
M,∞

JM (γa, f̃)da, f ∈ H(G), γ ∈ Γ(M)S ,

over the subgroup A+
M,∞ of M(A), with f̃ now being a function in H

(
G(A)

)
such

that

f(x) =

∫

A+
M,∞

f̃(xz)dz,

while the weighted characters had occurred as a discrete sum of distributions (22.4)?
It would then have been more natural to work with the general analogues of the
spectral invariant distributions (22.14), rather than their geometric counterparts
(22.13). Were this the case, we might want to identify f ∈ H(G) with a function
on the quotient A+

G,∞\G(A). We would then identify Π(M) with a family of rep-

resentations of A+
M,∞\M(A). In the example G = GL(2) above, this would lead to

an application of the Poisson summation formula to the discrete image of M(oS)
in A+

M,∞\M(A), rather than to the discrete subgroup M(oS) of M(A)1.
These questions are not completely hypothetical. In the local trace formula

[A19], which we do not have space to discuss here, weighted characters and weighted
orbital integrals both occur continuously. One could therefore make the local trace
formula invariant in one of two natural ways. One could equally well work with
the general analogues of either of the two families (22.13) or (22.14) of invariant
distributions.

23. The invariant trace formula

We have settled on trying to make the trace formula invariant by adding com-
binations of weighted characters to a given weighted orbital integral. We can now
focus on the mechanics of the process.

For flexibility, we take S to be any finite set of valuations of F . The trace
formula applies to the case that S is large, and contains Sram. In the example of
G = GL(2) in §22, the correction term in the invariant distribution (22.13) is a
Fourier transform of the function

JM (π, f), π ∈ Πunit

(
M(FS)

)
.

In the general case, M of course need not be abelian. The appropriate analogue of
the abelian dual group is not the set Πunit

(
M(FS)

)
of all unitary representations.

It is rather the subset Πtemp

(
M(FS)

)
of representations π ∈ Πunit

(
M(FS)

)
that

are tempered, in the sense that the distributional character f → fG(π) on G(FS)
extends to a continuous linear form on Harish-Chandra’s Schwartz space C

(
G(FS)

)
.

Tempered representations are the spectral ingredients of Harish-Chandra’s general
theory of local harmonic analysis. They can be characterized as irreducible con-
stituents of representations obtained by unitary induction from discrete series of
Levi subgroups.

The tempered characters provide a mapping

f −→ fG(π), f ∈ H
(
G(FS)

)
, π ∈ Πtemp

(
G(FS)

)
,
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from H
(
G(FS)

)
onto a space I

(
G(FS)

)
of complex-valued functions on

Πtemp

(
G(FS)

)
. The image of this mapping has been characterized in terms of the in-

ternal parameters of Πtemp

(
G(FS)

)
([CD], [BDK]). Roughly speaking, I

(
G(FS)

)

is the space of all functions in Πtemp

(
G(FS)

)
that have finite support in all discrete

parameters, and lie in the relevant Paley-Wiener space in each continuous param-
eter. Consider a linear form i on I

(
G(FS)

)
that is continuous with respect to the

natural topology. The corresponding linear form

f −→ i(fG), f ∈ H
(
G(FS)

)
,

on H
(
G(FS)

)
is both continuous and invariant. Conversely, suppose that I is any

continuous, invariant linear form on H
(
G(FS)

)
. We say that I is supported on

characters if I(f) = 0 for any f ∈ H
(
G(FS)

)
with fG = 0. If this is so, there is a

continuous linear form Î on I
(
G(FS)

)
such that

Î(fG) = I(f), f ∈ H
(
G(FS)

)
.

We refer to Î as the invariant Fourier transform of I. It is believed that every
continuous, invariant linear form on I

(
G(FS)

)
is supported on characters. This

property is known to hold in many cases, but I do not have a comprehensive refer-
ence. The point is actually not so important here, since in making the trace formula
invariant, one can show directly that the relevant invariant forms are supported on
characters.

We want to apply these notions to Levi subgroups M of G. In particular, we

use the associated embedding Î → I of distributions as a substitute for the Fourier
transform of functions in (22.13). However, we have first to take care of the problem
mentioned in the last section. Stated in the language of this section, the problem
is that the function

π −→ JM (π, f), π ∈ Πtemp

(
M(FS)

)
,

attached to any f ∈ H
(
G(FS)

)
does not generally lie in I

(
M(FS)

)
. To deal with

it, we introduce a variant of the space I
(
M(FS)

)
.

We shall say that a set S has the closure property if it either contains an
archimedean valuation v, or contains only nonarchimedean valuations with a com-
mon residual characteristic. We assume until further notice that S has this property.
The image

aG,S = HG

(
G(FS)

)

of G(FS) in aG is then a closed subgroup of aG. It equals aG if S contains an
archimedean place, and is a lattice in aG otherwise. In spectral terms, the action
π → πλ of ia∗G on Πtemp

(
G(FS)

)
lifts to the quotient

ia∗G,S = i(a∗G/a
∨
G,S), a∨G,S = Hom(aG,S, 2πZ),

of ia∗G. If φ belongs to I
(
G(FS)

)
, we set

φ(π, Z) =

∫

ia∗
G,S

φ(πλ)e
−λ(Z)dλ π ∈ Πtemp

(
G(FS)

)
, Z ∈ aG,S.

This allows us to identify I
(
G(FS)

)
with a space of functions φ on Πtemp

(
G(FS)

)
×

aG,S such that

φ(πλ, Z) = eλ(Z)φ(π, Z).
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If f belongs to H
(
G(FS)

)
, we have

fG(π, Z) = tr
(
π(fZ)

)
= tr

( ∫

G(FS)Z
f(x)π(x)dx

)
,

where fZ is the restriction of f to the closed subset

G(FS)Z = {x ∈ G(FS) : HG(x) = Z}
of G(FS). In particular, fG(π, 0) is the character of the restriction of π to the
subgroup G(FS)1 of G(FS).

We use the interpretation of I
(
G(FS)

)
as a space of functions on G(FS)×aG,S

to define a larger space Iac
(
G(FS)

)
. It is clear that

I
(
G(FS)

)
= lim−→

Γ

I
(
G(FS)

)
Γ
,

where Γ ranges over finite sets of irreducible representations of the compact group
KS =

∏
v∈S

Kv, and I
(
G(FS)

)
Γ

is the space of functions φ ∈ I
(
G(FS)

)
such that

φ(π, Z) vanishes for any π ∈ Πtemp

(
G(FS)

)
whose restriction to KS does not con-

tain some representation in Γ. For any Γ, we define Iac
(
G(FS)

)
Γ

to be the space of

functions φ on G(FS)×aG,S with the property that for any function b ∈ C∞
c (aG,S),

the product

φ(π, Z)b(Z), π ∈ Πtemp

(
G(FS)

)
, Z ∈ aG,S,

lies in I
(
G(FS)

)
Γ
. We then set

Iac
(
G(FS)

)
= lim−→

Γ

Iac
(
G(FS)

)
Γ
.

It is also clear that

H
(
G(FS)

)
= lim−→

Γ

H
(
G(FS)

)
Γ
,

where H
(
G(FS)

)
Γ

is the subspace of functions in H
(
G(FS)

)
that transform on each

side under KS according to representations in Γ. We define Hac

(
G(FS)

)
Γ

to be the
space of functions f on G(FS) such that each product

f(x)b
(
HG(x)

)
, x ∈ G(FS), b ∈ C∞

c (aG,S),

belongs to H
(
G(FS)

)
Γ
. We then set

Hac

(
G(FS)

)
= lim−→

Γ

Hac

(
G(FS)

)
Γ
.

The functions f ∈ Hac

(
G(FS)

)
thus have “almost compact support”, in the sense

that fZ has compact support for any Z ∈ aG,S. If f belongs to Hac

(
G(FS)

)
, we

set

fG(π, Z) = tr
(
π(fZ)

)
, π ∈ Πtemp

(
G(FS)

)
, Z ∈ aG,S.

Then f → fG is a continuous linear mapping from Hac

(
G(FS)

)
onto Iac

(
G(FS)

)
.

The mapping I → Î can obviously be extended to an isomorphism from the space
of continuous linear forms on Hac

(
G(FS)

)
that are supported on characters, and

the space of continuous linear forms on Iac
(
G(FS)

)
.
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Having completed these preliminary remarks, we are now in a position to in-
terpret the set of weighted characters attached to M as a transform of functions.
Suppose that f ∈ Hac

(
G(FS)

)
. We first attach a general meromorphic function

(23.1) JM (πλ, f
Z) = tr

(
RM (πλ, P )IP (πλ, f

Z)
)
, λ ∈ a∗M,C,

to any M ∈ L, π ∈ Π
(
M(FS)

)
and Z ∈ aG,S. We can then attach a natural linear

form JM (π,X, f) to any X ∈ aM,S. For example, if JM (πλ, f
Z) is analytic for

λ ∈ ia∗M , we set

(23.2) JM (π,X, f) =

∫

ia∗
M,S

/ia∗
G,S

JM (πλ, f
Z)e−λ(X)dλ,

where Z is the image of X in aG,S. (In general, one must take a linear combination
of integrals over contours εP + ia∗M,S/ia

∗
G,S, for groups P ∈ P(M) and small points

εP ∈ (a∗M )+P . See [A15, §7].) The premise underlying (23.2) holds if π is unitary. If
in addition, S ⊃ Sram andX = 0, (23.2) reduces to the earlier definition (22.4). Our
transform is given by the special case that π belongs to the subset Πtemp

(
M(FS)

)

of Πunit

(
M(FS)

)
. We define φM (f) to be the function

(π,X) −→ φM (f, π,X) = JM (π,X, f), π ∈ Πtemp

(
M(FS)

)
, X ∈ aM,S ,

on Πtemp

(
M(FS)

)
× aM,S .

Proposition 23.1. The mapping

f −→ φM (f), f ∈ Hac

(
G(FS)

)
,

is a continuous linear transformation from Hac

(
G(FS)

)
to Iac

(
M(FS)

)
.

This is Theorem 12.1 of [A15]. The proof in [A15] is based on a study of the
residues of the meromorphic functions

λ −→ JM (πλ, f
Z), λ ∈ a∗M,C, π ∈ Πtemp

(
M(FS)

)
.

A somewhat simpler proof is implicit in the results of [A13]. (See the remark on
p. 370 of [A13].) It is based on the splitting and descent formulas for the functions
(23.1), which are parallel to (18.7) and (18.8), and are consequences of Lemmas
17.5 and 17.6. These formulas in turn yield splitting and descent formulas for the
linear forms (23.2), and consequently, for the functions φM (f, π,X). They reduce
the problem to the special case that S contains one element v, M is replaced by a
Levi subgroup Mv over Fv, and π is replaced by a tempered representation πv of
Mv(Fv) that is not properly induced. The family of such representations can be
parametrized by a set that is discrete modulo the action of the connected group
ia∗Mv,Fv

= ia∗Mv,{v}
. The proposition can then be established from the definition of

Iac
(
M(FS)

)
. �

It is the mappings φM that allow us to transform the various noninvariant
linear forms to invariant forms. We state the construction as a pair of parallel
theorems, to be followed by an extended series of remarks. The first theorem
describes the general analogues of the invariant linear forms (22.13). The second
theorem describes associated spectral objects. Both theorems apply to a fixed finite
set of valuations S with the closure property, and a Levi subgroup M ∈ L.
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Theorem 23.2. There are invariant linear forms

IM (γ, f) = IGM (γ, f), γ ∈M(FS), f ∈ Hac

(
G(FS)

)
,

that are supported on characters, and satisfy

(23.3) IM (γ, f) = JM (γ, f)−
∑

L∈L(M)
L 6=G

ÎLM
(
γ, φL(f)

)
.

Theorem 23.3. There are invariant linear forms

IM (π,X, f) = IGM (π,X, f), π ∈ Π
(
M(FS)

)
, X ∈ aM,S , f ∈ Hac

(
G(FS)

)
,

that are supported on characters, and satisfy

(23.4) IM (π,X, f) = JM (π,X, f)−
∑

L∈L(M)
L 6=G

ÎLM
(
π,X, φL(f)

)
.

Remarks. 1. In the special case that G equals GL(2), M is minimal, and S
contains the set Sram = S∞, the right hand side of (23.3) reduces to the original
expression (22.13). For in this case, the value of φM (π,X, f) at X = 0 equals the
function JM (π, f) in (22.13). Since the linear form IMM (γ) in this case is just the

evaluation map of a function on M(FS)1 at γ, ÎMM
(
γ, φM (f)

)
reduces to the integral

in (23.13) by the Fourier inversion formula for the abelian group M(FS)1.
2. The formulas (23.3) and (23.4) amount to inductive definitions of IM (γ, f)

and IM (π,X, f). We need to know that these linear forms are supported on char-
acters in order that the summands on the right hand sides of the two formulas be
defined.

3. The theorems give nothing new in the case that M = G and X = Z. For it
follows immediately from the definitions that

IG(γ, f) = JG(γ, f) = fG(γ)

and

IG(π, Z, f) = JG(π, Z, f) = fG(π, Z).

4. The linear forms IM (γ, f) of Theorem 23.2 are really the primary ob-
jects. We see inductively from (23.3) that IM (γ, f) depends only on fZ , where
Z = HG(γ). In particular, IM (γ, f) is determined by its restriction to the subspace
H
(
G(FS)

)
ofHac

(
G(FS)

)
. One can in fact show that as a continuous linear form on

H
(
G(FS)

)
, IM (γ, f) extends continuously to the Schwartz space C

(
G(FS)

)
[A21].

In other words, IM (γ, f) is a tempered distribution. It has an independent role in
local harmonic analysis.

5. The linear forms IM (π,X, f) of Theorem 23.3 are secondary objects, but
they are still interesting. We see inductively from (23.4) that IM (π,X, f) depends
only on fZ , where Z is the image of X in aG,S, so IM (π,X, f) is also determined
by its restriction to H

(
G(FS)

)
. However, it is not a tempered distribution. If π is

tempered,

JM (π,X, f) = φM (f, π,X) = ÎMM
(
π,X, φM (f)

)
,

by definition. It follows inductively from (23.4) that

(23.5) IM (π,X, f) =

{
fG(π, Z), if M = G,

0, otherwise,
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in this case. But if π is nontempered, IM (π,X, f) is considerably more complicated.
Suppose for example that G is semisimple, M is maximal, F = Q, S = {v∞}, and
π = σµ, for σ ∈ Πtemp

(
M(R)

)
and µ ∈ a∗M,C. We assume that Re(µ) is in general

position. Then

JM (π,X, f) =

∫

ia∗
M

JM (σµ+λ, f)e−λ(X)dλ,

while

φM (f, π,X) = eµ(X)

∫

ia∗
M

JM (σλ, f)e−λ(X)dλ.

It follows that IM (π,X, f) is the finite sum of residues
∑

η

Res
Λ=η

(
JM (σΛ, f)e(µ−Λ)(X)

)
,

obtained in deforming one contour of integration to the other. In general, IM (π,X, f)

is a more elaborate combination of residues of general functions JL2

L1
(σΛ, f).

6. The linear forms JM (γ, f) and JM (π,X, f) are strongly dependent on the
choice of maximal compact subgroup KS =

∏
v∈S

Kv of G(FS). However, it turns

out that the invariant forms IM (γ, f) and IM (π,X, f) are independent of KS. The
proof of this fact is closely related to that of invariance, which we will discuss
presently. (See [A24, Lemma 3.4].) The invariant linear forms are thus canonical
objects, even though their construction is quite indirect.

7. The trace formula concerns the case that S ⊃ Sram, γ ∈ M(FS)1, and
X = 0. In this case, the summands corresponding to L in (23.3) and (23.4) depend
only on the image of φL(f) in the invariant Hecke algebra I

(
L(FS)1

)
on L(FS)1.

We can therefore take f to be a function in H
(
G(FS)1

)
, and treat φM as the

mapping from H
(
G(FS)1

)
to I

(
L(FS)1

)
implicit in Proposition 23.1. In fact, since

these spaces both embed in the corresponding adelic spaces, we can take f to be a
function in the space H(G) = H

(
G(A)1

)
, and φM to be a mapping from H(G) to

the adelic space I(M) = I
(
M(A)1

)
. This is of course the setting of the invariant

trace formula. Recall that on the geometric side, γ represents a class in the subset
Γ(M)S of conjugacy classes in M(FS). We write

(23.6) IM (γ, f) = IM (γ, fS)

as before, where fS is the restriction of f to the subgroup G(FS)1 of G(A)1. On
the spectral side, π is a representation in the subset Π(M) of Πunit

(
M(A)1

)
. In

this case, we write

(23.7) IM (π, f) = IM (πS , 0, fS),

where S ⊃ Sram is any finite set outside of which both f and π are unramified, and
πS ∈ Πunit

(
M(FS)1

)
is the M(FS)1-component of π, or rather a representative in

Πunit

(
M(A)

)
of that component.

8. The distributions IM (γ, f) satisfy splitting and descent formulas. We have

(23.8) IM (γ, f) =
∑

L1,L2∈L(M)

dGM (L1, L2)Î
L1

M (γ1, f1,L1)Î
L2

M (γ2, f2,L2),

and

(23.9) IM (γMv , fv) =
∑

Lv∈L(Mv)

dGMv
(M,Lv)Î

Lv
Mv

(γv, fv,Lv),
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under the respective conditions of (18.7) and (18.8). (In (23.8), we of course have
also to ask each of the two subsets S1 and S2 of S satisfy the closure property.) The
formulas are established from the inductive definition (23.3), the formulas (18.7)
and (18.8), and corresponding formulas for the functions JM (πλ, f). (See [A13,
Proposition 9.1 and Corollary 8.2]. If f belongs to H

(
G(FS)

)
and L ∈ L(M), fL

is the function

π −→ fL(π) = fG(πG), π ∈ Πtemp

(
L(FS)

)
,

in I
(
L(FS)

)
. It is the image in I

(
L(FS)

)
of any of the functions fQ ∈ H

(
G(FS)

)
,

but is independent of the choice of Q ∈ P(L).) The linear forms JM (π,X, f) satisfy
their own splitting and descent formulas. Since these are slightly more complicated
to state, we simply refer the reader to [A13, Proposition 9.4 and Corollary 8.5].
One often needs to apply the splitting and descent formulas to the linear forms
(23.6) and (23.7) that are relevant to the trace formula. This is why one has to
formulate the definitions in terms of spacesHac

(
G(FS)

)
and Iac

(
L(FS)

)
, for general

sets S, even though the objects (23.6) and (23.7) can be constructed in terms of
the simpler spaces H(G) and I(L).

The two theorems are really just definitions, apart from the assertions that
the linear forms are supported on characters. These assertions can be established
globally, by exploiting the invariant trace formula of which they are the terms. In
so doing, one discovers relations between the linear forms (23.3) and (23.4) that
are essential for comparing traces on different groups. We shall therefore state the
invariant trace formula as a third theorem, which is proved at the same time as the
other two.

The invariant trace formula is completely parallel to the refined noninvariant
formula of Corollary 22.1. It consists of two different expansions of a linear form
I(f) = IG(f) on H(G) that is the invariant analogue of the original form J(f). We
assume inductively that for any L ∈ L with L 6= G, IL has been defined, and is
supported on characters. We can then define I(f) inductively in terms of J(f) by
setting

(23.10) I(f) = J(f)−
∑

L∈L
L 6=G

|WL
0 ||WG

0 |−1ÎL
(
φL(f)

)
, f ∈ H(G).

The (refined) invariant trace formula is then stated as follows.

Theorem 23.4. For any f ∈ H(G), I(f) has a geometric expansion

(23.11) I(f) = lim
S

∑

M∈L

|WM
0 ||WG

0 |−1
∑

γ∈Γ(M)S

aM (γ)IM (γ, f),

and a spectral expansion

(23.12) I(f) = lim
T

∑

M∈S

|WM
0 ||WG

0 |−1

∫

Π(M)T
aM (π)IM (π, f)dπ.

Remarks. 9. The limit in (23.11) stabilizes for large S. Moreover, for any
such S, the corresponding sums over γ can be taken over finite sets. One can in
fact be more precise. Suppose that f belongs to the subspace H

(
G(FV )1

)
of H(G),

for some finite set V ⊃ Sram, and is supported on a compact subset ∆ of G(A)1.
Then the double sum in (23.11) is independent of S, so long as S is large in a
sense that depends only on V and ∆. Moreover, for any such S, each sum over
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γ can be taken over a finite set that depends only on V and ∆. These facts can
be established by induction from the corresponding properties of the noninvariant
geometric expansion (22.9). Alternatively, they can be established directly from
[A14, Lemma 3.2], as on p. 513 of [A14].

10. For any T , the integral in (23.12) converges absolutely. This follows by
induction from the corresponding property of the noninvariant spectral expansion
(22.10). There is a weak quantitative estimate for the convergence of the limit,
which is to say the convergence of the sum

I(f) =
∑

t≥0

It(f)

of the linear forms

It(f) = IGt (f) =
∑

M∈L

|WM
0 ||WG

0 |−1

∫

Πt(M)

aM (π)IM (π, f)dπ,

in terms of the multipliers of §20. For any r ≥ 0, set

h∗u(r, T ) = {ν ∈ h∗u : ‖Re(ν)‖ ≤ r, ‖Im ν‖ ≥ T },
where h∗u is a subset of h∗C/ia

∗
G that is defined as on p. 536 of [A14], and contains

the infinitesimal characters of all unitary representations of G(F∞)1. Then for any
f ∈ H(G), there are positive constants C, k and r with the following property. For
any positive numbers T and N , and any α in the subspace

C∞
N (h1)W = {α ∈ C∞

c (h1)W : ‖suppα‖ ≤ N}
of E(h1)W , the estimate

(23.13)
∑

t>T

|It(fα)| ≤ CekT sup
ν∈h∗

u(r,T )

(
|α̂(ν)|

)

holds. (See [A14, Lemma 6.3].) This “weak multiplier estimate” serves as a sub-
stitute for the absolute convergence of the spectral expansion. It is critical for
applications.

As we noted above, the three theorems are proved together. We assume induc-
tively that they all hold if G is replaced by a proper Levi subgroup L.

It is easy to establish that the various linear forms are invariant. Fix S and
M as in the first two theorems, and let h be any function in H

(
G(FS)

)
. It follows

easily from (22.12) that

φL(Lhf) =
∑

Q∈F(L)

φ
MQ

L (RQ,hf), f ∈ Hac

(
G(FS)

)
,

for any L ∈ L(M). It then follows from (22.11) and the definition (23.3) that

IM (γ, Lhf)

=
∑

Q∈F(M)

J
MQ

M (γ,RQ,hf)−
∑

L∈L(M)
L 6=G

∑

Q∈F(L)

ÎLM
(
γ, φ

MQ

L (RQ,hf)
)

=
∑

Q∈F(M)

(
J
MQ

M (γ,RQ,hf)−
∑

L∈L
MQ (M)
L 6=G

ÎLM
(
γ, φ

MQ

L (RQ,hf)
))
,
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for any element γ ∈M(FS). If Q 6= G, the associated summand can be written

J
MQ

M (γ,RQ,hf)−
∑

L∈LMQ(M)

ÎLM
(
γ, φ

MQ

L (RQ,hf)
)

=
(
J
MQ

M (γ,RQ,hf)−
∑

L∈L
MQ (M)

L 6=MQ

ÎLM
(
γ, φ

MQ

L (RQ,hf)
))
− IMQ

M (γ,RQ,hf).

It therefore vanishes by (23.3). If Q = G, the corresponding summand equals

IGM (γ,RG,hf) = IM (γ,Rhf),

again by (23.3). Therefore IM (γ, Lhf) equals IM (γ,Rhf). It follows that IM (γ, ·)
is an invariant distribution. Similarly, IM (π,X, ·) is an invariant linear form for
any π ∈ Π

(
M(FS)

)
and X ∈ aM,S. A minor variant of the argument establishes

that the linear form I in (23.10) is invariant as well.
It is also easy to establish the required expansions of Theorem 23.4. To derive

the geometric expansion (23.11), we apply what we already know to the terms on
the right hand side of the definition (23.10). That is, we substitute the geomet-
ric expansion (22.9) for J(f), and we apply (23.11) inductively to the summand

ÎL
(
φL(f)

)
attached to any L 6= G. We see that I(f) equals the difference between

the expressions

lim
S

∑

M∈L

|WM
0 ||WG

0 |−1
∑

γ∈Γ(M)S

aM (γ)JM (γ, f)

and

lim
S

∑

L 6=G

|WL
0 ||WG

0 |−1
∑

M∈LL

|WM
0 ||WL

0 |−1
∑

γ∈Γ(M)S

aM (γ)ÎLM
(
γ, φL(f)

)
.

The second expression can be written as

lim
S

∑

M∈L

|WM
0 ||WG

0 |−1
∑

γ∈Γ(M)S

aM (γ)
∑

L∈L(M)
L 6=G

ÎLM
(
γ, φL(f)

)
.

Therefore I(f) equals

lim
S

∑

M

|WM
0 ||WG

0 |−1
∑

γ∈Γ(M)S

aM (γ)
(
JM (γ, f)−

∑

L∈L(M)
L 6=G

ÎLM
(
γ, φL(f)

))

= lim
S

∑

M

|WM
0 ||WG

0 |−1
∑

γ∈Γ(M)S

aM (γ)IM (γ, f),

by (23.3). This is the required geometric expansion (23.11). An identical argument
yields the spectral expansion (23.12).

We have established the required expansions of Theorem 23.4. We have also
shown that the terms in the expansions are invariant linear forms. The identity
between the two expansions can thus be regarded as an invariant trace formula. If
we knew that any invariant linear form was supported on characters, the inductive
definitions of Theorem 23.2 and Theorem 23.3 would be complete, and we would be
finished. Lacking such knowledge, we use the invariant trace formula to establish
the property directly for the specific invariant linear forms in question.
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Proposition 23.5. The linear forms of Theorem 23.3 can be expressed in
terms of those of Theorem 23.2. In particular, if the linear forms {IM (γ)} are
all supported on characters, so are the linear forms {IM (π,X)}.

The first assertion of the proposition might be more informative if it contained
the phrase “in principle”, since the algorithm is quite complicated. It is based on
the fact that the various residues that determine the linear forms {IM (π,X)} are
themselves determined by the asymptotic values in γ of the linear forms {IM (γ)}.
We shall be content to illustrate the idea in a very special case.

Suppose that G = SL(2), and that M is minimal. Since M is also maximal, the
observations of Remark 5 above are relevant. Assume then that F = Q, S = {v∞},
and π = σµ, as earlier. For simplicity, we assume also that f ∈ H

(
G(R)

)
is invariant

under the central element

(
−1 0
0 −1

)
, and that σ is the trivial representation of

M(R). It then follows from Remark 5 that for any X ∈ aM , IM (π,X, f) equals the
sum of residues of the function

(23.14) Λ −→
(
JM (σΛ, f)e(µ−Λ)(X)

)

obtained in deforming a contour of integration from (µ+ ia∗M ) to ia∗M .
On the other hand,

IM (γ, f) = JM (γ, f)− ÎMM
(
γ, φM (f)

)

= JM (γ, f)−
∫

ia∗
M

JM (σλ, f)e−λ(HM (γ))dλ,

for any γ ∈M(R). Given X , we choose γ so that HM (γ) = X . Since f is compactly
supported, JM (γ, f) is compactly supported inX . However, the integral over ia∗M is
not generally compactly supported in X , since its inverse transform λ→ JM (σλ, f)
can have poles in the complex domain. Therefore IM (γ, f) need not be compactly
supported in X . In fact, it is the failure of IM (γ, f) to have compact support that
determines the residues of the function (23.14). For if we apply the proof of the
classical Paley-Wiener theorem to the integral over ia∗M , we see that the family of
functions

γ −→ IM (γ1γ, f), γ1 ∈ C,
in which C is a suitable compact subset of M(R) and γ is large relative to C
and f , spans a finite dimensional vector space. Moreover, it is easy to see that
this space is canonically isomorphic to the space of functions of X spanned by the
space of residues of (23.14). It follows that the distributions IM (γ, f) determine the
residues (23.14), and hence the linear forms IM (π,X, f). In particular, if IM (γ, f)
vanishes for all such γ, then IM (π,X, f) vanishes for all X . Applied to the case
that fG = 0, this gives the second assertion of the proposition in the special case
under consideration.

For general G and M , the ideas are similar, but the details are considerably
more elaborate. When the dimension of aM/aG is greater than 1, we have to be
concerned with partial residues and with functions whose support is compact in
various directions. These are best handled with the supplementary mappings and
linear forms of [A13, §4]. The first assertion of the proposition is implicit in the
results of [A13, §4–5]. The second assertion is part of Theorem 6.1 of [A13]. �
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It remains to show that the distributions of Theorem 23.2 are supported on
characters. From the splitting formula (23.8), one sees easily that it is enough
to treat the case that S contains one valuation v. We therefore fix a function
fv ∈ H

(
G(Fv)

)
with fv,G = 0. The problem is to show that IM (γv, fv) = 0, for any

M ∈ L and γv ∈ M(Fv). How can we use the invariant trace formula to do this?
We begin by choosing an arbitrary function fv ∈ H

(
G(Av)

)
and letting f be the

restriction of fvf
v to G(A)1. We have then to isolate the corresponding geometric

expansion (23.11) in the invariant trace formula. But how is this possible, when
our control of the spectral side provided by Proposition 23.5 requires an a priori
knowledge of the terms on the geometric side?

The point is that the terms on the spectral side are not arbitrary members
of the family defined by Theorem 23.3. They are of the form IM (π, 0, f), where
S ⊃ Sram is large enough that f belongs toH

(
G(FS)1

)
, and π ∈ Πunit

(
M(FS)

)
. We

need to show only that these terms vanish. Combining an induction argument with
the splitting formula [A13, Proposition 9.4], one reduces the problem to showing
that IM (πv, Xv, fv) vanishes for any πv ∈ Πunit

(
M(Fv)

)
and Xv ∈ aMv,Fv . The

fact that πv is unitary is critical. The representation need not be tempered, but
within the Grothendieck group it can be expressed as an integral linear combination
of induced (standard) representations

σMv,Λ, σv ∈ Πtemp(Mv), Λ ∈ (aMMv
)∗,

for Levi subgroups Mv of M over Fv. If Mv = M , Λ equals 0, and

IM (σMv,Λ, Xv, fv) = IM (σv , Xv, fv) = 0,

by (23.5). If Mv 6= M , we use the descent formula [A13, Corollary 8.5] to write
IM (σMv,Λ, Xv, fv) in terms of linear forms

ÎLvMv
(σv,Λ, Yv, fv,Lv), Yv ∈ aMv,Fv ,

for Levi subgroups Lv ∈ L(Mv) with Lv 6= G. It follows from Proposition 23.5
and our induction hypotheses that IM (σMv,Λ, Xv, fv) again equals 0. Therefore

IM (πv, Xv, fv) vanishes, and so therefore do the integrands on the spectral side.
We conclude that for the given function f , the spectral expansion (23.12) of

I(f) vanishes. Therefore the geometric expansion (23.11) of I(f) also vanishes. In
dealing with the distributions IM (γ, f) in this expansion, we are free to apply the
splitting formula (23.8) recursively to the valuations v ∈ S. If L ∈ L(M) is a proper

Levi subgroup of G, the induction hypotheses imply that ÎLM (γv, fv) vanishes for
any element γv ∈M(Fv). It follows that

IM (γ, f) = IM (γv, fv)f
v
M (γv), γ ∈ Γ(M)S ,

where γ = γvγ
v is the decomposition of γ relative to the product

M(FS) = M(Fv)×M(F vS ).

Therefore

(23.15) lim
S

∑

M∈L

|WM
0 ||WG

0 |−1
∑

γ∈Γ(M)S

aM (γ)IM (γv, fv)f
v
M (γv) = 0.

We are attempting to show that IM (γv, fv) = 0, for any M ∈ L and
γv ∈ M(Fv). The definition (18.12) reduces the problem to the case that Mγv =
Gγv . A further reduction based on invariant orbital integrals on M(Fv) allows us
to assume that γv is strongly G-regular, in the sense that its centralizer in G is a
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maximal torus Tv. Finally, in view of the descent formula (23.9), we can assume
that Tv is elliptic in M over Fv, which is to say that Tv lies in no proper Levi sub-
group of M over Fv. The problem is of course local. To solve it, one should really
start with objects G1, M1, and T1 over a local field F1, together with a function
f1 ∈ H

(
G1(F1)

)
such that f1,G1 = 0. One then chooses global objects F , G, M ,

and T such that F1 = Fv, G1 = Gv, M1 = Mv, and T1 = Tv for some valuation
v of F , as for example on p. 526 of [A14]. Among the general constraints on the
choice of G, M , and T is a condition that T (F ) be dense in T (Fv). This reduces the
problem to showing that IM (δ, fv) vanishes for any G-regular element δ ∈ T (F ).

We can now sketch the proof of the remaining global argument. To exploit the
identity (23.15), we have to allow the complementary function fv ∈ H

(
G(Av)

)
to

vary. We first fix a large finite set V of valuations containing v, outside of which
G and T are unramified. We then restrict fv to functions of the form fvV f

V , with
fV being the product over w 6∈ V of characteristic functions of Kw, whose support
is contained in a fixed compact neighbourhood ∆v of δv in G(Av). According to
Remark 9, the sums over γ ∈ Γ(M)S can be then taken over finite sets that are
independent of fv, for a fixed finite set of valuations S ⊃ V that is also independent
of fv. Since the factors fvM (γv) in (23.15) are actually distributions, we can allow
fvV to be a function in C∞

c

(
G(F vV )

)
. We choose this function so that it is supported

on a small neighborhood of the image δvV of δv in G(F vV ), and so that fvM (δv) = 1.
It is then easy to see that (23.15) reduces to an identity

∑

γ

c(γ)IM (γv, fv) = 0,

where γ is summed over the conjugacy classes in M(F ) that are G(Fw)-conjugate
to δ for any w ∈ V − {v} and are G(Fw)-conjugate to a point in Kw for every
w 6∈ V , and where each coefficient c(γ) is positive. A final argument, based on the
Galois cohomology of T , establishes that any such γ is actually G(F )-conjugate to
δ. This means that γ = w−1

s δws for some element ws ∈W (M), and hence that

IM (γ, fv) = IM (δ, fv).

(See [A14, pp. 527–529].) It follows that

IM (δ, fv) = 0,

as required.
We have completed our sketch of the proof that the linear forms of Theorems

23.2 and 23.3 are supported on characters. The proof is a generalization of an
argument introduced by Kazhdan to study invariant orbital integrals. (See [Ka1],
[Ka2].) With its completion, we have also finished the collective proof of the three
theorems. �

We have just devoted what might seem to be a disproportionate amount of
space to a fairly arcane point. We have done so deliberately. Our proof that the
linear forms IM (γ, f) and IM (π,X, f) are supported on characters can serve as a
model for a family of more sophisticated arguments that are part of the general
comparison of trace formulas. Instead of showing that IM (γ, f) and IM (π,X, f)
vanish for certain functions f , as we have done here, one has to establish identities
among corresponding linear forms for suitably related functions on different groups.

The invariant trace formula of Theorem 23.4 simplifies if we impose local van-
ishing conditions on the function f . We say that a function f ∈ H(G) is cuspidal
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at a place w if it is the restriction to G(A)1 of a finite sum of functions
∏
v
fv whose

w-component fw is cuspidal. This means that for any proper Levi subgroup Mw of
G over Fw, the function

fw,Mw
(πw) = fw,G(πGw ), πw ∈ Πtemp

(
M(Fw)

)
,

in I
(
Mw(Fw)

)
vanishes.

Corollary 23.6. (a) If f is cuspidal at one place w, then

I(f) = lim
T

∫

Πdisc(G)T
aGdisc(π)fG(π),

where Πdisc(G)T is the intersection of Πdisc(G) with Π(G)T .
(b) If f is cuspidal at two places w1 and w2, then

I(f) = lim
S

∑

γ∈Γ(G)S

aG(γ)fG(γ).

To establish the simple form of the spectral expansion in (a), one applies the
splitting formula [A13, Proposition 9.4] to the linear forms IM (π, f) in (23.12).
Combined with an argument similar to that following Proposition 23.5 above, this
establishes that IM (π, f) = 0, for any M 6= G, and for f as in (a). Since the
distribution

fG(π) = IG(π, f)

vanishes for any π in the complement of Πdisc(G)T in Π(G)T , the expansion (a)
follows. To establish the simple form of the spectral expansion in (b), one applies
the splitting formula (23.8) to the terms IM (γ, f) in (23.11). This establishes that
IM (γ, f) = 0, for any M 6= G, and for f as in (b). The expansion in (b) follows.
(See the proof of Theorem 7.1 of [A14].) �

24. A closed formula for the traces of Hecke operators

In the next three sections, we shall give three applications of the invariant
trace formula. The application in this section might be called the “finite case” of
the trace formula. It is a finite closed formula for the traces of Hecke operators on
general spaces of automorphic forms. The result can be regarded as an analogue
for higher rank of Selberg’s explicit formula for the traces of Hecke operators on
classical spaces of modular forms.

In this section, we revert to the setting that F = Q, in order to match standard
notation for Shimura varieties. We also assume for simplicity that AG is the split
component of G over R as well as over Q. The group

G(R)1 = G(R) ∩G(A)1

then has compact center. The finite case of the trace formula is obtained by special-
izing the archimedean component of the function f ∈ H(G) in the general invariant
trace formula. Before we do so, we shall formulate the problem in terms somewhat
more elementary than those of recent sections.

Suppose that πR ∈ Πunit

(
G(R)

)
is an irreducible unitary representation of

G(R), and that K0 is an open compact subgroup of G(Afin). We can write

(24.1) L2
disc

(
πR, G(Q)\G(A)1/K0

)



158 JAMES ARTHUR

for the πR-isotypical component of L2
disc

(
G(Q)\G(A)1/K0

)
, which is to say, the

largest subspace of L2
disc

(
G(Q)\G(A)1/K0

)
that decomposes under the action of

G(R)1 into a sum of copies of the restriction of πR to G(R)1. We can also write

L2
disc(πR,K0) = L2

disc

(
πR, G(Q)\G(A)/K0, ζR

)

for the space of functions φ on G(Q)\G(A)/K0 such that

φ(zx) = ξR(z)φ(x), z ∈ AG(R)0,

where ζR is the central character of πR on AG(R)0, and such that the restriction
of φ to G(A)1 lies in the space (24.1). The restriction mapping from G(A) to
G(A)1 is then a G(R)1-isomorphism from L2

disc(πR,K0) onto the space (24.1). The
action of G(R) by right translation on L2

disc(πR,K0) is isomorphic to a direct sum
of copies of πR, with finite multiplicity mdisc(πR,K0). One would like to compute
the nonnegative integer mdisc(πR,K0).

More generally, suppose that h belongs to the nonarchimedean Hecke algebra
H
(
G(Afin),K0

)
attached to K0. Let Rdisc(πR, h) be the operator on L2

disc(πR,K0)
obtained by right convolution of h. As an endomorphism of the G(R)-module
L2

disc(πR,K0), Rdisc(πR, h) can be regarded as a square matrix of rank equal to
mdisc(πR,K0). One would like a finite closed formula for its trace.

The problem just posed is too broad. However, it is reasonable to consider the
question when πR belongs to a restricted class of representations. We shall assume
that πR belongs to the subset Πtemp,2

(
G(R)

)
of representations in Πunit

(
G(R)

)
that

are square integrable modulo the center of G(R). Selberg’s formula [Sel1] describes
the solution to this problem in the case that G = SL(2), K0 = Kfin is maximal,
and πR is any representation in the set Π2

(
G(R)

)
= Πtemp,2

(
G(R)

)
that is also

integrable.
The set Πtemp,2

(
G(R)

)
is known as the discrete series, since it consists of those

unitary representations of G(R) whose restrictions to G(R)1 occur discretely in the
local spectral decomposition of L2

(
G(R)1

)
. The set is nonempty if and only if G

has a maximal torus TG that is elliptic over R, which is to say that TG(R)/AG(R)
is compact. Assume for the rest of this section that TG exists, and that TG(R) is
contained in the subgroup KRAG(R) of G(R). Then Πtemp,2

(
G(R)

)
is a disjoint

union of finite sets Π2(µ), parametrized by the irreducible finite dimensional repre-
sentations µ of G(R) with unitary central character. For any such µ, the set Π2(µ)
consists of those representations in Πtemp,2

(
G(R)

)
with the same infinitesimal char-

acter and central character as µ. It is noncanonically bijective with the set of right
cosets of the Weyl group W (KR, TG) of KR in the Weyl group W (G, TG) of G. In
particular, the number of elements in any packet Π2(µ) equals the quotient

w(G) = |W (KR, TG)|−1|W (G, TG)|.
The facts we have just stated are part of Harish-Chandra’s classification of

discrete series. The classification depends on a deep theory of characters that
Harish-Chandra developed expressly for the purpose. We recall that the character
of an arbitrary irreducible representation πR of G(R) is defined initially as the
distribution

fR −→ fR,G(πR) = tr
(
πR(fR)

)
, fR ∈ C∞

c

(
G(R)

)
,

on G(R). Harish-Chandra proved the fundamental theorem that a character equals
a locally integrable function Θ(πR, ·) on G(R), whose restriction to the open dense
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set Greg(R) of strongly regular elements in G(R) is analytic [Har1], [Har2]. That
is,

fR,G(πR) =

∫

Greg(R)

fR(x)Θ(πR, x)dx, fR ∈ C∞
c

(
G(R)

)
.

After he established his character theorem, Harish-Chandra was able to prove
a simple formula for the character values of any representation πR ∈ Πtemp,2

(
G(R)

)

in the discrete series on the regular elliptic set

TG,reg(R) = TG(R) ∩Greg.

The formula is a signed sum of exponential functions that is remarkably similar
to the formula of Weyl for the character of a finite dimensional representation µ.
However, there are two essential differences. The first is that the sum over the
full Weyl group W (G, TG) in Weyl’s formula is replaced by a sum over the Weyl
group W (KR, TG) of KR. This is the reason that there are w(G) representations
πR associated to µ. The second difference is that the real group G(R) generally
has several conjugacy classes of maximal tori T (R) over R. This means that the
character of πR has also to be specified on tori other than TG. Harish-Chandra gave
an algorithm for computing the values of Θ(πR, ·) on any set Treg(R) in terms of
its values on TG,reg(R). The resulting expression is again a linear combination of
exponential functions, but now with more general integral coefficients, which can
be computed explicitly from Harish-Chandra’s algorithm. (For a different way of
looking at the algorithm, see [GKM].)

We return to the problem we have been discussing. We are going to impose
another restriction. Rather than evaluating the trace of a single matrix Rdisc(πR, h),
we have to be content at this point with a formula for the sum of such traces, taken
over πR in a packet Π2(µ). (Given µ, we shall actually sum over the packet Π2(µ

∨),
where

µ∨(x) = tµ(x)−1, x ∈ G(R),

is the contragredient of µ.) This restriction is dictated by the present state of
the invariant trace formula. There is a further refinement of the trace formula,
the stable trace formula, which we shall discuss in §29. It is expected that if the
stable trace formula is combined with the results we are about to describe, explicit
formulas for the individual traces can be established.

We fix the irreducible finite dimensional representation µ of G(R). The formula
for the corresponding traces of Hecke operators is obtained by specializing the
general invariant trace formula. In particular, it will retain the general structure of
a sum over groups M ∈ L. Each summand contains a product of three new factors,
which we now describe.

The most interesting factor is a local function

Φ′
M (µ, γR), γR ∈M(R),

on M(R) attached to the archimedean valuation v∞. Assume first that γR lies in
TM (R)∩Greg, where TM is a maximal torus in M over R such that TM (R)/AM (R)
is compact. In this case, we set

(24.2) Φ′
M (µ, γR) = |DG

M (γR)| 12
∑

πR∈Π2(µ)

Θ(πR, γR),
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where
DG
M (γR) = DG(γR)DM (γR)−1

is the relative Weyl discriminant. It is a straightforward consequence of the charac-
ter formulas for discrete series that Φ′

M (µ, γR) extends to a continuous function on
the torus TM (R). (See [A16, Lemma 4.2].) If γR ∈ M(R) does not belong to any
such torus, we set Φ′

M (µ, γR) = 0. The function Φ′
M (µ, γR) on M(R) is complicated

enough to be interesting (because it involves characters of discrete series on nonel-
liptic tori in G(R)), but simple enough to be given explicitly (because there are
concrete formulas for such characters). It is supported on the semisimple elements
in M(R), and is invariant under conjugation by M(R).

The second factor is a local term attached to the nonarchimedean valuations.
If γ is any semisimple element in M(Q), we write
(24.3)

h′M (γ) = δP (γfin)
1
2

∫

Kfin

∫

NP (Afin)

∫

Mγ(Afin)\M(Afin)

h(k−1m−1γmnk)dndndk,

where P is any group in P(M), δP (γfin) is the modular function on P (Afin), and
Kfin is our maximal compact subgroup of G(Afin).

(
In [A16], this function was

denoted hM (γ) rather than h′M (γ). However, the symbol hM (γ) has since been
used to denote the normalized orbital integral

hM (γ) = |DM (γfin)| 12h′M (γ).
)

Since the integrals in (24.3) reduce to finite linear combinations of values assumed
by the locally constant function h, h′M (γ) can in principle by computed explicitly.

The third factor is a global term. It is defined only for semisimple elements
γ ∈ M(Q) that lie in TM (R), for a maximal torus TM in M over R such that
TM (R)/AM (R) is compact. For any such γ, we set

(24.4) χ(Mγ) = (−1)q(Mγ)vol
(
Mγ(Q)\Mγ(Afin)

)
w(Mγ),

where

q(Mγ) =
1

2
dim

(
Mγ(R)/Kγ,RAM (R)0

)

is one-half the dimension of the symmetric space attached to Mγ , while Mγ is an

inner twist of Mγ over Q such that Mγ(R)/AM (R)0 is compact, and w(Mγ) is the
analogue for Mγ of the positive integer w(G) defined for G above. The volume
in the product χ(Mγ) is taken with respect to the inner twist of a chosen Haar
measure on Mγ(Afin). We note that the product of the Haar measure on Mγ(Afin)
with the invariant measures in the definition of h′M (γ) determines a Haar measure
on G(Afin). This measure is supposed to coincide with the Haar measure used to
define the original operator Rdisc(πR, h) by right convolution of h on G(A).

Theorem 24.1. Suppose that the highest weight of the finite dimensional rep-
resentation µ of G(R) is nonsingular. Then for any element h ∈ H

(
G(Afin),K0

)
,

the sum

(24.5)
∑

πR∈Π2(µ∨)

tr
(
Rdisc(πR, h)

)

equals the geometric expansion

(24.6)
∑

M∈L

(−1)dim(AM/AG)|WM
0 ||WG

0 |−1
∑

γ∈Γ(M)

|ιM (γ)|−1χ(Mγ)Φ
′
M (µ, γ)h′M (γ).
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To establish the formula, one has to specialize the function f in the general
invariant trace formula. The finite dimensional representation µ satisfies

µ(zx) = ζR(z)−1µ(x), z ∈ AG(R)0, x ∈ G(R),

for a unitary character ζR on AG(R)0. Its contragredient µ∨ has central character ζR

on AG(R)0. The associated packet Π2(µ
∨) is contained in the set Πtemp

(
G(R), ζR

)

of tempered representations of G(R) whose central character on AG(R)0 equals ζR.
Now the characterization [CD] of the invariant image I

(
G(R)

)
of H

(
G(R)

)
applies

equally well to the ζ−1
R -equivariant analogue H

(
G(R), ζR

)
of the Hecke algebra. It

implies that there is a function fR in H
(
G(R), ζR

)
such that

(24.7) fR,G(πR) =

{
1, if πR ∈ Π2(µ

∨),

0, otherwise,

for any representation πR ∈ Πtemp

(
G(R), ζR

)
. The restriction f of the product fRh

to G(A)1 is then a function in H(G). We shall substitute it into the invariant trace
formula.

Since fR,G vanishes on the complement of the discrete series in Πtemp

(
G(R), ζR

)
,

fR is cuspidal. By Corollary 23.6(a), the spectral expansion of I(f) simplifies. We
obtain

I(f) = lim
T

∑

π∈Πdisc(G)T

aGdisc(π)fG(π)

=
∑

t

It,disc(f)

=
∑

t

∑

M∈L

|WM
0 ||WG

0 |−1
∑

s∈W (M)reg

| det(s− 1)aG
M
|−1tr

(
MP (s, 0)IP,t(0, f)

)
.

The irreducible constituents of the representation IP,t(0, f) could well be nontem-
pered. However, given that s ∈W (M) is regular, and that the tempered support of
fR,G contains no representation with singular infinitesimal character, one deduces
that

tr
(
MP (s, 0)IP,t(0, f)

)
= 0,

as long as M 6= G. (See [A16, p. 268].) The terms with M 6= G therefore vanish.
The expansion reduces simply to

(24.8) I(f) =
∑

t

∑

π∈Πt,disc(G)

mdisc(π)tr
(
π(fRh)

)
,

the contribution from the discrete spectrum. There can of course be nontempered
representations π with mdisc(π) 6= 0. But the condition that the highest weight of
µ be nonsingular is stronger than the conditions on fR,G used to derive (24.8). It
can be seen to imply that the summands in (24.8) corresponding to nontempered
archimedean components πR vanish. (The proof on p. 283 on [A16], which uses the
classification of unitary representations πR with cohomology, anticipates Corollary
24.2 below.) It follows that

I(f) =
∑

t

∑

{π:πR∈Π2(µ∨)}

mdisc(π)fR,G(πR)hM (πfin).

This in turn implies that I(f) equals the sum (24.5).
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The problem is then to compute the geometric expansion (23.11) of I(f), for
the chosen function f defined by fRh. Consider the terms

IM (γ, f), M ∈ L, γ ∈ Γ(M)S ,

in (23.11). We apply the splitting formula (23.8) successively to the valuations in S.

If L ∈ L(M) is proper in G, the contribution ÎLM (γR, fR,L) to the formula vanishes.
It follows that

IM (γ, f) = IM (γR, fR)hM (γfin).

The sum of traces (24.5) therefore equals

(24.9) lim
S

∑

M∈L

|WM
0 ||WG

0 |−1
∑

γ∈Γ(M)S

aM (γ)IM (γR, fR)hM (γfin).

The problem reduces to that of computing the archimedean component IM (γR, fR),
for elements γR ∈M(R).

Suppose that γR = tR is strongly G-regular. In this case, the main theorem
of [A1] provides a formula for IM (tR, fR) in terms of character values of discrete
series at tR. The proof uses differential equations and boundary conditions satisfied
by IM (tR, fR) to reduce the problem to the case M = G, which had been solved
earlier by Harish-Chandra [Har3]. A more conceptual proof of the same formula
came later, as a consequence of the local trace formula [A20, Theorem 5.1]. (A p-
adic analogue for Lie algebras of this result is contained in the lectures of Kottwitz
[Ko8].) If tR is elliptic in M(R), the formula asserts that IM (tR, fR) equals the
product of

(−1)dim(AM/AG)vol
(
TM (R)/AM (R)0

)−1

with ∑

πR∈Π2(G(R),ζR)

|DG(tR)| 12 Θ(πR, tR)fR,G(πR),

where TM is the centralizer of tR. It follows that
(24.10)

IM (tR, fR) = (−1)dim(AM/AG)vol
(
TM (R)/AM (R)0

)−1|DM (tR)| 12 Φ′
M (µ, tR).

If tR is not elliptic in M(R), the formula of [A1] (or just the descent formula (23.9))
tells us that IM (tR, fR) vanishes. Since Φ′

M (µ, tR) vanishes by definition in this case,
(24.10) holds for any strongly G-regular element tR.

It remains to sketch a generalization of (24.10) to arbitrary elements
γR ∈M(R). From the definitions (18.12) and (23.3), we deduce that

IM (γR, fR) = lim
aR→1

∑

L∈L(M)

rLM (γR, aR)IL(aRγR, fR),

for small points aR ∈ AM (R) in general position. Since fR is cuspidal, the descent
formula (23.9) implies that the summands on the right with L 6= M vanish. Re-
placing γR by aRγR, if necessary, we can therefore assume that the centralizer of γR

in G is contained in M . In this case, IM (γR, fR) can be approximated by functions
IM (tR, fR), for G-regular elements tR in M(R) that are close to the semisimple part
σR of γR. We can actually assume that σR lies in an elliptic torus TM , again by the
descent formula (23.9). The approximation of IM (γR, fR) then takes the form of a
limit formula

IM (γR, fR) = lim
tR→σR

(
∂(huR

)IM (tR, fR)
)
,
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where ∂(huR
) is a harmonic differential operator on TM (R) attached to the unipotent

part uR of γR [A16, Lemma 5.2]. One can compute the limit from the properties
of the function Φ′

M (µ, tR) on the right hand side of (24.10). The fact that this
function is constructed from a sum of characters of discrete series in the packet
Π2(µ) is critical. One uses it to show that the limit vanishes unless uR = 1. The
conclusion [A16, Theorem 5.1] is that

IM (γR, fR) = (−1)dim(AM/AG)v(MγR
)−1|DM (γR)| 12 Φ′

M (µ, γR),

where

v(MγR
) = (−1)q(MγR

)vol
(
MγR

(R)/AM (R)0
)
w(MγR

)−1.

In particular, IM (γR, fR) vanishes unless γR is semisimple and lies in an elliptic
maximal torus TM .

We substitute the general formula for IM (γR, fR) into the expression (24.9) for
I(f). We see that the summand in (24.9) corresponding to γ ∈ Γ(M)S vanishes
unless γ is semisimple. Since (M,S)-equivalence of semisimple elements in Γ(M)S
is the same as M(Q)-conjugacy, we can sum γ over the set Γ(M) instead of Γ(M)S ,
removing the limit over S at the same time. We can also write

|DM (γR)| 12 Φ′
M (µ, γR)hM (γfin)

= |DM (γR)DM (γfin)| 12 Φ′
M (µ, γR)h′M (γfin)

= Φ′
M (µ, γ)h′M (γ),

for any semisimple element γ ∈ M(Q), by the product formula for Q. Finally,
it follows from the definitions (19.5) and (22.2) of aM (γ), together with the main
theorem of [Ko6], that

aM (γ)v(MγR
)−1 = χ(Mγ)|ιM (γ)|−1,

again for any semisimple element γ ∈ M(Q). We conclude that I(f) is equal to
the required expression (24.6). Since it is also equal to the original sum (24.5), the
theorem follows. �

Remarks. 1. The theorem from [Ko6] we have just appealed to is that the
coefficient

aG(1) = vol
(
G(F )\G(A)1

)

is invariant under inner twisting of G. Kottwitz was able to match the terms with
M = G and γ = 1 in the fine geometric expansion (22.9) for any two groups related
by inner twisting. This completed the proof of the Weil conjecture on Tamagawa
numbers, following a suggestion from [JL, §16]. It represents a different and quite
striking application of the general trace formula, which clearly illustrates the need
for a fine geometric expansion. Unfortunately, we do not have space to discuss it
further.

2. The condition that the highest weight of µ be nonsingular was studied by
F. Williams [Wi], in connection with multiplicity formulas for compact quotient.
It is weaker than the condition that the relevant discrete series representations
be integrable, which was used in the original multiplicity formulas of Langlands
[Lan2].

If our condition on the highest weight of µ is removed, the expression (24.6)
still makes sense. To what does it correspond?
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Assume that

µ : G −→ GL(V )

is an irreducible finite dimensional representation of G that is defined over Q. This
represents a slight change of perspective. On the one hand, we are asking that the
restriction of µ to the center of G be algebraic, and that the representation itself
be defined over Q. On the other, we are relaxing the condition that the central
character ζ−1

R of µ on AG(R)0 be unitary. The corresponding packet Π2(µ) still
exists, but it is now contained only in the set Π2

(
G(R)

)
of general (not necessarily

tempered) representations of G(R) that are square integrable modulo the center.
We define the function Φ′

M (γR, µ) exactly as before.
If K ′

R = KRAG(R)0, the quotient

X = G(R)/K ′
R

is a globally symmetric space with respect to a fixed left G(R)-invariant metric. Let
us assume that none of the simple factors of G is anisotropic over R. We assume
also that the open compact subgroup K0 ⊂ G(Afin) is small enough that the action
of G(Q) on the product of X with G(Afin)/K0 has no fixed points. The quotient

M(K0) = G(Q)\
(
X ×G(Afin)/K0

)

is then a finite union of locally symmetric spaces. Moreover, the restriction of the
representation µ to G(Q) determines a locally constant sheaf

Fµ(K0) = V (C) ×
G(Q)

(
X ×G(Afin)/K0

)

onM(K0).
One can form the L2-cohomology

H∗
(2)

(
M(K0),Fµ(K0)

)
=
⊕

q≥0

Hq
(2)

(
M(K0),Fµ(K0)

)

ofM(K0) with values in Fµ. It is a finite dimensional graded vector space, which
reduces to ordinary de Rham cohomology in the case thatM(K0) is compact. The
element h in the Hecke algebra H

(
G(Afin),K0

)
acts by right convolution on any

reasonable space of functions or differential forms onM(K0). It yields an operator

H∗
(2)

(
h,Fµ(K0)

)
=
⊕

q

Hq
(2)

(
h,Fµ(K0)

)

on the L2-cohomology space. Let

(24.11) Lµ(h) =
∑

q

(−1)qtr
(
Hq

(2)

(
h,Fµ(K0)

))

be its Lefschetz number.

Corollary 24.2. The Lefschetz number Lµ(h) equals the product of (−1)q(G)

with the geometric expression (24.6).

The reduction of the corollary to the formula of the theorem depends on the
spectral decomposition of L2-cohomology [BC], and the Vogan-Zuckermann clas-
sification [VZ] of unitary representations of G(R) with

(
g(R),K ′

R

)
-cohomology.

These matters are discussed in §2 of [A16]. We shall include only a few words here.
The space Hq

(2)

(
M(K0),Fµ(K0)

)
is defined by square-integrable differential q-

forms onM(K0). Consider the case thatM(K0) is compact. Elements in the space
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are then defined by smooth, differential q-forms onM(K0) with values in Fµ(K0).
By thinking carefully about the nature of such objects, one is led to a canonical
isomorphism

Hq
(2)

(
M(K0),Fµ(K0)

) ∼=
⊕

π∈Πunit(G(A),ζR)

mdisc(π)
(
Hq
(
g(R),K ′

R;πR ⊗ µ
)
⊗ πK0

fin

)
,

in which Πunit

(
G(A), ζR

)
denotes the set of representations in Π

(
G(A), ζR

)
that are

unitary modulo AG(R)0, Hq
(
g(R),K ′

R; ·
)

represents the
(
g(R),K ′

R

)
-cohomology

groups defined in [BW, Chapter II], for example, and πK0

fin stands for the space of
K0-invariant vectors for the finite component πfin of π. (See [BW, Chapter VII].)
This isomorphism is compatible with the canonical action of the Hecke algebra
H
(
G(Afin),K0

)
on each side. It follows that there is a canonical isomorphism of

operators

Hq
(2)

(
h;Fµ(K0)

) ∼=
⊕

π∈Πunit(G(A),ζR)

mdisc(π) · dim
(
Hq
(
g(R),K ′

R;πR ⊗ µ
))
· πfin(h).

In the paper [BC], Borel and Casselman show that this isomorphism carries over
to the case of noncompact quotient (with our assumption that G(R) has discrete
series). Define

χµ(πR) =
∑

q

(−1)q dim
(
Hq
(
g(R),K ′

R;πR ⊗ µ
))
,

for any unitary representation πR of G(R). It then follows that

(24.12) Lµ(h) =
∑

π∈Πunit(G(A),ζR)

mdisc(π)χµ(πR)tr
(
πfin(h)

)
.

The second step is to describe the integers χµ(πR). This is done in [CD]. The
result can be expressed as an identity

χµ(πR) = (−1)q(G)fR,G(πR), πR ∈ Πunit

(
G(R), ζR

)
,

where fR ∈ H
(
G(R), ζR

)
is a function that satisfies (24.7). It follows that if π is as

in (24.8), then

χµ(πR)tr
(
πfin(h)

)
= (−1)q(G)tr

(
πR(fR)

)
tr
(
πfin(h)

)

= (−1)q(G)tr
(
π(fRh)

)
,

where πR⊗ πfin is the representation in Πunit

(
G(A), ζR

)
whose restriction to G(A)1

equals π. It follows from (24.8) and (24.12) that

Lµ(h) = (−1)q(G)I(f).

Since we have already seen that I(f) equals the geometric expression (24.6), the
corollary follows. �

The formula of Corollary 24.2 is relevant to Shimura varieties. The reader will
recall from the lectures of Milne [Mi] that with further conditions on G, the space
M(K0) becomes the set of complex points of a Shimura variety. It is a fundamen-
tal problem for Shimura varieties to establish reciprocity laws between the analytic
data contained in Hecke operators on L2-cohomology, and the arithmetic data con-
tained in ℓ-adic representations of Galois groups on étale cohomology. Following
the strategy that was successful for GL(2) [Lan4], one would try to compare geo-
metric sides of two Lefschetz formulas. Much progress has been made in the case
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that M(K0) is compact [Ko7]. In the general case, the formula of Corollary 24.2
could serve as the basic analytic Lefschetz formula. (One still has to “stabilize” this
formula, a problem closely related to that of computing the individual summands
in (24.5), as opposed to their sum.) The other ingredient would be a Lefschetz trace
formula for Frobenius-Hecke correspondences on the ℓ-adic intersection cohomol-
ogy of the Bailey-Borel compactificationM(K0), and a comparison of its gemetric
terms with those of the analytic formula.

The general problem is still far from being solved. However, Goresky, Kottwitz,
and Macpherson have taken an important step. They have established a formula
for the Lefschetz numbers of Hecke correspondences in the complex intersection

cohomology ofM(K0), whose geometric terms match those of the analytic formula
[GKM]. Since one knows that the spectral sides of the two formulas match, by
Zucker’s conjecture [Lo], [SS], the results of Goresky, Kottwitz, and Macpherson
can be regarded as a topological proof of the formula of Corollary 24.2. It is hoped
that their methods can be applied to ℓ-adic intersection cohomology.

25. Inner forms of GL(n)

The other two applications each entail a comparison of trace formulas. They
concern higher rank analogues of the Jacquet-Langlands correspondence, and the
theorem of Saito-Shintani and Langlands on base change for GL(2). These two
applications are the essential content of the monograph [AC]. Since we are devoting
only limited space to them here, our discussion will have to be somewhat selective.

The two comparisons were treated together in [AC]. However, it is more in-
structive to discuss them separately. In this section we will discuss a partial gen-
eralization of the Jacquet-Langlands correspondence from GL(2) to GL(n). We
shall describe a term by term comparison of the invariant trace formula of the
multiplicative group of a central simple algebra with that of GL(n).

We return to the general setting of Part II, in which G is defined over a number
field F . In this section, G∗ will stand for the general linear group GL(n) over F .
We take G to be an inner twist of G∗ over F . This means that G is equipped with
an isomorphism ψ: G→ G∗ such that for every element τ in ΓF = Gal(F/F ), the
relation

ψ ◦ τ(ψ)−1 = Int
(
a(τ)

)

holds for some element a(τ) in G∗.
The general classification of reductive groups over local and global fields assigns

a family of invariants {
invv = invv(G,ψ)

}

to (G,ψ), parametrized by the valuations v of F . The local invariant invv is at-
tached to the localization of (G,ψ) at Fv, and takes values in the cyclic group
(Z/nZ). It can assume any value if v is nonarchimedean, but satisfies the con-
straints 2invv = 0 if Fv ∼= R, and invv = 0 if Fv ∼= C. The elements in the family
{invv} vanish for almost all v, and satisfy the global constraint

∑

v

invv = 0.

Conversely, given G∗ and any set of invariants {invv} in Z/nZ with these con-
straints, there is an essentially unique inner twist (G,ψ) of G∗ with the given
invariants. These assertions are special cases of Theorems 1.2 and 2.2 of [Ko5].
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(To see this, one has to identify (Z/nZ) with the group of characters on the center

Ẑsc of the complex dual group SL(n,C) of G∗
ad = PGL(n).) We write n = dvmv,

where dv is the order of the element invv in (Z/nZ), and n = dm, where d is the
least common multiple of the integers dv.

The notation {invv} is taken from the older theory of central simple algebras.
Since the inner automorphisms Int

(
a(τ)

)
ofG∗ extend to the matrix algebraMn(F ),

one sees easily that ψ extends to an isomorphism from A
⊗
F to Mn(F ), where A

is a central simple algebra over F such that

G(k) = (A
⊗

k)∗,

for any k ⊃ F , and the tensor products are taken over F . It is a consequence
of the theory of such algebras [We] that A is isomorphic to Mm(D), where D
is a division algebra over F of degree d. Similarly, for any v, the local algebra
Av = A

⊗
Fv is isomorphic to Mmv(Dv). It follows that G(F ) ∼= GL(m,D) and

G(Fv) ∼= GL(mv, Dv). (These facts can also be deduced from the two theorems
quoted from [Ko5].) In particular, the minimal Levi subgroup M0 of G we suppose
to be fixed is isomorphic to a product of m copies of multiplicative groups of D.

It is easy to see that by replacing ψ with some conjugate

Int(g)−1 ◦ ψ, g ∈ G∗(F ),

if necessary, we can assume that the image M∗
0 = ψ(M0) is defined over F . The

mapping

M −→ M∗ = ψ(M), M ∈ L,
is then a bijection from L onto the set of Levi subgroups L(M∗

0 ) in G∗. For any
M ∈ L, there is a bijection P → P ∗ from P(M) to P(M∗). Similar remarks apply
to any completion Fv of F . We can choose a point gv ∈ M∗

0 (Fv) such that the
conjugate

ψv = Int(gv)
−1 ◦ ψ

maps a fixed minimal Levi subgroup Mv0 ⊂ M0 over Fv to a Levi subgroup
M∗
v0 ⊂M∗

0 over Fv. The mapping Mv →M∗
v is then a bijection from Lv = L(Mv0)

to L(M∗
v0). In the special case that invv = 0, the isomorphism ψv from G to G∗ is

defined over Fv.
In order to transfer functions from G to G∗, one has first to be able to transfer

conjugacy classes. Working with a general field k ⊃ F , we start with a semisimple
conjugacy class σ ∈ Γss

(
G(k)

)
in G(k). The image ψ(σ) of σ in G∗ generates a

semisimple conjugacy class in G(k). Since

τ
(
ψ(σ)

)
= τ(ψ)

(
τ(σ)

)
= Int

(
a(τ)

)−1
ψ(σ),

for any element τ ∈ Gal(k/k), the characteristic polynomial of this conjugacy class
has coefficients in k. It follows from rational canonical form that the conjugacy class
of ψ(σ) intersects G(k). It therefore determines a canonical semisimple conjugacy
class σ∗ ∈ Γss

(
G∗(k)

)
. We thus obtain a canonical injection σ → σ∗ from Γss

(
G(k)

)

into Γss

(
G∗(k)

)
. Now if σ is a semisimple element in G(k), it is easy to see that

Gσ(k) is isomorphic to GL(mσ, Dσ), where Dσ is a division algebra of rank dσ
over an extension field kσ of degree eσ over k, with n = dσeσmσ, while G∗

σ∗(k)
is isomorphic to GL(dσmσ, kσ). The unipotent classes u in Gσ(k) correspond to
partitions of mσ. For any such u, let u∗ be the unipotent class in G∗

σ∗(k) that
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corresponds to the partition of dσmσ obtained by multiplying the components of
the first partition by dσ. Then

γ = σu −→ γ∗ = σ∗u∗

is a canonical injection from the set Γ
(
G(k)

)
of all conjugacy classes in G(k) into

the corresponding set Γ
(
G∗(k)

)
in G∗(k).

Suppose that k = F . If M ∈ L, ψ restricts to an inner twist from M to the
Levi subgroup M∗ of G∗. It therefore defines an injection γM → γ∗M from Γ(M) to
Γ(M∗), by the prescription above. If γ ∈ Γ(G) is the induced class γGM , it follows

immediately from the definitions that γ∗ is the induced class (γ∗M )G
∗

in Γ(G∗).
For the transfer of functions, we need to take k to be a completion Fv of F ,

and γ to be a strongly regular class γv ∈ Γreg

(
G(Fv)

)
in G(Fv). Suppose that fv

is a function in H
(
G(Fv)

)
. We define a function f∗

v on Γreg

(
G∗(Fv)

)
by setting

f∗
v (γ∗v ) =

{
fv,G(γv), if γv maps to γ∗v ,

0, if γ∗v is not in the image of Γ
(
G(Fv)

)
,

for any class γ∗v ∈ Γreg

(
G∗(Fv)

)
. In the case that invv = 0, f∗

v is the image in

I
(
G∗(Fv)

)
of the function fv ◦ψ−1

v in H
(
G∗(Fv)

)
. In particular, if v is also nonar-

chimedean (so that G is unramified at v), and fv is the characteristic function of the
maximal compact subgroup Kv, f

∗
v is the image in I

(
G∗(Fv)

)
of the characteristic

function of the maximal compact subgroup K∗
v = ψ(Kv) of G∗(Fv).

The next theorem applies to any valuation v of F .

Theorem 25.1. (Deligne, Kazhdan, Vigneras)
(a) For any fv ∈ H

(
G(Fv)

)
, the function f∗

v belongs to I
(
G∗(Fv)

)
. In other

words, f∗
v represents the set of strongly regular orbital integrals of some function in

H
(
G∗(Fv)

)
.

(b) There is a canonical injection πv → π∗
v from Πtemp

(
G(Fv)

)
into

Πtemp

(
G∗(Fv)

)
such that

f∗
v (π∗

v) = e(Gv)fv,G(πv), fv ∈ H
(
G(Fv)

)
,

where e(Gv) is the sign attached to the reductive group G over Fv by Kottwitz [Ko2].

These results were established in [DKV]. The largely global argument makes
use of a simple version of the trace formula, such as the formula provided by Corol-
lary 23.6 for functions f ∈ H(G) that are cuspidal at two places. Part (a) is
Theorem B.2.c of [DKV]. Part (b) follows from Theorems B.2.a, B.2.c, and B.2.d
of [DKV]. �

The assertions of the theorem remain valid if G is replaced by a Levi subgroup.
This is because a Levi subgroup is itself a product of groups attached to central
semisimple algebras.

Recall that the invariant trace formula depends on a choice of normalizing
factors for local intertwining operators. In the case of the group G∗ = GL(n),
Shahidi [Sha2] has shown that Langlands’ conjectural definition of normalizing
factors in terms of L-functions satisfies the required properties. Now if we are
to be able to compare terms in the general trace formulas of G and G∗, we will
need a set of local normalizing factors for G that are compatible with those of G∗.
Suppose then that v is a valuation, and that Mv ∈ Lv. It is enough to define
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normalizing factors rP |Q(πv,λ) for tempered representations πv ∈ Πtemp

(
M(Fv)

)
,

by [A15, Theorem 2.1]. We set

(25.1) rP |Q(πv,λ) = rP∗|Q∗(π∗
v,λ), πv ∈ Πtemp

(
M(Fv)

)
, P,Q ∈ P(M),

where the right hand side is Langlands’ canonical normalizing factor for GL(n).

Lemma 25.2. The functions (25.1) give valid normalizing factors for G.

This is [AC, Lemma 2.2.1]. One has to show that the functions (25.1) satisfy
the conditions of Theorem 21.4. The main point is to establish the basic iden-
tity (21.12) that relates the normalizing factors to Harish-Chandra’s µ-function
µM (πv,λ). To establish this identity, one first deduces that

µM (πv,λ) = µM∗(π∗
v,λ)

from the formula

fv(1) = e(Gv)f
∗
v (1), fv ∈ H

(
G(Fv)

)
,

the Plancherel formulas for G(Fv) and G∗(Fv), and the relationship between µ-
functions and corresponding Plancherel densities. The required identity for G then
follows from its analogue for G∗ established by Shahidi. �

Suppose that f is the restriction to G(A)1 of a function in H
(
G(A)

)
of the

form
∏
fv. Let f∗ be the corresponding restriction of the function

∏
f∗
v . Then

f → f∗ extends to a linear mapping from H(G) to I(G∗). It takes any subspace
H
(
G(FS)1

)
of H(G) to the corresponding subspace I

(
G∗(FS)1

)
of I(G).

We define

IE(f) = Î∗(f∗), f ∈ H(G∗),

where I∗ = IG
∗

is the distribution given by either side of the invariant trace formula
for G∗. We of course also have the corresponding distribution I = IG from the trace
formula for G. One of the main problems is to show that IE(f) = I(f). There
seems to be no direct way to do this. One employs instead an indirect strategy of
comparing terms, both geometric and spectral, in the two trace formulas.

If S is a finite set of valuations of F that contains Sram, and γ belongs to
Γ(M)S , we define

(25.2) aM,E(γ) = aM
∗

(γ∗), M ∈ L,

and

(25.3) IEM (γ, f) = ÎM∗(γ∗, f∗), f ∈ H(G).

More generally, the definition (25.3) applies to any finite set of valuations S
with the closure property, any conjugacy class γ in M(FS), and any function
f ∈ Hac

(
G(FS)

)
.

Lemma 25.3. There is an expansion

(25.4) IE(f) = lim
S

∑

M∈L

|WM
0 ||WG

0 |−1
∑

γ∈Γ(M)S

aM,E(γ)IEM (γ, f).
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This is Proposition 2.5.1 of [AC]. By definition,

IE(f) = Î∗(f∗)

= lim
S

∑

L∈L∗

|WL
0 ||WG

0 |−1
∑

β∈Γ(L)S

aL(β)ÎL(β, f∗),

where L∗ is the finite set of Levi subgroups of G∗ that contain the standard minimal
Levi subgroup. This can in turn be written

lim
S

∑

{L}

|WG∗

(L)|−1
∑

β∈Γ(L)S

aL(β)ÎL(β, f∗),

where {L} is a fixed set of representations of conjugacy classes in L∗. A global

vanishing property [A5, Proposition 8.1] asserts that ÎL(β, f∗) vanishes unless the
pair (L, β) comes from G, in the sense that it is conjugate to the image (M∗, γ∗)
of a pair (M,γ). We can assume in this case that our representative L actually
equals M∗. Moreover, M∗ is G∗-conjugate to another group M∗

1 if and only if M
is G-conjugate to M1. Since WG∗

(M∗) = WG(M), we see that

IE(f) = lim
S

∑

{M}

|WG(M)|−1
∑

γ∈Γ(M)S

aM
∗

(γ∗)ÎM∗(γ∗, f∗)

= lim
S

∑

M∈L

|WM
0 ||WG

0 |−1
∑

γ∈Γ(M)S

aM
∗

(γ∗)ÎM∗(γ∗, f∗),

where {M} is a fixed set of representatives of conjugacy classes in L. This in turn
equals the right hand side of (25.4). �

If we could somehow establish identities between the terms in (25.4) and their
analogues in the geometric expansion of I(f), we would know that IE(f) equals
I(f). We could then try to compare the spectral expansions. In practice, one has
to consider the two kinds of expansions simultaneously. Before we try to do this,
however, we must first establish a spectral expansion of IE(f) in terms of objects
associated with G. The process is slightly more subtle than the geometric case just
treated. This is because the local correspondence πv → π∗

v works only for tempered
representations, while nontempered representations occur on the two spectral sides.

We have been writing Π
(
G(A)1

)
for the set of irreducible representations of

G(A)1. If τ belongs to the corresponding set for G∗, we can write

f∗
G(τ) =

∑

π∈Π(G(A)1)

δG(τ, π)fG(π), f ∈ H(G),

for uniquely determined complex numbers δG(τ, π). This definition would be su-
perfluous if we were concerned only with the tempered case. For if τ and π are
tempered,

δG(τ, π) =

{
1, if τ = π∗,

0, otherwise,

since the product
∏
v
e(Gv) of signs equals 1. If τ and π are nontempered, how-

ever, δ(τ, π) could be more complicated. This is because the decompositions of
irreducible representations into standard representations for G and G∗ might not
be compatible.
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If π ∈ Π
(
G(A)1

)
, we define

(25.5) aG,Edisc(π) =
∑

τ∈Πdisc(G∗)

aG
∗

disc(τ)δG(τ, π).

It is not hard to show that the sum may be taken over a finite set [AC, Lemma

2.9.1]. Using the coefficients aG,Edisc(π) in place of aGdisc(π), we modify the definition

of the set Πt,disc(G) in §22. This gives us a discrete subset ΠE
t,disc(G) of Π

(
G(A)1

)

for every t ≥ 0. We then form the larger subset

ΠE
t (G) =

{
πGλ : M ∈ L, π ∈ ΠE

t,disc(M), λ ∈ ia∗M/ia∗G
}

of Π
(
G(A)1

)
, equipped with a measure dπGλ defined as in (22.7). Finally, we define

a function aG,E on ΠE
t (G) by setting

(25.6) aG,E(πGλ ) = aM,E
disc (π)rGM (πλ),

as in (22.8). The ultimate aim, in some sense, is to show that the discrete coefficients

aG,Edisc(π) and aGdisc(π) match. We now assume inductively that this is true if G is
replaced by any proper Levi subgroup M . Then ΠE

t,disc(M) equals Πt,disc(M), and

in particular, consists of unitary representations of M(A)1. It follows that the
function aG,E(πGλ ) is analytic, and slowly increasing in the sense of Lemma 21.5.

The extra complication arises when we try to describe the function aG,E as a
pullback of the corresponding function for G∗. Suppose that π ∈ Π

(
M(A)1

)
and

τ ∈ Π
(
M∗(A)1

)
are representations with δM (τ, π) 6= 0. Given a point λ ∈ ia∗M/ia∗G

in general position, and groups P,Q ∈ P(M), we set

rQ|P (τλ, πλ) = rQ∗|P∗(τS,λ)
−1rQ|P (πS,λ),

where S ⊃ Sram is a large finite set of valuations, and τS and πS are the S-
components of τ and π. The condition that δM (τ, π) 6= 0 implies that τv ∼= πv for
almost all v [AC, Corollary 2.8.3], so that rQ|P (τλ, πλ) is independent of the choice
of S. Moreover, rQ|P (τλ, πλ) is a rational function in the relevant variables λ(α∨)

or q
−λ(α∨)
v attached to valuations v in S [A15, Proposition 5.2]. As Q varies, we

obtain a (G,M)-family of functions

rQ(Λ, τλ, πλ, P ) = δM (τ, π)rQ|P (τλ+Λ, πλ+Λ)rQ|P (τλ, πλ)
−1

of Λ ∈ ia∗M , which we define for any τ and π.
Assume now that π belongs to ΠE

t,disc(M). For any representation τ ∈ Π
(
M∗(A)1

)
,

the (G,M)-family of global normalizing factors

δM (τ, π)rQ(Λ, πλ, P ), Q ∈ P(M),

is defined, and equals the product of (G,M)-families

rQ∗(Λ, τλ, P
∗)rQ(Λ, τλ, πλ, P ), Q ∈ P(M).

It follows from the product formula (17.12) that

δM (τ, π)rGM (πλ) =
∑

L∈L(M)

rL
∗

M∗(τλ)r
G
L (τλ, πλ).

Multiplying each side of this last identity by aM
∗

disc(τ), and then summing over τ , we
obtain an identity

(25.7) aG,EM (πGλ ) =
∑

τ∈Πt,disc(M∗)

∑

L∈L(M)

aL
∗

M∗(τL
∗

λ )rGL (τλ, πλ).
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The description of the coefficient aG,EM (πGλ ) as a pullback of coefficients from
G∗ is thus more elaborate than its geometric counterpart. This has to be reflected
in the construction of the corresponding linear forms that occur in the spectral
expansion of IE(f). Suppose that S is any finite set of valuations with the closure
property. The function rLM (τλ, πλ) can obviously be defined for representations
τ ∈ Π

(
M∗(FS)

)
and π ∈ Π

(
M(FS)

)
. If either τ or π is in general position,

rLM (τλ, πλ) is an analytic function of λ in ia∗M,S/ia
∗
L,S. In this case, we define linear

forms

IEM (π,X, f), X ∈ aM,S , f ∈ Hac

(
G(FS)

)
,

inductively by setting
(25.8)

ÎM∗(τ,X, f∗) =
∑

L∈L(M)

∑

π∈Π(M(FS))

∫

ia∗
M,S

/ia∗
L,S

rLM (τλ, πλ)I
E
L(πLλ , XL, f)e−λ(X)dλ,

for any τ . (For arbitrary τ and π, the functions rLM (τλ, πλ) can acquire poles in
the domain of integration, and one has to take a linear combination of integrals
over contours εP + ia∗M,S/ia

∗
L,S. See [AC, pp. 124–126]. The general definition

in [AC] avoids induction, but is a three stage process that is based on standard
representations.) It is of course the summands with L 6= M in (25.8) that we
assume inductively to be defined. The summand of L = M equals

∑

π∈Π(M(FS))

δM (τ, π)IEM (π,X, f).

By applying the local vanishing property [AC, Proposition 2.10.3] to the left
hand side of the relation (25.8), one shows without difficulty that IEM (π,X, f) is
well defined by this relation. We extend the definition to adelic representations
π ∈ Π

(
M(A)1

)
and functions f ∈ H(G) by taking S ⊃ Sram to be large. If in

addition, π is unitary, we write

IEM (π, f) = IEM (π, 0, f),

as before.

Lemma 25.4. There is an expansion

(25.9) IE(f) = lim
T

∑

M∈L

|WM
0 ||WG

0 |−1

∫

ΠE (M)T
aM,E(π)IEM (π, f)dπ.

This is Proposition 2.12.2 of [AC]. The inductive definition (25.8) we have
given here leads to a two step proof. The first step is a duplication of the proof of
Lemma 25.3, while the second is an application of the formulas (25.7) and (25.8).

We begin by writing

IE(f) = Î∗(f∗)

= lim
T

∑

L∈L∗

|WL
0 ||WG∗

0 |−1

∫

Π(L)T
aL(τ)ÎL(τ, f∗)dτ,

by the spectral expansion (23.12) for G∗. The global vanishing property [A14,

Proposition 8.2] asserts that ÎL(τ, f∗) vanishes unless L is conjugate to the image
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of a group M in L. Using the elementary counting argument from the proof of
Lemma 25.3, we see that

IE(f) = lim
T

∑

M∈L

|WM
0 ||WG

0 |−1

∫

Π(M∗)T
aM

∗

(τ)ÎM∗ (τ, f∗)dτ.

For the second step, we have to substitute the formula (25.8), with S ⊃ Sram

large and X = 0, for ÎM∗(τ, f∗). More correctly, we substitute the version of
(25.8) that is valid if any of the functions rLM (τλ, πλ) have poles, since we do not
know a priori that the representations π over which we sum are unitary. We then
substitute the explicit form (22.7) of the measure dτ on Π(M∗)T . In the resulting
multiple (seven-fold, as a matter of fact) sum-integral, it is not difficult to recognize
the expansion (25.7). There is some minor effort involved in keeping track of the
various constants and domains of the integration. This accounts for the length of
some of the arguments in [AC]. In the end, however, the expression collapses to
the required expansion (25.9). �

Theorem 25.5. If γ belongs to Γ(M)S for some S ⊃ Sram, then

(25.10) IEM (γ, f) = IM (γ, f)

and

(25.11) aM,E(γ) = aM (γ).

Theorem 25.6. If π belongs to the union of Π(M)T and ΠE (M)T , for some
T > 0, then

(25.12) IEM (π, f) = IM (π, f)

and

(25.13) aM,E(π) = aM (π).

Theorems 25.5 and 25.6 correspond to Theorems A and B in Sections 2.5 and
2.9 of [AC], which are the main results of Chapter 2 of [AC]. They are proved
together, by an argument that despite its length sometimes seems to move forward
of its own momentum. In following our sketch of the proof, the reader might keep
in mind the earlier argument used in §21 to establish that the terms in the invariant
trace formula are supported on characters.

The combined proof of the two theorems is by double induction on n and
dim(AM ). The first induction hypothesis immediately implies that the global for-
mulas (25.11) and (25.13) are valid for proper Levi subgroups M 6= G. If M = G,
on the other hand, the local formulas (25.10) and (25.12) hold by definition, the
two sides in each case being equal to fG(γ) and fG(π) respectively. We apply these
observations to the identity obtained from the right hand sides of (25.4) and (25.9).
Combining the resulting formula with the invariant trace formula for G, we see that
the limit over S of the sum of

(25.14)
∑

M 6=G

|WM
0 ||WG

0 |−1
∑

γ∈Γ(M)S

aM (γ)
(
IEM (γ, f)− IM (γ, f)

)

and

(25.15)
∑

γ∈Γ(G)S

(
aG,E(γ)− aG(γ)

)
fG(γ)
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equals the limit over T of the sum of

(25.16)
∑

M 6=G

|WM
0 ||WG

0 |−1

∫

Π(M)T
aM (π)

(
IEM (π, f)− IM (π, f)

)
dπ

and

(25.17)

∫

Π∗(G)T

(
aG,E(π)− aG(π)

)
fG(π)dπ,

where Π∗(G)T is the union of ΠE(G)T with Π(G)T .
The linear forms IM (γ, f) and IM (π,X, f) were defined for any finite set S with

the closure property, and any f ∈ Hac

(
G(FS)

)
. They each satisfy splitting and

descent formulas. The linear forms IEM (γ, f) and IEM (π,X, f) have been defined in
the same context, and satisfy parallel splitting and descent formulas. The required
local identities (25.10) and (25.12) can be broadened to formulas

(25.18) IEM (γ, f) = IM (γ, f), γ ∈ Γ
(
M(FS)

)
,

and

(25.19) IEM (π,X, f) = IM (π,X, f), π ∈ Π
(
M(FS)

)
, X ∈ aM,S ,

which we postulate for any f ∈ H
(
G(FS)

)
. These general identities were originally

established only up to some undetermined constants [AC, Theorem 2.6.1], but they
were later resolved by the local trace formula [A18, Theorem 3.C]. We assume
inductively that (25.18) and (25.19) hold if n is replaced by a smaller integer. This
allows us to simplify the local terms in (25.14) and (25.16). In so doing, we can
assume that the function f ∈ H(G) is the restriction to G(A)1 of a product of

∏
fv.

Consider first the expression (25.16). We recall that Proposition 23.5 applies to
the linear forms IM (γ, f) and IM (π,X, f). This proposition can also be adapted to
the linear forms IEM (γ, f) and IEM (π,X, f) [AC, §2.8]. Its first assertion implies that
either of the two spectral linear forms can be expressed in terms of its geometric
counterpart. The analogue of the more specific second assertion of Proposition 23.5
can be formulated to say that if (25.18) holds for all M , S, γ and f , then so does
(25.19) [AC, Theorem 2.10.2]. We combine this with the splitting and descent
formulas satisfied by the terms in the brackets in (25.16). As in §23, the fact that
the representations π ∈ Π(M) are unitary is critical to the success of the argument.
Following the corresponding discussion after Proposition 23.5, one deduces that the
required local identity (25.12) is valid. The expression (25.14) therefore vanishes.

Now consider the expression (25.14). It follows from the splitting formulas
(23.8) and [AC, (2.3.4)E ], together with our induction hypotheses, that

IEM (γ, f)− IM (γ, f) =
∑

v

εM (fv, γv)f
v(γv),

where

εM (fv, γv) = IEM (γv, fv)− IM (γv, fv),

and

fv(γv) =
∏

w 6=v

fw(γw).
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If v does not belong to the set Sram, εM (fv, γv) = 0, since G and G∗ are isomorphic
over Fv. The expression (25.14) therefore reduces to

(25.20)
∑

M 6=G

|WM
0 ||WG

0 |−1
∑

γ∈Γ(M)S

aM (γ)
( ∑

v∈Sram

εM (fv, γv)f
v
G(γv)

)
.

The remaining global coefficients can also be simplified. Consider a class
γ ∈ Γ(G)S in (25.15) whose semisimple part is represented by a noncentral ele-
ment σ ∈ G(F ). Then Gσ is a proper subgroup of G. It follows from the definitions
(19.6), (22.2), and (25.2), together with our induction hypothesis, that aG,E(γ)
equals aG(γ). The expression (25.15) therefore reduces to

(25.21)
∑

z∈AG(F )

∑

u∈Γunip(G)S

(
aG,E(zu)− aG(zu)

)
fG(zu),

where Γunip(G)S =
(
UG(F )

)
G,S

is the set of unipotent classes in Γ(G)S .

Consider a representation π ∈ Π∗(G)T in (25.17) that does not lie in the union
Π∗
t,disc(G) of ΠE

t,disc(G) and Πt,disc(G), for any t. The induction hypothesis we

have taken on includes the earlier assumption that the coefficients aM,E
disc and aMdisc

are equal, for any M 6= G. It follows from the definitions (22.8) and (25.6) that
aG,E(π) equals aG(π). The expression (25.17) therefore reduces to

∑

t≤T

∑

π∈Π∗
t,disc(G)

(
aG,Edisc(π) − aGdisc(π)

)
fG(π).

We conclude that the limit in T of the sum of (25.16) and (25.17) equals

(25.22)
∑

t

∑

π∈Π∗
t,disc(G)

(
aG,Edisc(π)− aGdisc(π)

)
fG(π).

This expression is conditionally convergent, in the sense that the iterated sums
converge absolutely.

Using the induction hypothesis, we have reduced the original four expressions
to (25.20), (25.21), and (25.22). It follows that if S ⊃ Sram is large, in a sense that
depends only on the support of f , the sum of (25.20) and (25.21) equals (25.22).
The rest of the proof is harder. It consists of several quite substantial steps, each
of which we shall attempt to sketch in a few words.

The first step concerns the summands in (25.20). The problem at this stage is
to establish something weaker than the required vanishing of these summands. It
is to show that for any M ∈ L and v ∈ Sram, and for certain fv ∈ H

(
G(Fv)

)
, the

function

εM (fv) : γv −→ εM (fv, γv) = IEM (γv, fv)− IM (γv, fv), γv ∈ Γreg

(
M(Fv)

)
,

belongs to Iac
(
M(Fv)

)
. The functions IEM (γv, fv) and IM (γv, fv) are smooth on the

strongly G-regular set in M(Fv), but as γv approaches the boundary, they acquire
singularities over and above those attached to invariant orbital integrals on M(Fv).
The problem is to show that these supplementary singularities cancel.

If v is nonarchimedean, let H
(
G(Fv)

)0
be the subspace of functions

fv ∈ H
(
G(Fv)

)
such that for every central element zv ∈ AG(Fv) and every non-

trivial unipotent element uv 6= 1 in G(Fv), fG(zvuv) vanishes. If v is archimedean,
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we set H
(
G(Fv)

)0
equal to H

(
G(Fv)

)
. The result is that the correspondence

fv −→ εM (fv), fv ∈ H
(
G(Fv)

)0
,

is a continuous linear mapping fromH
(
G(Fv)

)0
to Iac

(
M(Fv)

)
. If v is archimedean,

one establishes the result by combining the induction hypothesis with the differen-
tial equations and boundary conditions [A12, §11–13] satisfied by weighted orbital
integrals . If v is nonarchimedean, one combines the induction hypotheses with
the germ expansion [A12, §9] of weighted orbital integrals about a singular point.
In this case, one has also to make use of the explicit formulas for weighted or-
bital integrals of supercuspidal matrix coefficients, in order to match the germs
corresponding to uv = 1. (See [AC, Proposition 2.13.2].) Let H

(
G(A)0)

)
be the

subspace of H
(
G(A)

)
spanned by products f =

∏
fv such that for every v ∈ Sram,

fv belongs to H
(
G(Fv)

)0
. The result above then implies that the correspondence

f −→ εM (f) =
∑

v∈Sram

εM (fv)f
v
G

is a continuous linear mapping from H
(
G(A)

)0
to Iac

(
M(A)

)
.

Suppose now that M ∈ L is fixed. We formally introduce the second induction
hypothesis that the analogue of (25.18), for any L ∈ L with dim(AL) < dim(AM ),
holds for any S. We define H

(
G(A),M

)
to be the space of functions f in H

(
G(A)

)

that are M -cuspidal at two nonarchimedean places v, in the sense that the lo-
cal functions fv,L vanish unless L contains a conjugate of M . We also define

H
(
G(A),M

)0
to be the space of functions f in the intersection

H
(
G(A),M

)
∩H

(
G(A)

)0

that satisfy one additional condition. We ask that f vanish at any element in G(A)
whose component at each finite place v belongs to AG(Fv). In combination with

the definition of H
(
G(A)

)0
, this last condition is designed to insure that the terms

fG(zu) in (25.21) all vanish. Notice that f may be modified at any archimedean

place without affecting the condition that it lie in H
(
G(A),M

)0
.

Suppose that f belongs to H
(
G(A),M

)0
. The last induction hypothesis then

implies that the summand in (25.20) corresponding to any Levi subgroup that is
not conjugate to our fixed group M vanishes. The expression (25.20) reduces to

(25.23) |W (M)|−1
∑

γ∈Γ(M)S

aM (γ)εM (f, γ).

It is an easy consequence of the original induction hypothesis and the splitting
formulas that the function εM (f) in Iac

(
M(A)

)
is cuspidal at two places. It then

follows from the simple form of the geometric expansion forM in Corollary 23.6 that

the original expansion (25.20) equals the product of |W (M)|−1 with ÎM
(
εM (f)

)
.

The conditions on f imply that the second expression (25.21) vanishes. Recall that
the third expression (25.22) was the ultimate reduction of the spectral expansion
of IE(f)− I(f). Since the third expression equals the sum of the first two, we can
write

(25.24)
∑

t

(
IEt (f)− It(f)

)
− |W (M)|−1

∑

t

ÎMt
(
εM (f)

)
= 0,

in the notation of Remark 10 in §23. (See [AC, (2.15.1)].)
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The second step is to apply the weak multiplier estimate (23.13) to the sums in

(25.24). Suppose that f ∈ H
(
G(A),M

)0
is fixed. If α ∈ E(h1)W is any multiplier,

fα also belongs to H
(
G(A),M

)0
, and the identity (25.24) remains valid with fα in

place of α. It is a consequence of the definitions that IEt (fα) = Ît(f
∗
α). One shows

also that εM (fα) = εM (f)α [AC, Corollary 2.14.4]. It then follows from (23.13)
that there are positive constants C, k and r such that for any T > 0, any N ≥ 0,
and any α in the subspace C∞

N (h1)W of E(h1)W , the sum

(25.25)
∣∣∣
∑

t≤T

(
IEt (fα)− It(fα)

)
− |W (M)|−1

∑

t≤T

ÎMt
(
εM (fα)

)∣∣∣

is bounded by

(25.26) CekN sup
ν∈h∗

u(r,T )

(
|α̂(ν)|

)
.

To exploit the last inequality, one fixes a point ν1 in h∗u. Enlarging r if necessary,
we can assume that ν1 lies in the space h∗u(r) = h∗u(r, 0). It is then possible to choose
a function α1 ∈ C∞

c (h1)W such that α̂1 maps h∗u(r) to the unit interval, and such
that the inverse image of 1 under α̂1 is the W -orbit W (ν1) of ν1 [AC, Lemma
2.15.2]. If α1 belongs to C∞

N1
(h1)W , and r and k are as in (25.26), we chose T > 0

so that

|α̂1(ν)| ≤ e−2kN1

for all ν ∈ h∗u(r, T ). We then apply the inequality, with α equal to the function
αm obtained by convolving α1 with itself m times. Since α̂m(ν) equals α̂1(ν)

m, the
expression (25.26) approaches 0 as m approaches infinity. One shows independently
that the second sum in (25.25) also approaches 0 as m approaches infinity [AC,
p. 183–188]. Therefore, the first sum in (25.25) approaches 0 as m approaches
infinity. But this first sum equals the double sum

∑

t≤T

∑

π∈Π∗
t,disc(G)

(
aG,Edisc(π) − aGdisc(π)

)
fG(π)α1(νπ)

m,

which can be taken over a finite set that is independent of m. We can assume that
T ≥ ‖Im(ν1)‖. It follows that the double sum approaches

∑

π∈Π∗
ν1,disc(G)

(
aG,Edisc(π)− aGdisc(π)

)
fG(π)

as m approaches infinity, where Π∗
ν1,disc(G) is the set of representations π in the

set Π∗
disc(G) with νπ = ν1. Summing over the infinitesimal characters ν1 with

‖Im(ν1)‖ = t, we conclude that

(25.27)
∑

π∈Π∗
t,disc(G)

(
aG,Edisc(π)− aGdisc(π)

)
fG(π) = 0,

for any t ≥ 0.

The identity (25.27) holds for any function f in H
(
G(A),M

)0
. The third step

is to show that it extends to any f in the larger space H
(
G(A),M

)
. This is a

fairly standard argument. On the one hand, the left hand side of (25.27) is a linear
combination of point measures in the spectral variables of fG. On the other hand,

the linear forms whose kernels define the subspace H
(
G(A),M

)0
of H

(
G(A),M

)

are easily seen to be continuous in the spectral variables. Playing one against the
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other, one sees that (25.27) does indeed remain valid for any f inH
(
G(A),M

)
. (See

[AC, §2.16].) In particular, (25.22) vanishes for any such f . Since (25.20) equals
(25.23), we deduce that the sum of (25.23) and (25.21) vanishes for any function f
in H

(
G(A),M

)
.

The fourth step is to apply what we have just established to the expression
(25.23). Suppose that for each v ∈ Sram, fv is a given function in H

(
G(Fv)

)
.

Suppose also that γ1 is a fixed G-regular element in M(F ) that is M -elliptic at
two unramified places w1 and w2. At the places w 6∈ Sram, we choose functions
fw ∈ H

(
G(Fw)

)
so that fw,G(γ1) = 1, and so that the product f =

∏
fv lies in

H
(
G(A)

)
. We fix fw for w distinct from w1 and w2, but for w equal to w1 or w2,

we allow the support of fw to shrink around a small neighbourhood of γ1 in G(Fw).
Then f belongs to H

(
G(A),M

)
. Since the support of f remains within a fixed

compact set, we can take S to be some fixed finite set containing Sram, w1, and w2.
We can also restrict the sum in (25.23) to a finite set that is independent of f . (See
Remark 9 in §23.)

Since we are shrinking fw1 and fw2 around γ1, the terms fG(zu) in (25.21) all
vanish. In addition, the function

εM (f, γ) =
∑

v∈Sram

εM (fv, γ)f
v
M (γ)

in (25.23) is supported on the subset ΓG-reg(M) of G-regular classes in Γ(M)S . It
is in fact supported on classes γ that are G(Fwi )-conjugate to γ1. For the group
G at hand, any such class is actually G(F )-conjugate to γ1, and hence equal to
w−1
s γ1ws, for some s ∈ W (M). But

εM (fv, w
−1
s γ1ws)f

v
M (w−1

s γ1ws) = εM (fv, γ1)f
v
M (γ1).

Moreover, since γ1 is F -elliptic in M , the coefficients

aM (w−1
s γ1ws) = aM (γ1) = vol

(
Mγ1(F )\Mγ1(A)1

)

are all positive. The vanishing of the sum of (25.23) and (25.21) thus reduces to
the identity

εM (f, γ1) =
∑

v∈Sram

εM (fv, γ1)f
v
M (γ1) = 0.

This holds for any choice of functions fv ∈ H
(
G(Fv)

)
at the places v ∈ Sram.

Consider a fixed valuation v ∈ Sram. It follows from what we have just estab-
lished that if fv,G(γ1) = 0, then εM (fv, γ1) = 0. This in turn implies that if fv is
arbitrary, then

εM (fv, γ1) = εv(γ1)fv,M (γ1),

for a complex number εv(γ1) depending on the chosen element γ1 ∈ M(F ). Now,
it is known that G(F ) is dense in G(FS), for any finite set S ⊃ Sram. Letting the
G-regular point γ1 ∈M(F ) vary, we see that

εM (fv, γv) = εv(γv)fv,M (γv), γv ∈ ΓG-reg

(
M(Fv)

)
, fv ∈ H

(
G(Fv)

)
,

for a function εM on ΓG-reg

(
M(Fv)

)
that is smooth.

The last identity is a watershed. It represents a critical global contribution to
a local problem. It is also the input for one of the elementary applications of the
local trace formula in the article [A18]. The result in question is Theorem 3C of
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[A18], which asserts that the function εM (γv) actually vanishes. We can therefore
conclude that the linear form

εM (fv, γv) = IEM (γv, fv)− IM (γv, fv), f ∈ H
(
G(Fv)

)
,

vanishes for any G-regular class γv in M(Fv). It is then not hard to see from the
definitions (18.3), (18.12), (23.3) and (25.3) that the linear form vanishes for any
element γv ∈M(Fv) at all.

The fourth step we have just sketched completes the induction argument on
M . Indeed, the general identity (25.18) follows for any S from the splitting formula
(23.8), and the case S = {v} just established. In particular, the required identity
(25.10) is valid for any M . We have already noted that (25.18) implies the com-
panion identity (25.19). In particular, both required local identities (25.10) and
(25.12) of the two theorems are valid for any M .

The last step is to extract what remains of the required global identities (25.11)
and (25.13) from the properties of the expressions (25.21) and (25.23) we have
found. Since we have completed the induction argument on M , and since
H
(
G(A),M0

)
equals H

(
G(A)

)
by definition, the identity (25.27) holds for any

function f ∈ H
(
G(A)

)
. The sum in (25.27) can be taken over a finite set that

depends only on a choice of open compact subgroup K0 ⊂ G(Afin) under which f
is bi-invariant. It is then not hard to show that the coefficients

aG,Edisc(π)− aGdisc(π), π ∈ Π∗
t,disc(G),

in (25.27) vanish. This completes the proof of (25.13). Since (25.27) vanishes for any
f , so does the expression (25.22). We have already established that (25.20) vanishes.
It follows that the remaining expression (25.21) vanishes for any f ∈ H(G). By
varying f , one deduces that the coefficients

aG,E(zu)− aG(zu), z ∈ AG(F ), u ∈ Γunip(G)S ,

in (25.21) vanish. This completes the proof of (25.11). It also finishes the original
induction argument on n. (See [AC, §2.16] and [A18, §2–3].) �

For global applications, the most important assertion of the two theorems is
the identity (25.13) of global coefficients. It implies that

(25.28) It,disc(f) = I∗t,disc(f
∗),

for any t ≥ 0 and f ∈ H(G). Given the explicit definition (21.19) of It,disc(f),
one could try to use (25.28) to establish an explicit global correspondence π → π∗

from automorphic representations in the discrete spectrum of G to automorphic
representations in the discrete spectrum of G∗. However, this has not been done.
So far as I know, the best results are due to Vigneras [Vi], who establishes the
correspondence in the special case that for any v, G(Fv) is either the multiplicative
group of a division algebra, or is equal to GL(n, Fv). (See also [HT].) Since the
local condition implies that G(F )\G(A)1 is compact, this special case relies only on
the trace formula for compact quotient, and a simple version of the trace formula
(such as that of Corollary 23.6) for GL(n). The general problem seems to be
accesssible, at least in part, and would certainly be interesting.
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26. Functoriality and base change for GL(n)

The third application of the invariant trace formula is to cyclic base change
for GL(n). This again entails a comparison of trace formulas. The base change
comparison is very similar to that for inner twistings of GL(n). We recall that
the two were actually treated together in [AC]. Having just discussed the inner
twisting comparison in some detail, we shall devote most of this section to some
broader questions related to base change.

Base change is a special case of Langlands’ general principle of functoriality.
It is also closely related to a separate case of functoriality, Langlands’ conjectural
formulation of nonabelian class field theory. We have alluded to functoriality earlier,
without actually stating it. Let us make up for this omission now.

For the time being, G is to be a general group over the number field F . In fact,
we regard G as a group over some given extension k of F . The theory of algebraic
groups assigns to G a canonical based root datum

Ψ(G) = (X,∆, X∨,∆∨),

equipped with an action of the Galois group

Γk = Gal(k/k).

Recall that there are many based root data attached to G. They are in bijection
with pairs (B, T ), where T is a maximal torus in G, and B is a Borel subgroup
of G containing T . However, there is a canonical isomorphism between any two
of them, given by any inner automorphism of G between the corresponding two
pairs. It is this property that gives rise to the canonical based root domain Ψ(G).
By construction, the group Aut

(
Ψ(G)

)
of automorphisms of Ψ(G) is canonically

isomorphic to the group

Out(G) = Aut(G)/Int(G)

of outer automorphisms of G. The Γk-action on Ψ(G) comes from a choice of
isomorphism ψs from G to a split group G∗

s . It is given by the homomorphism from
Γk to Out(G) defined by

σ −→ ψs ◦ σ(ψs)
−1, σ ∈ Γk.

(See [Spr2, §1], [Ko3, (1.1)–(1.2)].)
Recall that a splitting of G is a pair (B, T ), together with a set {Xα : α ∈ ∆}

of nonzero vectors in the associated root spaces {gα : α ∈ ∆}. There is a canonical
isomorphism from the group Out(G), and hence also the group Aut

(
Ψ(G)

)
, onto

the group of automorphisms of G that preserve a given splitting [Spr2, Proposition
2.13]. Recall also that an action of any finite group by automorphisms on G is called
an L-action if it preserves some splitting of G. We define a dual group of G to be a

complex reductive group Ĝ, equipped with an L-action of Γk, and a Γk-isomorphism

from Ψ(Ĝ) to the dual
Ψ(G)∨ = (X∨,∆∨, X,∆)

of Ψ(G). Suppose for example that G is a torus T . Then

Ψ(T ) =
(
X(T ), ∅, X(T )∨, ∅

)
,

where X(T )∨ = Hom
(
X(T ),Z

)
is the dual of the additive character group X(T ).

The dual group of T is the complex dual torus

T̂ = X(T )⊗ C∗,
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defined as a tensor product over Z of two abelian groups. In general, Ĝ comes with

the structure that assigns to any pair (B, T ) for G, and any pair (B̂, T̂ ) for Ĝ, a

Γk-isomorphism from T̂ to a dual torus for T .
An L-group for G can take one of several forms. The Galois form is a semidirect

product
LG = Ĝ⋊ Γk,

with respect to the L-action of Γk on Ĝ. For many purposes, one can replace the
profinite group Γk with a finite group Γk′/k = Gal(k′/k), for a Galois extension k′/k
over which G splits. For example, if G is a group such as GL(n) that splits over

k, one can often work with Ĝ instead of the full L-group. If k is a local or global
field, one sometimes replaces Γk with the corresponding Weil group Wk, which we
recall is a locally compact group equipped with a continuous homomorphism into
Γk [Tat2]. The Weil form of the L-group is a semidirect product

LG = Ĝ⋊Wk

obtained by pulling back the L-action from Γk to Wk. The symbol LG is generally
used in this way to denote any of the forms of the L-group. Suppose that k is
the completion Fv of F with respect to a valuation v. The local Galois group ΓFv
or Weil group WFv comes with a conjugacy class of embeddings into its global
counterpart ΓF or WF . There is consequently a conjugacy class of embeddings of

the local L-group LGv into LG, which is trivial on Ĝ.
Suppose that as a group over F , G is unramified at a given place v. As we

recall, this means that v is nonarchimedean, that G is quasisplit over Fv, and that
G splits over a finite unramified extension F ′

v of Fv. We recall also that ΓF ′
v/Fv

is a
finite cyclic group, with a canonical generator the Frobenius automorphism Frobv.
We take the finite form

LGv = Ĝ⋊ ΓF ′
v/Fv

of the L-group of G over Fv determined by the outer automorphism Frobv of Ĝ. We
can choose a pair (Bv, Tv) defined over Fv such that the torus Tv splits over F ′

v, and
a hyperspecial maximal compact subgroupKv ofG(Fv) that lies in the apartment of
Tv [Ti]. The unramified representations ofG(Fv) (relative toKv) are the irreducible
representations whose restrictions to Kv contain the trivial representation.

If λ belongs to the space a∗Tv ,C, and 1v,λ is the unramified quasicharacter

tv −→ q
−λ(HTv (tv))
v , tv ∈ Tv(Fv),

the induced representation IBv (1v,λ) contains the trivial representation of Kv with
multiplicity 1. This representation need not be irreducible. However, it does have
a unique irreducible constituent πv,λ that contains the trivial representation of Kv,
and is hence unramified. Obviously πv,λ depends only on the image of λ in the
quotient of a∗Tv,C by the discrete subgroup

Λv =
( 2πi

log qv

)
Hom(aTv,Fv ,Z) =

i

log qv
a∨Tv,Fv .

It also depends only on the orbit of λ under the restricted Weyl group Wv0 of
(G,ATv ). The correspondence λ→ πv,λ is thus a mapping from the quotient

(26.1) Wv0\a∗Tv,C/Λv
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to the set of unramified representations of G(Fv). One shows that the mapping
is a bijection. (See [Ca], for example.) On the other hand, there is a canonical

homomorphism λ → q−λv from a∗Tv ,C/Λv to the complex torus T̂v, which takes a

point in (26.1) to a Wv0-orbit of points in T̂v. One shows that the correspondence

λ −→ q−λv ⋊ Frobv

is a bijection from (26.1) onto the set of semisimple conjugacy classes in LGv whose
image in ΓF ′

v/Fv
equals Frobv. (See [Bor3, (6.4), (6.5)], for example.) It follows

that there is a canonical bijection

πv −→ c(πv)

from the set of unramified representations of G(Fv) onto the set of semisimple
conjugacy classes in LGv that project to Frobv. This mapping is due to Langlands
[Lan3], and in itself justifies the introduction of the L-group.

The reader may recall that the symbol c(πv) also appeared earlier. It was
introduced in §2 (in the special case F = Q) to denote the homomorphism from
the unramified Hecke algebra Hv = H(Gv,Kv) to C attached to πv. The two uses
of the symbol are consistent. They are related by the Satake isomorphism from
Hv to the complex co-ordinate algebra on the space (26.1). (See [Ca, (4.2)], for
example. By the co-ordinate algebra on (26.1), we mean the subalgebra of Wv0-
invariant functions in the co-ordinate algebra of a∗Tv,C/Λv, regarded as a subtorus

of T̂v.) The complex valued homomorphisms of Hv are therefore bijective with the
points in (26.1), and hence with the set of semisimple conjugacy classes in LGv that
project to Frobv.

Suppose now that π is an automorphic representation of G. Then π =
⊗
πv,

where πv is unramified for almost all v. We choose a finite form LG = Ĝ ⋊ ΓF ′/F

of the global L-group, for some finite Galois extension F ′ of F over which G splits,
and a finite set of valuations S outside of which π and F ′ are unramified. For any
v 6∈ S, we then write cv(π) for the image of c(πv) under the canonical conjugacy

class of embeddings of LGv = Ĝ⋊ ΓF ′
v/Fv

into LG. This gives a correspondence

π −→ c(π) =
{
cv(π) : v 6∈ S}

from automorphic representations of G to families of semisimple conjugacy classes
in LG. The construction becomes independent of the choice of F ′ and S if we agree
to identify to families of conjugacy classes that are equal almost everywhere.

An automorphic representation thus carries some very concrete data, namely
the complex parameters that determine the conjugacy classes in the associated fam-
ily. The interest stems not so much from the values assumed by individual classes
cv(π), but rather in the relationships among the different classes implicit in the
requirement that π be automorphic. Following traditions from number theory and
algebraic geometry, Langlands wrapped the data in analytic garb by introducing
an unramified L-function

(26.2) LS(s, π, r) =
∏

v 6∈S

det
(
1− r

(
cv(π)

)
q−sv
)−1

,

for any automorphic representation π, any reasonable finite dimensional represen-
tation

r : LG −→ GL(N,C),
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and any finite set S of valuations outside of which π and r are unramified. He
observed that the product converged for Re(s) large, and conjectured that it had
analytic continuation with functional equation.

Langlands’ principle of functoriality [Lan3] postulates deep and quite unex-
pected reciprocity laws among the families c(π) attached to different groups. As-
sume that G is quasisplit over F , and that G′ is a second connected reductive group
over F . Suppose that

ρ : LG′ −→ LG

is an L-homomorphism of L-groups. (Besides satisfying the obvious conditions, an
L-homomorphism between two groups that each project onto a common Galois or
Weil group is required to be compatible with the two projections.) The principle
of functoriality asserts that for any automorphic representation π′ of G′, there is
an automorphic representation π of G such that

(26.3) c(π) = ρ
(
c(π′)

)
.

In other words, cv(π) = ρ
(
cv(π

′)
)

for every valuation v outside some finite set
S. Functoriality thus postulates a correspondence π′ → π of automorphic repre-

sentations, which depends only on the Ĝ-orbit of ρ. We shall recall three basic
examples.

Suppose that G is an inner form of a quasiplit group G∗, equipped with an
inner twist

ψ : G→ G∗.

In other words, ψ is an isomorphism such that ψ◦σ(ψ)−1 is an inner automorphism
of G∗ for every σ ∈ ΓF . It determines an L-isomorphism

Lψ : LG −→ LG∗,

which allows us to identify the two L-groups. Functoriality asserts that the set of
automorphic families {c(π)} of conjugacy classes for G is contained in the set of
such families {c(π∗)} for G∗. Our last section was devoted to the study of this
question in the case G∗ = GL(n). It is pretty clear from the conclusion (25.28),
together with the explicit formula for It,disc(f) and the fact that fv = f∗

v for almost
all v, that something pretty close to the assertion of functoriality holds in this case.
However, the precise nature of the correspondence remains open.

Langlands introduced the second example in his original article [Lan3], as a
particularly vivid illustration of the depth of functoriality. It concerns the case that
G is an arbitrary quasisplit group, and G′ is the trivial group {1}. The L-group LG′

need not be trivial, since it can take the form of the Galois group ΓF . Functoriality
applies to a continuous homomorphism

ρ : ΓF −→ LG

whose composition with the projection of LG on ΓF equals the identity. Since ΓF
is totally disconnected, ρ can be identified with an L-homomorphism from ΓF ′/F to

the restricted form LG = Ĝ⋊ΓF ′/F of the L-group of G given by some finite Galois
extension F ′ of F . Let S be any finite set of valuations v of F outside of which
F ′ is unramified. Then for any v 6∈ S, F ′

v′/Fv is an unramified extension of local
fields, for any (normalized) valuation v′ of F ′ over v. Its Galois group is cyclic,
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with a canonical generator Frobv = Frobv,F ′ , whose conjugacy class in ΓF ′/F is
independent of the choice of v′. Thus, ρ gives rise to a family

{
ρ(Frobv) : v 6∈ S

}

of conjugacy classes of finite order in LG. If π′ is the trivial automorphic represen-
tation of G′ = {1} and v 6∈ S, the image of cv(π

′) in the group LG′ = ΓF ′/F equals
Frobv, by construction. Functoriality asserts that there is an automorphic repre-
sentation π of G such that for any v 6∈ S, the class cv(π) in LG equals ρ(Frobv). A
more general assertion applies to the Weil form of LG′. In this form, functoriality
attaches an automorphic representation π to any L-homomorphism

φ : WF −→ LG

of the global Weil group into LG.
The third example is general base change. It applies to an arbitrary group

G′ over F , and a finite extension E of F over which G′ is quasisplit. Given these
objects, we take G to be the group RE/F (G′

E) over F obtained from the quasisplit

group G′ over E by restriction of scalars. Following [Bor3, §4–5], we identify Ĝ

with the group of functions g from ΓF to Ĝ′ such that

g(στ) = σg(τ), σ ∈ ΓE , τ ∈ ΓF ,

with pointwise multiplication, and ΓF -action

(τ1g)(τ) = g(ττ1), τ, τ1 ∈ ΓF .

We then obtain an L-homomorphism

ρ : LG′ −→ LG

by mapping any g′ ∈ LG′ to the function

g(τ) = τg′, τ ∈ ΓF ,

on ΓF . This case of functoriality can be formulated in slightly more concrete terms.
The restriction of scalars functor provides a canonical isomorphism from G(A) onto
G′(AE), which takes G(F ) to G′(E). The automorphic representations of G are
therefore in bijection with those of G′

E . This means that we can work with the

L-group LG′
E = Ĝ′ ⋊ ΓE of G′

E instead of LG. Base change becomes a conjectural
correspondence π′ → π of automorphic representations of G′ and G′

E such that for
any valuation v of F for which π′ and E are unramified, and any valuation w of E
over v, the associated conjugacy classes are related by

cv(π
′) = cw(π)fw , fw = deg(Ew/Fv).

We should bear in mind that Langlands also postulated a local principle of func-
toriality. This takes the form of a conjectural correspondence π′

v → πv of irreducible
representations of G′(Fv) and G(Fv), for any v and any local L-homomorphism ρv
of local L-groups, which is compatible with the global functoriality correspondence
π′ → π. Representations πv of the local groups G(Fv) are important for the func-
tional equations of L-functions (among many other things). Langlands conjectured
the existence of local L-functions L(s, πv, rv), which reduce to the relevant factors
of (26.2) in the unramified case, and local ε-factors

ε(s, πv, rv, ψv) = aq−bsv , a ∈ C, b ∈ Z,
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which equal 1 in the unramified case, such that the finite product

ε(s, π, r) =
∏

v

ε(s, πv, rv, ψv)

is independent of the nontrivial additive character ψ of A/F of which ψv is the
restriction, and such that the product

L(s, π, r) =
( ∏

v 6∈S

L(s, πv, rv)
)
LS(s, π, r)

satisfies the functional equation

(26.4) L(s, π, r) = ε(s, π, r)L(1 − s, π, r∨).

We have written r∨ here for the contragredient of the representation r. The local L-
functions and ε-factors should be compatible with the local version of functoriality,
in the sense that

L(s, π′
v, rv ◦ ρv) = L(s, πv, rv)

and
ε(s, πv, rv ◦ ρv, ψv) = ε(s, πv, rv, ψv).

These relations are obvious in the unramified case. In general, they imply corre-
sponding relations for global L-functions and ε-factors.

Suppose now that G = GL(n). The constructions above are, not surprisingly,
more explicit in this case. There is no harm in reviewing them in concrete terms.

Let v be a nonarchimedean valuation, and take (Bv, Tv) to be the standard pair
(B,M0). If λ belongs to a∗Tv ,C

∼= Cn, the induced representation IBv (1v,λ) acts by

right translation on the space of functions φ on G(Fv) such that

φ(bx) = |b11|λ1+n−1
2 |b22|λ2+

n−3
2 . . . |bnn|λn−(n−1

2 )φ(x), b ∈ Bv(Fv), x ∈ G(Fv).

It has a unique irreducible constituent πv,λ that contains the trivial representation
of Kv = GL(n, ov). Two such representations πv,λ′ and πv,λ are equivalent if and
only if the corresponding vectors λ′, λ ∈ Cn are related by

(λ′1, . . . , λ
′
n) ≡ (λσ(1), . . . , λσ(n))

(
mod

( 2πi

log qv

)
Zn
)
,

for some permutation σ ∈ Sn. The dual group Ĝ equals GL(n,C). We give it the

canonical structure, which assigns to the standard pairs (B, T ) and (B̂, T̂ ) in G and

Ĝ the obvious isomorphism of T̂ with the complex dual torus of T . Since the action

of ΓF on Ĝ is trivial, we can take the restricted form LG = Ĝ of the L-group. The
semisimple conjugacy class of the representation πv,λ is then given by

c(πv,λ) =







q−λ1
v 0

. . .

0 q−λnv







.

Given an automorphic representation π of GL(n), let S be any finite set of valua-
tions outside of which π is unramified. Then π gives rise to a family

c(π) =
{
cv(π) = c(πv) : v 6∈ S

}

of semisimple conjugacy classes in Ĝ = GL(n,C). It is known that if π occurs in
the spectral decomposition of L2

(
G(F )\G(A)

)
, it is uniquely determined by the

family c(π) [JaS]. This remarkable property is particular to G = GL(n).
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Consider a continuous n-dimensional representation r of ΓF . Then r lifts to a
representation of a finite group ΓF ′/F , for a finite Galois extension F ′ of F . We
may as well take F ′ to be the minimal such extension, for which ΓF ′ is the kernel
of r. Let S be any finite set of valuations outside of which F ′ is unramified. The
representation r then gives rise to a family

c(r) =
{
cv(r) = r(Frobv) : v 6∈ S

}

of semisimple conjugacy classes in Ĝ = GL(n,C). As in the automorphic setting,
the equivalence class of r is uniquely determined by c(r). For the Tchebotarev
density theorem characterizes F ′ as the Galois extension of F for which

SplF ′/F = {v 6∈ S : cv(r) = 1}
is the set of valuations outside of S that split completely in F ′. Since the Tcheb-
otarev theorem deals in densities of subsets, the characterization is independent
of the choice of S. The theorem also implies that every conjugacy class in the
group ΓF ′/F is of the form Frobv, for some v 6∈ S. The character of r is therefore
determined by the family c(r).

According to the second example of functoriality above, specialized to the case
that G = GL(n), there should be an automorphic representation π attached to
any r such that c(π) = c(r). Consider the further specialization to the case that
n = 1. The one dimensional characters of the group ΓF are the characters of its
abelianization Γab

F . The case n = 1 of Langlands’ Galois representation conjecture
could thus be interpreted as the existence of a surjective dual homomorphism

(26.5) GL(1, F )\GL(1,A) = F ∗\A∗ −→ Γab
F .

The condition c(π) = c(r) specializes to the requirement that the composition
of (26.5) with the projection of Γab

F onto the Galois group of any finite abelian
extension F ′ of F satisfy

xv −→ (Frobv)
ord(xv), xv ∈ F ∗

v ,

where v is any valuation that is unramified in F ′, Frobv is the corresponding
Frobenius element in the abelian group ΓF ′/F , and

ord(xv) = − logqv (|xv|).
The mapping (26.5) has been known for many years. It is the Artin reciprocity
law, which is at the heart of class field theory. (See [Has], [Tat1].) Langlands’
Galois representation conjecture thus represents a nonabelian analogue of class field
theory. If n = 2 and ΓF ′/F is solvable, it was established as a consequence of cyclic
base change for GL(2) [Lan9], [Tu]. If n is arbitrary and ΓF ′/F is nilpotent, it is
a consequence [AC, Theorem 3.7.3] of cyclic base change for GL(n), the ostensible
topic of this section. Other cases for n = 2 have been established [BDST], as have
a few other cases in higher rank.

Besides extending class field theory, Langlands’ Galois representation conjec-
ture has important implications for Artin L-functions

LS(s, r) =
∏

v 6∈S

det
(
1− r(Frobv)q

−s
v

)−1
.

If r corresponds to π, it is clear that

(26.6) LS(s, r) = LS(s, π),
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where LS(s, π) is the automorphic L-function for GL(n) relative to the standard, n-
dimensional representation of LG = GL(n,C). It has been known for some time how
to construct the local L-functions and ε-factors in this case so that the functional
equation (26.4) holds [GoJ]. These results are now part of the larger theory of
Rankin-Selberg L-functions L(s, π1 × π2), attached to representations π1 ⊗ π2 of
GL(n1)×GL(n2), and the representation

(g1, g2) : X −→ g1Xg
−1
2 , X ∈Mn1×n2(C),

of GL(n1,C)×GL(n2,C) [JPS]. In fact, there is a broader theory still, known as
the Langlands-Shahidi method, which exploits the functional equations from the
theory of Eisenstein series. It pertains to automorphic L-functions of a maximal
Levi subgroup M of a given group, and the representation of LM on the Lie algebra
of a unipotent radical [GS]. Be that as it may, our refined knowledge of the
automorphic L-function in the special case encompassed by the right hand side of
(26.6) would establish critical analytic properties of the Artin L-function on the
left hand side of (26.6).

The Langlands conjecture for Galois representations (which we re-iterate is but
a special case of functoriality) is still far from being solved in general. However, it
plays an important role purely as a conjecture in motivating independent operations
on automorphic representations. Nowhere is this more evident than in the question
of cyclic base change of prime order for the group GL(n).

Suppose that E is a Galois extension of F , with cyclic Galois group
{1, σ, . . . , σℓ−1} of prime order ℓ. To be consistent with the description of base
change above, we change notation slightly. We write r′ instead of r for a con-
tinuous n-dimensional representation of ΓF , leaving r to stand for a continuous
n-dimensional representation of ΓE . Regarded as equivalence classes of representa-
tions, these two families come with two bijections r → rσ and r′ → r′⊗η of order ℓ,
where rσ(τ) = r(στσ−1), and η is the pullback to ΓF of the character on ΓE/F that

maps the generator σ to e
2πi
ℓ . The main operation is the mapping r′ → r obtained

by restricting r′ to the subgroup ΓE of ΓF . This mapping is characterized in terms
of conjugacy classes by the relation

cw(r) =

{
cv(r

′), if v splits in E,

cv(r
′)ℓ, otherwise,

for any valuation v of F at which r′ and E are unramified and any valuation w over
v, and satisfies the following further conditions.

(i) The image of the mapping is the set of r with rσ = r.
(ii) If r′ is irreducible, the fibre of its image equals

{r′, r′ ⊗ η, . . . , r′ ⊗ ηℓ−1}.
(iii) If r′ is irreducible, its image r is irreducible if and only if r′ 6= r′ ⊗ η,

which is to say that the fibre in (ii) contains ℓ elements.
(iv) If r′ is irreducible and r′ = r′ ⊗ η, its image equals a direct sum

r = r1 ⊕ rσ1 ⊕ · · · ⊕ rσ
ℓ−1

1 ,

for an irreducible representation r1 of degree n1 = nℓ−1 such that rσ1 6= r1.
Conversely, the preimage of any such direct sum consists of a representa-
tion r′ that is irreducible and satisfies r′ = r′ ⊗ η.
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These conditions are all elementary consequences of the fact that ΓE is a normal
subgroup of prime index in ΓF . For example, the representation r′ in (iv) is obtained
by induction of the representation r1 from ΓE to ΓF .

Base change is a mapping of automorphic representations with completely par-
allel properties. We write π′ and π for (equivalence classes of) automorphic repre-
sentations of GL(n)F and GL(n)E respectively. The two families come with bijec-
tions π → πσ and π′ → π′ ⊗ η of order ℓ, where πσ(x) = π

(
σ(x)

)
, and η has been

identified with the 1-dimensional automorphic representation of GL(n)F obtained
by composing the determinant on GL(n,A) with the pullback of η to GL(1,A) by
(26.5). The results of [AC] were established for cuspidal automorphic representa-
tions, and the larger class of “induced cuspidal” representations. For GL(n)E , this
larger class consists of induced representations

π = π1 ⊠ · · ·⊠ πp = IndGP (π1 ⊗ · · · ⊗ πp),
where P is the standard parabolic subgroup of GL(n) corresponding to a partition
(n1, . . . , np), and πi is a unitary cuspidal automorphic representation of GL(ni)E .
Any such representation is automorphic, by virtue of the theory of Eisenstein series.

Theorem 26.1. (Base change for GL(n)). There is a mapping π′ → π from
induced cuspidal automorphic representations of GL(n)F to induced cuspidal auto-
morphic representations of GL(n)E, which is characterized by the relation

(26.7) cw(π) =

{
cv(π

′), if v splits in E,

cv(π
′)ℓ, otherwise,

for any valuation v of F at which π′ and E are unramified and any valuation w of
F over v, and which satisfies the following further conditions.

(i) The image of the mapping is the set of π with πσ = π.
(ii) If π′ is cuspidal, the fibre of its image equals

{π′, π′ ⊗ η, . . . , π′ ⊗ ηℓ−1}.
(iii) If π′ is cuspidal, its image π is cuspidal if and only if π′ 6= π′ ⊗ η, which

is to say that the fibre in (ii) contains ℓ elements.
(iv) If π′ is cuspidal and π′ = π′ ⊗ η, its image equals a sum

π = π1 ⊠ πσ1 ⊠ · · ·⊠ πσ
ℓ−1

1 ,

for a cuspidal automorphic representation π1 of GL(n1)E such that
πσ1 6= π1. Conversely, the preimage of any such sum consists of a rep-
resentation π′ that is cuspidal and satisfies π′ = π′ ⊗ η.

Remark. The theorem provides two mappings of cuspidal automorphic repre-
sentations. Base change gives an ℓ to 1 mapping π′ → π, from the set of cuspidal
representations of π′ of GL(n)F with π′ 6= π′ ⊗ η onto the set of cuspidal repre-
sentations π of GL(n)E with π = πσ. The second mapping is given by (iv), and is
known as automorphic induction. It is an ℓ to 1 mapping π1 → π′, from the set of
cuspidal autmorphic representations π1 of GL(n1)E with π1 6= πσ1 onto the set of
cuspidal automorphic representations π′ of GL(n)E with π′ = π′ ⊗ η.

Theorem 26.1 contains the main results of [AC]. It is proved by a comparison
of two trace formulas. One is the invariant trace formula for the group GL(n)F .
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The other is the invariant twisted trace formula, applied to the automorphism of
the group RE/F

(
GL(n)E

)
determined by σ.

The twisted trace formula is a generalization of the ordinary trace formula. It
applies to an F -rational automorphism θ of finite order of a connected reductive
group G over F . The twisted trace formula was introduced by Saito for classical
modular forms [Sai], by Shintani for the associated automorphic representations of
GL(2) (see [Shin]), and by Langlands for general automorphic representations of
GL(2) [Lan9]. The idea, in the special case of compact quotient, for example, is
to express the trace of an operator

R(f) ◦ θ, f ∈ H
(
G(A)

)
,

in terms of twisted orbital integrals∫

Gθγ(A)\G(A)

f
(
x−1γθ(x)

)
dx, γ ∈ G(F ).

This gives a geometric expression for a sum of twisted characters
∑

π

m(π)tr
(
π(f) ◦ θ

)
,

taken over irreducible representations π of G such that πθ = π. It is exactly the
sort of formula needed to quantify the proposed image of the base change map.

In general, our discussion that led to the invariant trace formula applies also
to the twisted case. (See [CLL], [A14].) Most of the results in fact remain valid as
stated, if we introduce a minor change in notation. We take G to be a connected
component of a (not necessarily connected) reductive group over F such that G(F )
is not empty. We write G+ for the reductive group generated by G, and G0 for the
connnected component of 1 in G+. We then consider distributions on G(A) that are
invariant with respect to the action ofG0(A) onG(A) by conjugation. The analogue
of the Hecke algebra becomes a space H(G) of functions on a certain closed subset
G(A)1 of G(A). The objects of Theorems 23.2, 23.3, and 23.4 can all be formulated
in this context, and the invariant twisted trace formula becomes the identity of
Theorem 23.4. (See [A14].) It holds for any G, under one condition. We require
that the twisted form of the archimedean trace Paley-Wiener theorem of Clozel-
Delorme [CD] hold for G. This condition, which was established by Rogawski in
the p-adic case [Ro2], is needed to characterize the invariant image I(G) of the
twisted Hecke algebra H(G). (See also [KR].)

For base change, we take

G = G0 ⋊ θ, G0 = RE/F
(
GL(n)E

)
,

where θ is the automorphism of G0 defined by the generator σ of ΓE/F . We also set
G′ = GL(n)F . Our task is to compare the invariant twisted trace formula of G with
the invariant trace formula of G′. The problem is very similar to the comparison
for inner twistings of GL(n), treated at some length in §25. In fact, we recall that
the two comparisons were actually treated together in [AC]. We shall add only
a few words here, concentrating on aspects of the problem that are different from
those of §25.

The first step is to define a mapping γ → γ′, which for any k ⊃ F takes the
set Γ

(
G(k)

)
of G0(k)-orbits in G(k) to the set Γ

(
G′(k)

)
of conjugacy classes in

G′(k). The mapping is analogous to the injection γ → γ∗ of §25. In place of the
inner twist, one uses the norm mapping from number theory, which in the present
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context becomes the mapping γ → γℓ from G to G0. Setting k = Fv, one uses
the mapping γv → γ′v to transfer twisted orbital integrals on Γreg

(
G(Fv)

)
. This

gives a transformation fv → f ′
v, from functions fv ∈ H

(
G(Fv)

)
to functions f ′ on

Γreg

(
G′(Fv)

)
. One then combines Theorem 25.1 with methods of descent to show

that f ′
v lies in the invariant Hecke algebra I

(
G′(Fv)

)
.

One has then to combine the mappings fv → f ′
v into a global correspondence

of adelic functions. This is more complicated than it was in §25. The problem is
that G′(Fv) is distinct from G(Fv) at all places, not just the unramified ones. At
almost all places v, we want fv to be the characteristic function of the compact
subset Kv = K0

v ⋊ θ = G(ov) of G(Fv), and f ′
v to be the image in I

(
G′(Fv)

)
of the

characteristic function of the maximal compact subgroup K ′
v = G′(ov) of G′(Fv).

However, we do not know a priori that this is compatible with the transfer of orbital
integrals. The assertion that the two mappings are in fact compatible is a special
case of the twisted fundamental lemma. It was established in the case at hand
by Kottwitz [Ko4]. The result of Kottwitz allows us to put the local mappings
together. We obtain a mapping f → f ′ from H(G) to I(G′), which takes any
subspace H

(
G(FS)1

)
of H(G) to the corresponding subspace I

(
G′(FS)1

)
of I(G′).

The next step is to extend the fundamental lemma to more general func-
tions in an unramified Hecke algebra H

(
G(Fv),K

0
v

)
. More precisely, one needs

to show that at an unramified place v, the canonical mapping from H
(
G(Fv),K

0
v

)

to H
(
G′(Fv),K

′
v

)
defined by Satake isomorphisms is compatible with the trans-

fer of orbital integrals. This was established in [AC, §1.4], using the special case
established by Kottwitz, and the simple forms of Corollary 23.6 of the two trace
formulas. Further analysis of the two simple trace formulas allows one to establish
local base change [AC, §1.6–1.7]. The result is a mapping π′

v → πv of tempered
representations, which satisfies local forms of the conditions of the theorem, and is
the analogue of Theorem 25.1(b).

The expansions (23.11) and (23.12) represent the two sides of the invariant
twisted trace formula for G. We define “endoscopic” forms IEM (γ, f), aM,E(γ),
IEM (π, f) and aM,E(π) of the terms in the two expansions by using the mapping
f → f ′ to pull back the corresponding terms from G′. The constructions are similar
to those of §25, but with one essential difference. In the present situation, we have

to average spectral objects ÎM ′ (·, f ′) and aM
′

(·) over representations τ ⊗ ξ, for
characters ξ on M ′(A) obtained from the original character η on ΓE/F . The reason
for this is related to condition (ii) of the theorem, which in turn is a consequence of
the fact that the norm mapping is not surjective. However, the averaging operation
is not hard to handle. It is an essential part of the discussion in [AC, §2.10–2.12].
The identities of Theorems 25.5 and 25.6 can therefore be formulated in the present
context. Their proof is more or less the same as in §25.

The analogue of the global spectral identity (25.13) (with M = G) is again
what is most relevant for global applications. It leads directly to an identity

(26.8) It,disc(f) = Î ′t,disc(f
′), f ∈ H(G),

of t-discrete parts of the two trace formulas. One extracts global information from
the last identity by allowing local components fv of f to vary over unramified Hecke
algebras H

(
G(Fv),K

0
v

)
. By combining general properties of the distributions in

(26.8) with operations on Rankin-Selberg L-functions L(s, π1×π2), one establishes
all the assertions of the theorem. (See [AC, Chapter 3].) �
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We remark that the proof of base change in [AC] works only for cyclic exten-
sions of prime degree (despite assertions in [AC] to the contrary). The mistake,
which occurred in Lemma 6.1 of [AC], was pointed out by Lapid and Rogawski.
In the case of G = GL(2), they characterized the image of base change for a gen-
eral cyclic extension by combining the special case of Theorem 26.1 established by
Langlands [Lan9] with a second comparison of trace formulas [LR]. There is also a
gap in the density argument at the top of p. 196 of [AC], which was filled in [A29,
Lemma 8.2].

We know that the spectral decomposition for GL(n) contains more than just
induced cuspidal representations. In particular, the discete spectrum contains more
than the cuspidal automorphic representations. The classification of the discrete
spectrum for GL(n) came after [AC]. It was established through a deep study by
Moeglin and Waldspurger of residues of cuspidal Eisenstein series [MW2], following
earlier work of Jacquet [J].

Theorem 26.2. (Moeglin-Waldspurger). The irreducible representations π of
GL(n,A) that occur in L2

disc

(
GL(n, F )\GL(n,A)1

)
have multiplicity one, and are

parametrized by pairs (k, σ), where n = kp is divisible by k, and σ in an irreducible
unitary cuspidal automorphic representation of GL(k,A). If P is the standard para-
bolic subgroup of GL(n) of type (k, . . . , k), and ρσ is the nontempered representation

(σ ⊗ · · · ⊗ σ) · δ
1
2

P : m→
(
σ(m1)| det m1|

p−1
2

)
⊗ · · · ⊗

(
σ(mp)| det mp|−

p−1
2

)

of MP (A) ∼= GL(k,A)p, then π is the unique irreducible quotient of the induced
representation IP (ρσ). �

If we combine Theorem 26.1 with Theorem 26.2 (and the theory of Eisenstein
series), we obtain a base change mapping π′ → π for any representation π′ of
G′(A) that occurs in the spectral decomposition of L2

(
G′(F )\G′(A)

)
. It would be

interesting, and presumably not difficult, to describe the general properties of this
mapping. It would also be interesting to try to establish the last step of the proof
of Theorem 26.1 without recourse to the argument based on L-functions in [AC,
Chapter 3]. This might be possible with a careful study of the fine structure of the
distributions on each side of (26.8).

As a postscript to this section on base change, we note that there is a sug-
gestive way to look at the theorem of Moeglin and Waldspurger. It applies to
those representations π in the discrete spectrum for which the underlying cuspidal
automorphic representation σ is attached to an irreducible representation

µ : WF −→ GL(k,C)

of the global Weil group, according to the special case of functoriality we discussed
earlier. One expects σ to be tempered. This means that µ is (conjugate to) a
unitary representation, or equivalently, that its image in GL(k,C) is bounded. We
are assuming that n = kp, for some positive integer p. Let ν be the irreducible rep-
resentation of the group SL(2,C) of degree p. We then represent the automorphic
representation π by the irreducible n-dimensional representation

ψ = µ⊗ ν : WF × SL(2,C) −→ GL(n,C)

of the product of WF with SL(2,C). Set

φψ(w) = ψ

(
w,

(
|w| 12 0

0 |w|− 1
2

))
, w ∈WF ,
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where |w| is the canonical absolute value on WF . By comparing the unramified
constituents of π with the unramified images of Frobenius classes in WF , we see
that π is the automorphic representation corresponding to the n-dimensional rep-
resentation φψ of WF . Thus, according to functoriality, there is a mapping ψ → π,
from the set of irreducible n-dimensional representations of WF × SL(2,C) whose
restriction to WF is bounded, into the set of automorphic representations π of
GL(n) that occur in the discrete spectrum. Removing the condition that ψ be
irreducible gives rise to representations π that occur in the general spectrum.

27. The problem of stability

We return to the general trace formula. The invariant trace formula of Theorem
23.4 still has one serious deficiency. The invariant distributions on each side are not
usually stable. We shall discuss the notion of stability, and why it is an essential
consideration in any general attempt to compare trace formulas on different groups.

Stability was discovered by Langlands in attempting to understand how to
generalize the Jacquet-Langlands correspondence. We discussed the extension of
this correspondence from GL(2) to GL(n) in §25, but it is for groups other than
GL(n) that the problems arise. Suppose then that G is an arbitrary connected
reductive group over our number field F . We fix an inner twist

ψ : G −→ G∗,

where G∗ is a quasisplit reductive group over F . One would like to establish the
reciprocity laws between automorphic representations of G and G∗ predicted by
functoriality.

To use the trace formula, we would start with a test function f for G. For
the time being, we take f to be a function in C∞

c

(
G(A)1

)
, which we assume is the

restriction of a product of functions
∏

v

fv, fv ∈ C∞
c

(
G(Fv)

)
.

If we were to follow the prescription of Jacquet-Langlands, we would map f to a
function f∗ on G(A)1 obtained by restriction of a product

∏
f∗
v of functions on

the local groups G∗(Fv). Each function f∗
v would be attached to the associated

function fv on G(Fv) by imposing a matching condition for the local invariant
orbital integrals of fv and f∗

v . This would in turn require a correspondence γv → γ∗v
between strongly regular conjugacy classes. How might such a correspondence be
defined in general?

In the special case discussed in §25, the correspondence of strongly regular
elements can be formulated explicitly in terms of characteristic polynomials. For
any k ⊃ F , one matches a characteristic polynomial on the matrix algebra Mn(k)
with its variant for the central simple algebra that defines G. Now the coefficients
of characteristic polynomials have analogues for the general group G. For example,
one can take any set of generators of the algebra of G-invariant polynomials on
G. These objects can certainly be used to transfer semisimple conjugacy classes
from G to G∗. However, invariant polynomials measure only geometric conjugacy
classes, that is, conjugacy classes in the group of points over an algebraically closed
field. In general, if k is not algebraically closed, and G is just about any group
other than GL(n) (or one of its inner twists), there can be nonconjugate elements
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in G(k) that are conjugate over an algebraic closure G(k). For example, in the case
that G = SL(2) and k = R, the relation

(
cos θ − sin θ
sin θ cos θ

)
=

(
i 0
0 −i

)(
cos θ sin θ
− sin θ cos θ

)(
−i 0
0 i

)

represents conjugacy over G(C) of nonconjugate elements in G(R). This phenom-
enon obviously complicates the problem of transferring conjugacy classes.

Langlands defined two strongly regular elements in G(k) to be stably conjugate
if they were conjugate over an algebraic closure G(k). Stable conjugacy is thus an
equivalence relation that is weaker than conjugacy. Suppose that δ belongs to the
set ∆reg

(
G(k)

)
of (strongly regular) stable conjugacy classes in G(k). The image

ψ(δ) of δ in G∗ yields a well defined conjugacy class in G(k). If σ belongs to
Gal(k/k),

σ
(
ψ(δ)

)
= σ(ψ)σ(δ) = α(σ)−1ψ(δ),

for the inner automorphism α(σ) = ψ◦σ(ψ)−1 of G∗. The geometric conjugacy class
of ψ(δ) is therefore defined over k. Because G∗ is quasisplit and ψ(δ) is semisimple,
an important theorem of Steinberg [Ste] implies that the geometric conjugacy class
has a representative in G(k). This representative is of course not unique, but it does
map to a well defined stable conjugacy class δ∗ ∈ ∆reg

(
G∗(k)

)
. We therefore have

an injection δ → δ∗ from ∆reg

(
G(k)

)
to ∆reg

(
G∗(k)

)
, determined canonically by ψ.

(The fact that Steinberg’s theorem holds only for quasisplit groups is responsible
for the mapping not being surjective.) We cannot however expect to be able to
transfer ordinary conjugacy classes γ ∈ Γreg

(
G(k)

)
from G to G∗.

Besides the subtle global questions it raises for the trace formula, stable con-
jugacy also has very interesting implications for local harmonic analysis. Suppose
that k is one of the local fields Fv. In this case, there are only finitely many conju-
gacy classes in any stable class. One defines the stable orbital integral of a function
fv ∈ C∞

c

(
G(Fv)

)
over a (strongly regular) stable conjugacy class δv as a finite sum

fGv (δv) =
∑

γv

fv,G(γv)

of invariant orbital integrals, taken over the conjugacy classes γv in the stable class
δv. (It is not hard to see how to choose compatible invariant measures on the
various domains Gγv (Fv)\G(Fv).) An invariant distribution Sv on G(Fv) is said
to be stable if its value at fv depends only on the set of stable orbital integrals

{fGv (δv)} of fv. Under this condition, there is a continuous linear form Ŝv on the
space of functions

SI
(
G(Fv)

)
=
{
fGv : fv ∈ H

(
G(Fv)

)}

on ∆reg

(
G(Fv)

)
such that

Sv(fv) = Ŝv(f
G
v ), fv ∈ H

(
G(Fv)

)
.

We thus have a whole new class of distributions on G(Fv), which is more restrictive
than the family of invariant distributions. Is there some other way to characterize
it?

In general terms, one becomes accustomed to thinking of conjugacy classes
as being dual to irreducible characters. From the perspective of local harmonic
analysis, the semisimple conjugacy classes in G(Fv) could well be regarded as dual
analogues of irreducible tempered characters on G(Fv). The relation of stable
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conjugacy ought then to determine a parallel relationship on the set of tempered
characters. (In [Ko1], Kottwitz extended the notion of stable conjugacy to ar-
bitrary semisimple elements.) Langlands called this hypothetical relationship L-
equivalence, and referred to the corresponding equivalence classes as L-packets,
since they seemed to preserve the local L-functions and ε-factors attached to irre-
ducible representations of G(Fv). He also realized that in the case Fv = R, there
was already a good candidate for this relationship in the work of Harish-Chandra.

Recall from §24 that G(R) has a discrete series if and only if G has an elliptic
maximal torus TG over R. In this case, the discrete series occur in finite packets
Π2(µ). On the other hand, any strongly regular elliptic conjugacy class for G(R)
intersects TG,reg(R). Moreover, two elements in TG,reg(R) are G(R)-conjugate if and
only if they lie in the same W (KR, TG)-orbit, and are stably conjugate if and only
if they are in the same orbit under the full Weyl group W (G, TG). This is because
W (KR, TG) is the subgroup of elements in W (G, TG) that are actually induced by
conjugation from points in G(R). It can then be shown from Harish-Chandra’s
algorithm for the characters of discrete series that the sum of characters

Θ(µ, γ) =
∑

πR∈Π2(µ)

Θ(πR, γ), γ ∈ Greg(R),

attached to representations in a packet Π2(µ), depends only on the stable conjugacy
class of γ, rather than its actual conjugacy class. In other words, the distribution

fR −→
∑

πR∈Π2(µ)

fR,G(πR), fR ∈ C∞
c

(
G(R)

)
,

on G(R) is stable. This fact justifies calling Θ(µ, γ) a “stable character”, and des-
ignating the sets Π2(µ) the L-packets of discrete series. It also helps to explain
why the sum over πR ∈ Π2(µ), which occurs on each side of the “finite case” of the
trace formula in Theorem 24.1, is a natural operation. Langlands used the L-packet
structure of discrete series as a starting point for a classification of the irreducible
representations of G(R), and a partition of the representations into L-packets gov-
erned by their local L-functions [Lan11]. (Knapp and Zuckerman [KZ2] later
determined the precise structure of the L-packets outside the discrete series.) The
Langlands classification for real groups applies to all irreducible representations,
but it is only for the tempered representations that the sum of the characters in an
L-packet is stable.

Let us return to the invariant trace formula. The basic questions raised by the
problem of stability can be posed for the simplest terms on the geometric side. Let
Γreg,ell(G) be the set of conjugacy classes γ in G(F ) that are both strongly regular
and elliptic. An element γ ∈ G(F ) represents a class in Γreg,ell(G) if and only if
the centralizer Gγ is a maximal torus in G that is elliptic, in the usual sense that
AGγ = AG. It follows from the definitions that

Γreg,ell(G) ⊂ Γanis(G) ⊂ Γ(G)S .

The elements in Γreg,ell(G) are in some sense the generic elements in the set Γ(G)S ,
which we recall indexes the terms in the sum with M = G on the geometric side.
The regular elliptic part

(27.1) Ireg,ell(f) =
∑

γ∈Γreg,ell(G)

aG(γ)fG(γ)
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of the trace formula therefore represents the generic part of this sum.
The first question that comes to mind is the following. Is the distribution

f −→ Ireg,ell(f), f ∈ C∞
c

(
G(A)1

)
,

stable? In other words, does Ireg,ell(f) depend only on the family of stable orbital
integrals {fGv (δv)}? An affirmative answer could solve many of the global problems
created by stability. For in order to compare Ireg,ell with its analogue on G∗, it
would then only be necessary to transfer f to a function f∗ on ∆G-reg

(
G∗(A)

)
,

something we could do by the local correspondence of stable conjugacy classes.
A cursory glance seems to suggest that the answer is indeed affirmative. The

volume

aG(γ) = vol
(
Gγ(Q)\Gγ(A)1

)
, γ ∈ Γreg,ell(G),

depends only on the stable conjugacy class δ of γ in G(F ), since it depends only
on the F -isomorphism class of the maximal torus Gγ . We can therefore write

(27.2) Ireg,ell(f) =
∑

δ

aG(δ)
(∑

γ→δ

fG(γ)
)
,

where δ is summed over the set ∆reg,ell(G) of elliptic stable classes in ∆reg

(
G(F )

)
,

γ is summed over the preimage of δ in Γreg,ell(G), and aG(δ) = aG(γ). The sum
over γ looks as if it might be stable in f . However, a closer inspection reveals that
it is not. For we are demanding that the distribution be stable in each component
fv of f . If

δA =
∏

v∈S

δv, δv ∈ ∆reg

(
G(Fv)

)
,

is a product of local stable classes with a rational representative δ, each ordinary
conjugacy class γA =

∏
γv in δA would also have to have a rational representative

γ. It turns out that there are not enough rational conjugacy classes γ for this to
happen. Contrary to our initial impression then, the distribution Ireg,ell(f) is not
generally stable in f .

Since Ireg,ell(f) need not be stable, the question has to be reformulated in
terms of stabilizing this distribution. The problem may be stated in general terms
as follows.

Express Ireg,ell(f) as the sum of a canonical stable distribution SGreg,ell(f) with
an explicit error term.

The first group to be investigated was SL(2). Labesse and Langlands stabilized the
full trace formula for this group, as well as for its inner forms, and showed that the
solution had remarkable implications for the corresponding spectral decompositions
[Lab1], [She1], [LL]. Langlands also stabilized Ireg,ell in the general case, under
the assumption of two conjectures in local harmonic analysis [Lan10].

In his general stabilization of Ireg,ell(f), Langlands constructed the stable com-
ponent SGreg,ell explicitly. He expressed the error term in terms of corresponding

stable components attached to groups G′ of dimension smaller than G. The groups
{G′} are all quasisplit. Together with the group G′ = G∗ of dimension equal to
G, they are known as elliptic endoscopic groups for G. For each G′, Langlands
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formulated a conjectural correspondence f → f ′ between test functions for G and
G′. His stabilization then took the form

(27.3) Ireg,ell(f) =
∑

G′

ι(G,G′)Ŝ′
G-reg,ell(f

′),

for explicitly determined coefficients ι(G,G′), and stable linear forms S′
G-reg,ell at-

tached to G′. In case G′ = G∗, the corresponding terms satisfy ι(G,G′) = 1 and
S∗
G-reg,ell = S∗

reg,ell. The stable component of Ireg,ell(f) is the associated summand

SGreg,ell(f) = Ŝ∗
reg,ell(f

∗).

For arbitrary G′, S′
G-reg,ell is the strongly G-regular part of S′

reg,ell, obtained from

classes in ∆reg,ell(G
′) whose image in G remains strongly regular.

Langlands’ stabilization is founded on class field theory. Specifically, it depends
on the application of Tate-Nakayama duality to the Galois cohomology of algebraic
groups. The basic relationship is easy to describe. Suppose that δ is a strongly
regular element in G(k), for some k ⊃ F . The centralizer of δ in G is a maximal
torus T over k. Suppose that γ ∈ G(k) is stably conjugate to δ. Then γ equals
g−1δg, for some element g ∈ G(k). If σ belongs to Gal(k/k), we have

δ = σ(δ) = σ(gγg−1) = σ(g)γσ(g)−1 = t(σ)−1δt(σ),

where t(σ) is the 1-cocycle gσ(g)−1 from Gal(k/k) to T (k). One checks that a
second element γ1 ∈ G(k) in the stable class of δ is G(k)-conjugate at γ if and
only if the corresponding 1-cocycle t1(σ) has the same image as t(σ) in the Galois
cohomology group

H1(k, T ) = H1
(
Γk, T (k)

)
, Γk = Gal(k/k).

Conversely, an arbitrary class in H1(k, T ) comes from an element γ if and only if
it is represented by a 1-cocycle of the form gσ(g)−1. The mapping γ → t therefore
defines a bijection from the set of G(k)-conjugacy classes in the stable conjugacy
class of δ to the kernel

(27.4) D(T ) = D(T/k) = ker
(
H1(k, T )→ H1(k,G)

)
.

Keep in mind that H1(k,G) is only a set with distinguished element 1, since G
is generally nonabelian. The preimage D(T ) of this element in H1(k, T ) therefore
need not be a subgroup. However, D(T ) is contained in the subgroup

E(T ) = E(T/k) = im
(
H1(k, Tsc)→ H1(k, T )

)

of H1(k, T ), where Tsc is the preimage of T in the simply connected cover Gsc of the
derived group of G. This is because the canonical map D(Tsc)→ D(T ) is surjective.
If H1(k,Gsc) = {1}, which is the case whenever k is a nonarchimedean local field
[Spr1, §3.2], D(T ) actually equals the subgroup E(T ). This is one of the reasons
why one works with the groups E(T ) in place of H1(T,G), and why the simply
connected group Gsc plays a significant role in the theory.

In the case that k is a local or global field, Tate-Nakayama duality applies class
field theory to the groups H1(k, T ). If k is a completion Fv of F , it provides a
canonical isomorphism

H1(Fv, T )
∼−→ π0(T̂

Γv)∗
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of H1(Fv, T ) with the group of characters on the finite abelian group π0(T̂
Γv). We

have written Γv here for the Galois group ΓFv = Gal(F v/Fv), which acts on the
complex dual torus

T̂ = X(T )⊗ C∗

through its action on the group of rational charactersX(T ). As usual, π0(·) denotes
the set of connected components of a topological space. If k = F , Tate-Nakayama
duality characterizes the group

H1
(
F, T (A)/T (F )

)
= H1

(
ΓF , T (AF̄ )/T (F )

)
= H1

(
ΓF ′/F , T (AF ′)/T (F ′)

)
,

where F ′ is some finite Galois extension of F over which T splits. It provides a
canonical isomorphism

H1
(
F, T (A)/T (F )

) ∼−→ π0(T̂
Γ)∗,

where the Galois group Γ = ΓF = Gal(F/F ) again acts on the complex torus T̂
through its action on X(T ). If we combine this with the long exact sequence of
cohomology attached to the exact sequence of Γ-modules

1 −→ T (F ) −→ T (A) −→ T (A)/T (F ) −→ 1,

and the isomorphism

H1
(
F, T (A)

) ∼=
⊕

v

H1(Fv , T )

provided by Shapiro’s lemma, we obtain a characterization of the diagonal image
of H1(F, T ) in the direct sum over v of the groups H1(Fv, T ). It is given by a
canonical isomorphism from the cokernel

(27.5) coker1(F, T ) = coker
(
H1(F, T ) −→

⊕

v

H1(Fv, T )
)

onto the image

im
(⊕

v

π0(T̂
Γv)∗ −→ π0(T̂

Γ)∗
)
.

If these results are combined with their analogues for Tsc, they provide similar
assertions for the subgroups E(T/k) of H1(k, T ). In the local case, one has only

to replace π0(T̂
Γv) by the group K(T/Fv) of elements in π0

((
T̂ /Z(Ĝ)

)Γv)
whose

image in H1
(
Fv, Z(Ĝ)

)
is trivial. In the global case, one replaces π0(T̂

Γ) by the

groupK(T/F ) of elements in π0

((
T̂ /Z(Ĝ)

)Γ)
whose image inH1

(
F,Z(Ĝ)

)
is locally

trivial, in the sense that their image in H1
(
Fv, Z(Ĝ)

)
is trivial for each v. (See

[Lan10], [Ko5].)
To simplify the discussion, assume for the present that G = Gsc. Then

E(T/k) = H1(k, T ), for any k. Moreover, K(T/Fv) = π0(T̂
Γv) and K(T/F ) =

π0(T̂
Γ), since Z(Ĝ) = 1. In fact, π0(T̂

Γ) equals T̂ Γ if T is elliptic in G over F .
We recall that Langlands’ stabilization (27.3) of Ireg,ell(f) was necessitated by

the failure of each G(A)-conjugacy class in the G(A)-stable class of δ ∈ ∆reg,ell(G)
to have a representative in G(F ). The cokernel (27.5) gives a measure of this failure.
Langlands’ construction treats the quantity in brackets on the right hand side of
(27.2) as the value at 1 of a function on the finite abelian group coker1(F, T ).
The critical step is to expand this function according to Fourier inversion on
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coker1(F, T ). One has to keep track of the G(F )-conjugacy classes in the G(A)-
conjugacy class of δ, which by the Hasse principle for G = Gsc are in bijection with
the finite abelian group

ker1(F, T ) = ker
(
H1(F, T ) −→

⊕

v

H1(Fv, T )
)
.

The formula (27.2) becomes an expansion

(27.6) Ireg,ell(f) =
∑

δ∈∆reg,ell(G)

aG(δ)ι(T )
∑

κ∈ bTΓ

fκG(δ),

where T = Gδ denotes the centralizer of (some fixed representative of) δ, ι(τ) equals

the product of |T̂ Γ|−1 with | ker1(F, T )|, and

fκG(δ) =
∑

{γA∈Γ(G(A)):γA∼δ}

fG(γA)κ(γA).

The last sum is of course over the G(A)-conjugacy classes γA =
∏
γv in the stable

class of δ in G(A). For any such γA, it can be shown that γv is G(Fv)-conjugate to δ
for almost all v. It follows that γA maps to an element tA =

⊕
tv in the direct sum

of the groups H1(Fv, T ). This in turn maps to a point in the cokernel (27.5), and

hence to a character in (T̂ Γ)∗. The coefficient κ(γA) is the value of this character
at κ.

Suppose for example that G = SL(2). The eigenvalues of δ then lie in a
quadratic extension E of F , and T = Gδ is the one-dimensional torus over F such
that

T (F ) ∼= {t ∈ E∗ : tσ(t) = 1}, ΓE/F = {1, σ}.

The nontrivial element σ ∈ ΓE/F acts on X(T ) ∼= Z by m → (−m), and therefore

acts on T̂ = Z⊗C∗ ∼= C∗ by z → z−1. It follows that π0(T̂
Γ) = T̂ Γ is isomorphic to

the subgroup {±1} of C∗. Similarly, π0(T̂
Γv) = T̂ Γv ∼= {±1} if v does not split in

E, while π0(T̂
Fv ) = π0(T̂ ) = {1} if v does split. In particular, if κ is the nontrivial

element in π0(T̂
Γ), the local κ-orbital integral fκv,G(δ) = fκv,G(δv) equals a difference

of two orbital integrals if v does not split, and is a simple orbital integral otherwise.
The characterization we have described here for the various groups H1(Fv, T ), and
for the diagonal image of H1(F, T ) in their direct sum, is typical of what happens

in general. In the present situation ker1(F, T ) = {1}, so that H1(F, T ) can in fact
be identified with its diagonal image.

The expression (27.6) is part of the stabilization (27.3) of Ireg,ell(f). We need
to see how it gives rise to the quasisplit groups G′ of (27.3).

Suppose that T and κ are as in (27.6). We choose an embedding T̂ ⊂ Ĝ of

the dual torus of T into Ĝ that is admissible, in the sense that it is the mapping

assigned to a choice of some pair (B̂, T̂ ) in Ĝ, and some Borel subgroup B of G

containing T . Let s′ be the image of κ in Ĝ, and let Ĝ′ = Ĝs′ be its connected

centralizer in Ĝ. Then Ĝ′ is a reductive subgroup of Ĝ. It is known that there is
an L-embedding

LT = T̂ ⋊WF →֒ LG = Ĝ⋊WF ,
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for the Weil forms of the L-groups of T and G, which restricts to the given embed-

ding of T̂ into Ĝ [LS1, (2.6)]. Fix such an embedding, and set

G′ = LT Ĝ′.

Then G′ is an L-subgroup of LG, which commutes with s′. It provides a split
extension

(27.7) 1 −→ Ĝ′ −→ G′ −→ WF −→ 1

of WF by Ĝ′. In particular, it determines an action of WF on Ĝ′ by outer auto-
morphisms, which factors through a finite quotient of ΓF . Let G′ be any quasisplit

group over F for which Ĝ′, with the given action of ΓF , is a dual group. We have
obtained a correspondence

(T, κ) −→ (G′,G′, s′).
We can choose a maximal torus T ′ ⊂ G′ in G′ over F , together with an iso-

morphism from T ′ to T over F that is admissible, in the sense that the associated

isomorphism T̂ ′ → T̂ of dual groups is the composition of an admissible embedding

T̂ ′ ⊂ Ĝ′ with an inner automorphism of Ĝ that takes T̂ ′ to T̂ . Let δ′ ∈ T ′(F ) be
the associated preimage of the original point δ ∈ T (F ). The tori T and T ′ are the
centralizers in G and G′ of δ and δ′. The two points δ and δ′ are therefore the
primary objects. They become part of a larger correspondence

(27.8) (δ, κ) −→
(
(G′,G′, s′), δ′

)
.

Elements δ′ ∈ G′(F ) obtained in this way are said to be images from G [LS1,
(1.3)].

Suppose now that G is arbitrary. Motivated by the last construction, one
defines an endoscopic datum for G to be a triplet (G′,G′, s′, ξ′), where G′ is a

quasisplit group over F , G′ is a split extension of WF by a dual group Ĝ′ of G′, s′ is

a semisimple element in Ĝ, and ξ′ is an L-embedding of G′ into LG. It is required

that ξ′(Ĝ′) be equal to the connected centralizer of s′ in Ĝ, and that

(27.9) ξ′(u′)s′ = s′ξ′(u′)a(u′), u′ ∈ G′,
where a is a 1-cocycle from WF to Z(Ĝ) that is locally trivial, in the sense that its

image in H1
(
WFv , Z(Ĝ)

)
is trivial for every v. The quasisplit group G′ is called

an endoscopic group for G. An isomorphism of endoscopic data (G′,G′, s′, ξ′) and
(G′

1,G′1, s′1, ξ′1) is an isomorphism α: G′ → G′
1 over F for which, roughly speaking,

there is dual isomorphism induced by some element in Ĝ. More precisely, it is
required that there be an L-isomorphism β: G′1 → G′ such that the corresponding

mappings Ψ(G′)
α−→ Ψ(G′

1) and Ψ(Ĝ′
1)

β−→ Ψ(Ĝ′) of based root data are dual, and

an element g ∈ Ĝ such that

ξ′
(
β(u′1)

)
= g−1ξ′1(u

′
1)g, u′1 ∈ G′1,

and

s′ = g−1s′1gz, z ∈ Z(Ĝ)Z(ξ′1)
0,

where Z(ξ′1)
0 is the connected component of 1 in the centralizer in Ĝ of ξ′1(G′1).

(See [LS1, (1.2)].) We write AutG(G′) for the group of isomorphisms α: G′ → G′

of G′ as a endoscopic datum for G.
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We say that (G′,G′, s′, ξ′) is elliptic if Z(ξ′)0 = 1. This means that the image
of ξ′ is LG is not contained in LM , for any proper Levi subgroup of G over F . We
write Eell(G) for the set of isomorphism classes of elliptic endoscopic data for G. It
is customary to denote an element in Eell(G) by G′, even though G′ is really only
the first component of a representative (G′,G′, s′, ξ′) of an isomorphism class. Any
G′ ∈ Eell(G) then comes with a finite group

OutG(G′) = AutG(G′)/Int(G′),

of outer automorphisms of G′ as an endoscopic datum.
Suppose for example that G = GL(n). The centralizer of any semisimple

element s′ in Ĝ = GL(n,C) is a product of general linear groups. It follows that
any endoscopic datum for G is represented by a Levi subgroup M . In particular,
there is only one element in Eell(G), namely the endoscopic datum represented by
G itself. This is why the problem of stability is trivial for GL(n).

The general definitions tend to obscure the essential nature of the construction.

Suppose again that G = Gsc. The dual group Ĝ is then adjoint, and Z(Ĝ) = 1. In
general, any G′ ∈ Eell(G) can be represented by an endoscopic datum for which G′ is
a subgroup of LG, and ξ′ is the identity embedding ι′. The condition (27.9) reduces
in the case at hand to the requirement that G′ commute with s′. To construct a

general element in Eell(G), we start with the semisimple element s′ ∈ Ĝ. The
centralizer LGs′,+ of s′ in LG is easily seen to project onto WF . Its quotient by the

connected centralizer Ĝ′ = Ĝs′ is an extension of WF by a finite group. To obtain
an endoscopic datum, we need only choose a section

ω′ : WF −→ LGs′,+/Ĝ
′

that can be inflated to a homomorphism WF → LGs′,+. For the product

G′ = Ĝ′ω′(WF )

is then a split extension of WF by Ĝ′. It determines an L-action of WF on Ĝ′, and

hence a quasisplit group G′ over F of which Ĝ′ is a dual group. The endoscopic

datum (G′,G′, s′, ι′) thus obtained is elliptic if and only if the centralizer of G′ in Ĝ
is finite, a condition that reduces considerably the possibilities for the pairs (s′, ω′).
The mapping

(s′, ω′) −→ (G′,G′, s′, ι′)
becomes a bijection from the set of Ĝ-orbits of such pairs and Eell(G). We note

that a point g ∈ Ĝ represents an element in OutG(G′) if and only if it stabilizes G′
and commutes with s′.

For purposes of illustration, suppose that G is split as well as being simply

connected. We have then to consider semisimple elements s′ ∈ Ĝ whose central-

izer Ĝs′,+ has finite center. It is an interesting exercise (which I confess not to

have completed) to classify the Ĝ-orbits of such elements in terms of the extended

Coxeter-Dynkin diagram of Ĝ. For example, elements s′ that satisfy the stronger

condition that Ĝ′ = Ĝs′ has finite center are represented by vertices in the affine

diagram (although in the adjoint group Ĝ, some of these elements are conjugate).
Once we have chosen s′, we then select a homomorphism ω′ from ΓF to the finite

abelian group π0(Ĝs′,+) = Ĝs′,+/Ĝ
′ whose image pulls back to a subgroup of Ĝs′,+

that still has finite center. Suppose for example that G = SL(2), and that s′ is the
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image of

(
1 0
0 −1

)
in Ĝ = PGL(2,C). Then Ĝs′,+ consists of the group of diago-

nal matrices, together with a second component generated by the element

(
0 1
1 0

)
.

Since the center of Ĝs′,+ equals {1, s′}, we obtain elliptic endoscopic data for G by

choosing nontrivial homomorphisms from ΓF to the group π0(Ĝs′,+) ∼= Z/2Z. The
classes in Eell(G) other than G itself, are thus parametrized by quadratic extensions
E of F .

We return to the case of a general group G. We have spent most of this section
trying to motivate some of the new ideas that arose with the problem of stability.
This leaves only limited space for a brief description of the details of Langlands’
stabilization (27.3) of Ireg,ell(f).

The general form of the expansion (27.6) is

Ireg,ell(f) =
∑

δ∈∆reg,ell(G)

aG(δ)ι(T,G)
∑

κ∈K(T/F )

fκG(δ),

where

ι(T,G) =
∣∣∣ ker

(
E(T/F ) −→

⊕

v

E(T/Fv)
)∣∣∣|K(T/F )|−1,

and fκG(δ) is defined as in (27.6). The correspondence (27.8) is easily seen to have
an inverse, which in general extends to a bijection

{(G′, δ′)} ∼−→ {(δ, κ)}.
The domain of this bijection is the set of equivalence classes of pairs (G′, δ′), where
G′ is an elliptic endoscopic datum for G, δ′ is a strongly G-regular, elliptic element
in G′(F ) that is an image from G, and equivalence is defined by isomorphisms of
endoscopic data. The range is the set of equivalence classes of pairs (δ, κ), where δ
belongs to ∆reg,ell(G), κ lies in K(Gδ/F ), and equivalence is defined by conjugating

by G(F ). (See [Lan10], [Ko5, Lemma 9.7].) Given (G′, δ′), we set

(27.10) f ′(δ′) = fκG(δ) =
∑

{γA∈Γ(G(A)):γA∼δ}

fG(γA)κ(γA).

We can then write

Ireg,ell(f) =
∑

G′∈Eell(G)

|OutG(G′)|−1
∑

δ′∈∆G-reg,ell(G′)

aG(δ)ι(Gδ , G)f ′(δ′),

with the understanding that f ′(δ′) = 0 if δ′ is not an image from G. Langlands
showed that for any pair (G′, δ′), the number

ι(G,G′) = ι(Gδ, G)ι(G′
δ′ , G

′)−1|OutG(G′)|−1

was independent of δ′ and δ. (Kottwitz later expressed the product of the first
two factors on the right as a quotient τ(G)τ(G′)−1 of Tamagawa numbers [Ko3,
Theorem 8.3.1].) Set

(27.11) Ŝ′
G-reg,ell(f

′) =
∑

δ′∈∆G-reg,ell(G′)

b′(δ′)f ′(δ′),

where

b′(δ′) = aG(δ)ι(G′
δ′ , G

′) = vol
(
G′
δ′(F )\G′

δ′ (A)1
)
ι(G′

δ′ , G
′).
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Then

Ireg,ell(f) =
∑

G′∈Eell(G)

ι(G,G′)Ŝ′
G-reg,ell(f

′).

We have now sketched how to derive the formula (27.3). However, the term
f ′(δ′) in (27.11) is defined in (27.10) only as a function on ∆G-reg,ell(G

′). One
would hope that it is the stable orbital integral at δ′ of a function in C∞

c

(
G′(A)

)
.

The sum in (27.10) can be taken over adelic products γA =
∏
γv, where γv is a

conjugacy class in G(Fv) that lies in the stable class of the image δv of δ in G(Fv).
It follows that

f ′(δ′) = fκG(δ) =
∏

v

fκv,G(δv),

where

fκv,G(δv) =
∑

γv∼δv

fv,G(γv)κ(γv).

Are the local components δ′v → fκv,G(δv) stable orbital integrals of functions in

C∞
c

(
G′(Fv)

)
? The question concerns the singularities that arise, as the strongly

regular points approach 1, for example. Do enough of the singularities of the orbital
integrals fv,G(γv) disappear from the sum so that only singularities of stable orbital
integrals on the smaller group G′(Fv) remain?

The question is very subtle. We have been treating δ as both a stable class
in ∆reg,ell(G) and a representative in G(F ) of that class. The distinction has not
mattered so far, since f ′(δ′) = fκG(δ) depends only on the class of δ. However, the
coefficients κ(γv) in the local functions fκv,G(δv) are defined in terms of the relative
position of γv and δv. The local functions do therefore depend on the choice of δv
within its stable class in G(Fv). The solution of Langlands and Shelstad was to
replace κ(γv) with a function ∆G(δ′v, γv) that they called a transfer factor. This
function is defined as a product of κ(γv) with an explicit but complicated factor
that depends on δ′v and δv, but not γv. The product ∆G(δ′v, γv) then turns out to be
independent of the choice of δv, and depends only on the local stable class of δ′v and
local conjugacy class of γv. Moreover, if δ′v is the local image of δ′ ∈ ∆G-reg,ell(G

′),
for every v, the product over v of the corresponding local transfer factors is equal
to the coefficient κ(γA) in (27.10). (See [LS1, §3,§6].)

There is one further technical complication we should mention. The Langlands-
Shelstad transfer factor depends on a choice of L-embedding of LG′ into LG. If
G′ represents an endoscopic datum (G′,G′, s′, ξ′) with G′ ⊂ LG and ξ′ = ι′, this

amounts to a choice of L-isomorphism ξ̃′: G′ → LG′. In the case that Gder is simply
connected, such an L-isomorphism exists [Lan8]. However, it is not canonical, and

one does have to choose ξ̃′ in order to specify the transfer factors. The general
situation is more complicated. The problem is that there might not be any such
L-isomorphism. In this case, one has to modify the construction slightly. One
replaces the group G′ by a central extension

1 −→ C̃′ −→ G̃′ −→ G′ −→ 1

of G′, where C̃′ is a suitable torus over F , and G̃′
der is simply connected. One can

then take ξ̃′ to be an L-embedding

ξ̃′ : G′ →֒ LG̃′,
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whose existence is again implied by [Lan8]. This determines a character η̃′ on

C̃′(A)/C̃′(F ), which is dual to the global Langlands parameter defined by the com-
position

WF −→ G′
eξ′−→ LG̃′ −→ LC̃′,

for any section WF → G′. The transfer factor at v becomes a function ∆G(δ′v, γv)

of δ′v ∈ ∆G-reg

(
G̃′(Fv)

)
and γv ∈ Γreg

(
G(Fv)

)
, such that

∆G(c′vδ
′
v, γv) = η̃′v(c

′
v)

−1∆G(δ′v, γv), c′v ∈ C̃′(Fv).

It vanishes unless δ′v is an image of a stable conjugacy class δv ∈ ∆reg

(
G(Fv)

)
in

G(Fv), in which case it is supported on those conjugacy classes γv in G(Fv) that
lie in δv. In particular, ∆G(δ′v, γv) has finite support in γv, for any δ′v.

Transfer factors play the role of a kernel in a transform of functions. Consider
a function fv in G(Fv), which we now take to be in the Hecke algebra H

(
G(Fv)

)
.

For any such fv, we define an (η̃′v)
−1-equivariant function

(27.12) f ′
v(δ

′
v) = f G̃

′

v (δ′v) =
∑

γv∈Γreg(G(Fv))

∆G(δ′v, γv)fv,G(γv)

of δ′v ∈ ∆G-reg

(
G̃′(Fv)

)
. Langlands and Shelstad conjecture that f ′

v lies in the space

SI
(
G̃′(Fv), η̃

′
v

)
[LS1]. In other words, f ′

v(δ
′
v) can be identified with the stable

orbital integral at δ′v of some fixed function h′v in the (η̃′v)
−1-equivariant Hecke

algebra H
(
G̃′(Fv), η̃

′
v

)
on G̃′(Fv). (Langlands’ earlier formulation of the conjecture

[Lan10] was less precise, in that it postulated the existence of suitable transfer
factors.) For archimedean v, the conjecture was established by Shelstad [She3]. In
fact, it was Shelstad’s results for real groups that motivated the construction of the
general transfer factors ∆G(δ′v, γv). (Shelstad actually worked with the Schwartz
space C

(
G(Fv)

)
. However, she also characterized the functions f ′

v in spectral terms,
and in combination with the main theorem of [CD], this establishes the conjecture
for the space H

(
G(Fv)

)
.)

If v is nonarchimedean, the Langlands-Shelstad conjecture remains open. Con-
sider the special case that G, G′ and η̃′ are unramified at v, and that fv is the
characteristic function of a (hyperspecial) maximal compact subgroup Kv of G(Fv).
Then one would like to know not only that h′v exists, but also that it can be taken
to be the characteristic function of a (hyperspecial) maximal compact subgroup

K̃ ′
v of G̃′(Fv) (or rather, the image of such a function in H(G̃′

v, η̃
′
v).) This variant

of the Langlands-Shelstad conjecture is what is known as the fundamental lemma.
It is discussed in the lectures [Hal1] of Hales. Waldspurger has shown that the
fundamental lemma actually implies the general transfer conjecture [Wa2]. To
be precise, if the fundamental lemma holds for sufficiently many unramified pairs
(Gv, G

′
v), the Langlands-Shelstad transfer conjecture holds for an arbitrary given

pair (Gv, G
′
v).

The two conjectures together imply the existence of a global mapping

f =
∏

v

fv −→ f ′ =
∏

v

f ′
v

from H(G) to the space

SI
(
G̃′(A), η̃′

)
= lim−→

S

SI(G̃′
S , η̃

′
S).
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Such a mapping would complete Langlands’ stabilization (27.3) of the regular el-
liptic term. It would express Ireg,ell(f) as the sum of a stable component, and
pullbacks of corresponding stable components for proper endoscopic groups. We
shall henceforth assume the existence of the mapping f → f ′. The remaining prob-
lem of stabilization is then to establish similar relations for the other terms in the
invariant trace formula. We would like to show that any such term I∗ has a stable
component

S∗ = SG∗ = SG
∗

∗ ,

now regarded as a stable linear form on the Hecke algebra, such that

(27.13) I∗(f) =
∑

G′∈Eell(G)

ι(G,G′)Ŝ′
∗(f

′),

for any f ∈ H
(
G(A)

)
. The identity obtained by replacing the terms in the invariant

trace formula by their corresponding stable components would then be a stable trace
formula. We shall describe the solution to this problem in §29.

In recognition of the inductive nature of the putative identity (27.13), we ought
to modify some of the definitions slightly. In the case of I∗ = Ireg,ell, for example,

the term Ŝ′
G-reg,ell(f

′) in (27.3) is not the full stable component of I ′reg,ell. We

could rectify this minor inconsistency by replacing Ireg,ell(f) with its H-regular
part IH-reg,ell(f), for some reductive group H that shares a maximal torus with G,
and whose roots contain those of G. The resulting version

IH-reg,ell(f) =
∑

G′

ι(G,G′)Ŝ′
H-reg,ell(f

′)

of (27.3) is then a true inductive formula.
Another point concerns the function f ′. We are assuming that f ′ is the stable

image of a function in the (η̃′)−1-equivariant algebra H
(
G̃′(A), η̃′

)
. However, the

original function f belongs to the ordinary Hecke algebra H(G). To put the two
functions on an even footing, we fix a central torus Z in G over F , and a character

ζ on Z(A)/Z(F ). We then write Z̃ ′ for the preimage in G̃′ of the canonical image
of Z in G′. Global analogues of the local constructions in [LS1, (4.4)] provide

a canonical extension of η̃′ to a character on Z̃ ′(A)/Z̃ ′(F ). We write ζ̃′ for the

character on Z̃ ′(A)/Z̃ ′(F ) obtained from the product of η̃′ with the pullback of
ζ. The presumed correspondence f → f ′ then takes the form of a mapping from

H
(
G(A), ζ

)
to SI

(
G̃′(A), ζ̃′

)
. At the beginning of §29, we shall describe a version

of the invariant trace formula that applies to equivariant test functions f .

28. Local spectral transfer and normalization

We have now set the stage for the final refinement of the trace formula. We
shall describe it over the course of the next two sections. This discussion, as well
as that of the applications in §30, contains much that is only implicit. However, it
also contains remarks that are intended to provide general orientation. A reader
who is not an expert should ignore the more puzzling points at first pass, and aim
instead at acquiring a sense of the underlying structure.

The problem is to stabilize the invariant trace formula for a general connected
group G over F . In the case that G is an inner form of GL(n), Theorems 25.5 and
25.6 represent a solution of the problem. They provide a term by term identification
of the trace formula for G with the relevant part of the trace formula for the group
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G∗ = GL(n). In this case, all invariant distributions are stable, and G∗ is the
only elliptic endoscopic group. The stabilization problem therefore reduces to the
comparison of G with its quasisplit inner form.

The case of an inner form of GL(n) is also simpler for the existence of a local
correspondence πv → π∗

v of tempered representations. Among other things, this
allows us to define normalizing factors for intertwining operators for G in terms of
those for G∗. We recall that the invariant distributions in the trace formula de-
pend on a choice of normalizing factors. So therefore do any identities among these
distributions. For general G, the theory of endoscopy predicts a refined local corre-
spondence, which would yield compatible normalizations as a biproduct. However,
the full form of this correspondence is presently out of reach. We nevertheless do
require some analogue of it in any attempt to stabilize the trace formula.

We shall first describe a makeshift substitute for the local correspondence,
which notwithstanding its provisional nature, still depends on the fundamental
lemma. We will then review how the actual correspondence is supposed to work.
After seeing the two side by side, the reader will probably agree that it is not
reasonable at this point to try to construct compatible normalizing factors. For-
tunately, there is a second way to normalize weighted orbital integrals, which does
not depend on a normalization of intertwining operators. We shall discuss the con-
struction at the end of the section. At the beginning of the next section, we shall
describe how the construction leads to another form of the invariant trace formula.
It will be this second form of the trace formula that we actually stabilize.

The global stabilization of the next section will be based on two spaces of
invariant distributions, which reflect the general duality between conjugacy classes
and characters. We may as well introduce them here. We are assuming that G
is arbitrary. If V is a finite set of valuations of F , we shall write GV = G(FV )
for simplicity. Suppose that Z is a torus in G over F that is contained in the
center, and that ζV is a character on ZV . Let D(GV , ζV ) be the space of invariant
distributions that are ζV -equivariant under translation by ZV , and are supported
on the preimage in GV of a finite union of conjugacy classes in GV = GV /ZV . Let
F(GV , ζV ) be the space of invariant distributions that are ζV -equivariant under
translation by ZV , and are spanned by irreducible characters on GV . This second
space is obviously spanned by the characters attached to the set Π(GV , ζV ) of
irreducible representations of GV whose central character on ZV equals ζV . Now,
the Hecke algebra on GV has ζ−1

V -equivariant analogue H(GV , ζV ), composed of
functions f such that

f(zx) = ζV (z)−1f(x), z ∈ ZV .
Likewise, the invariant Hecke algebra has a ζ−1

V -analogue I(GV , ζV ). A distribution
D in either of the spaces D(GV , ζV ) or F(GV , δV ) can be regarded as a linear form

D(f) = fG(D), f ∈ H(GV , ζV ),

on either H(GV , ζV ) or I(GV , ζV ).
The notation fG(D) requires further comment. On the one hand, it generalizes

the way we have been denoting both invariant orbital integrals fG(γ) and irreducible
characters fG(π). But it also has the more subtle interpretation as the value of a
linear form on the function fG in I(GV , ζV ). Since we have defined I(GV , ζV ) as
a space of functions on Πtemp(GV , ζV ), we need to know that D is supported on
characters. This is clear if D belongs to F(GV , ζV ). If D belongs to the other
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space D(GV , ζV ), results of Harish-Chandra and Bouaziz [Bou] imply that it can
be expressed in terms of strongly regular invariant orbital integrals. (See [A30,
Lemma 1.1].) Since invariant orbital integrals are supported on characters, by the
special case of Theorem 23.2 with M = G, D is indeed supported on characters.
Incidentally, by the special case of Theorem 23.2 and the fact that characters are
locally integrable functions, we can identify I(GV , ζV ) with the space

{
fG(γ) : γ ∈ ΓG-reg(GV ), f ∈ H(GV , ζV )

}
.

We have in fact already implicitly done so in our discussion of inner twists and base
change for GLn in §25 and §26. However, we do not have a geometric analogue
of [CD] that would allow us to characterize I(GV , ζV ) explicitly as a space of
functions on ΓG-reg(GV ).

We write SD(GV , ζV ) and SF(GV , ζV ) for the subspaces of stable distribu-
tions in D(GV , ζV ) and F(GV , ζV ) respectively. We also write SI(GV , ζV ) for the
ζ−1
V -analogue of the stably invariant Hecke algebra. Any distribution S in either
SD(GV , ζV ) or SF(GV , ζV ) can then be identified with a linear form

fG −→ fG(S), f ∈ H(GV , ζV ),

on SI(GV , ζV ). We recall SI(GV , ζV ) is presently just a space of functions on
∆G-reg(GV ). One consequence of the results we are about to describe is a spectral
characterization of SI(GV , ζV ).

Our focus for the rest of this section will be entirely local. We shall consider the
second space F(GV , ζV ), under the condition that V consist of one valuation v. We
shall regardG and Z as groups over the local field k = Fv, and we shall write ζ = ζv,
G = Gv = G(Fv), F(G, ζ) = F(Gv, ζv), Π(G, ζ) = Π(Gv , ζv), H(G, ζ) = H(Gv, ζv),
and so on, for simplicity. With this notation, we write Icusp(G, ζ) for the subspace
of functions in I(G, ζ) that are supported on the k-elliptic subset Γreg,ell(G) of
Γreg(G) = Γreg(Gv). We also write SIcusp(G, ζ) for the image of Icusp(G, ζ) in
SI(G, ζ), and Hcusp(G, ζ) for the preimage of Icusp(G, ζ) in H(G, ζ). Keep in mind
that any element D ∈ F(G, ζ) has a (virtual) character. It is a locally integrable,
invariant function Θ(D, ·) on Gv such that

fG(D) =

∫

Gv

f(x)Θ(D,x)dx, f ∈ H(G, ζ).

Assume for a moment that Z contains the split component AG (over k) of
the center of G. The space Icusp(G, ζ) then has the noteworthy property that it
is a canonical linear image of F(G, ζ). To be precise, there is a surjective linear
mapping

F(G, ζ) −→ Icusp(G, ζ)

that assigns to any element D ∈ F(G, ζ) the elliptic part

Iell(D, γ) =

{
I(D, γ), if γ ∈ Γreg,ell(G)

0, otherwise,

of its normalized character

I(D, γ) = |DG(γ)| 12 Θ(D, γ).
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This assertion follows from the case M = G of the general result [A20, Theorem
5.1]. What is more, the mapping has a canonical linear section

Icusp(G, ζ) −→ F(G, ζ).

This is defined by a natural subset Tell(G, ζ) [A22, §4] of F(G, ζ) whose image in
Icusp(G, ζ) forms a basis.

The set Tell(G, ζ) contains the family Π2(G, ζ) of square integrable represen-
tations of Gv with central character ζ. However, it also contains certain linear
combinations of irreducible constituents of induced representations. We can define
Tell(G, ζ) as the set of Gv-orbits of triplets (L, σ, r), where L is a Levi subgroup
of G over k = Fv, σ belongs to Π2(L, ζ), and r is an element in the R-group Rσ
of σ whose null space in aM equals aG. The R-group is an important object in
local harmonic analysis that was discovered by Knapp. In general terms, it can be
represented as a subgroup of the stabilizer of σ in W (L), for which corresponding
normalized intertwining operators

RQ(r, σ) = A(σr)Rr−1Qr|Q(σ), Q ∈ P(L), r ∈ Rσ,
form a basis of the space of all operators that intertwine the induced representation
IQ(σ). We write σr for an extension of the representation σ to the group generated
by Lv and a representative w̃r of r in Kv. Then

A(σr) : Hr−1Qr(σ) −→ HQ(σ)

is the operator defined by
(
A(σr)φ

′
)
(x) = σr(w̃r)φ

′(w̃−1
r x), φ′ ∈ Hr−1Qr(σ).

(See [A20, §2].)
We identify elements τ ∈ Tell(G, ζ) with the distributions

fG(τ) = tr
(
RQ(r, σ)IQ(σ, f)

)
, f ∈ C∞

c (G),

in F(G, ζ). It is the associated set of functions

Iell(τ, ·), τ ∈ Tell(G, ζ),

that provides a basis of Icusp(G, ζ). In fact, by Theorem 6.1 of [A20], these functions
form an orthogonal basis of Icusp(G, ζ) with respect to a canonical measure dγ on
Γreg,ell(G/Z), whose square norms

‖Iell(τ)‖2 =

∫

Γreg,ell(G/Z)

Iell(τ, γ)Iell(τ, γ)dγ = n(τ), τ ∈ Tell(G, ζ),

satisfy

n(τ) = |Rσ,r|| det(1− r)aL/aG |.
(As usual Rσ,r denotes the centralizer of r in Rσ. See [A21, §4].)

The set Tell(G, ζ) is part of a natural basis T (G, ζ) ofF(G, ζ). This can either be
defined directly [A20, §3], or built up from elliptic sets attached to Levi subgroups.
To remove the dependence on Z, we should really let ζ vary. The union

Ttemp,ell(G) =
∐

ζ

Tell(G, ζ)

is a set of tempered distributions, which embeds in the set

Tell(G) =
{
τλ : τ ∈ Ttemp,ell(G), λ ∈ a∗G,C

}
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that parametrizes nontempered elliptic characters

Θ(τλ, γ) = Θ(τ, γ)eλ(HG(γ)).

These two elliptic sets are in turn contained in respective larger sets

Ttemp(G) =
∐

{M}

Ttemp,ell(M)/W (M)

and

T (G) =
∐

{M}

Tell(M)/W (M),

where {M} represents the set of conjugacy classes of Levi subgroups of G over k =
Fv. If T∗(G) is any of the four sets above, we obviously have an associated subset
T∗(G, ζ) attached to any Z and ζ. The distributions f → fG(τ) parametrized by
the largest set T (G, ζ) form a basis of F(G, ζ), while the distributions parametrized
by Ttemp(G, ζ) give a basis of the subset of tempered distributions in F(G, ζ). We
thus have bases that are parallel to the more familiar bases Π(G, ζ) and Πtemp(G, ζ)
of these spaces given by irreducible characters.

Assume now that k = Fv is nonarchimedean. In this case, one does not have a
stable analogue for the set Tell(G, ζ). As a substitute, in case G is quasisplit and Z
contains AG, we write Φ2(G, ζ) for an indexing set {φ} that parametrizes a fixed
family of functions {Sell(φ, ·)} ⊂ SIcusp(G, ζ) for which the products

n(δ)Sell(φ, δ), δ ∈ ∆G-reg,ell(G), φ ∈ Φ2(G, ζ),

form an orthogonal basis of SIcusp(G, ζ). (The number n(δ) stands for the number
of conjugacy classes in the stable class δ, and is used to form the measure dδ on
∆G-reg,ell(G/Z). The subscript 2 is used in place of ell because the complement
of Π2(G, ζ) in Tell(G, ζ) is believed to be purely unstable.) We fix the family
{Sell(φ, ·)}, subject to certain natural conditions [A22, Proposition 5.1]. We then
form larger sets

Φtemp,2(G) =
∐

ζ

Φ2(G, ζ),

Φ2(G) =
{
φλ : φ ∈ Φtemp,2(G), λ ∈ a∗G,C

}
,

Φtemp(G) =
∐

{M}

Φtemp,2(M)/W (M),

and

Φ(G) =
∐

{M}

Φ2(M)/W (M),

where Sell(φλ, δ) = Sell(φ, δ)e
λ(HG(S)), as well as corresponding subsets Φ∗(G, ζ) of

Φ∗(G) attached to any Z and ζ. The analogy with the sets T∗(G, ζ) is clear. What
is not obvious, however, is that the elements in Φ∗(G, ζ) give stable distributions.
The first step in this direction is to define

(28.1) fG(φ) =

∫

∆reg,ell(G/Z)

fG(δ)Sell(φ, δ)dδ,

for any f ∈ Hcusp(G, ζ) and φ ∈ Φ2(G, ζ).
We shall now apply the Langlands-Shelstad transfer of functions. One intro-

duces endoscopic data G′ for G over the local field k = Fv by copying the defini-
tions of §27 for the global field F . (The global requirement that a certain class in
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H1
(
F,Z(Ĝ)

)
be locally trivial is replaced by the simpler condition that the cor-

responding class in H1
(
Fv, Z(Ĝ)

)
be trivial, but this is the only difference.) We

follow the same notation as in the global constructions of §27. In particular, we
write Eell(G) for the set of isomorphism classes of elliptic endoscopic data for G
over k.

We are assuming that the fundamental lemma holds, for units of Hecke algebras
at unramified places of any group over F that is isomorphic to G over k = Fv.
The theorem of Waldspurger mentioned at the end of the last section asserts that
this global hypothesis (augmented to allow for induction arguments) implies the
Langlands-Shelstad transfer conjecture for any endoscopic datum G′ for G over k.
We suppose that for each elliptic endoscopic datum G′ ∈ Eell(G) of G over k, we

have chosen sets Φ(G̃′, ζ̃′), as above. If f belongs to Hcusp(G, ζ), f
′ belongs to

SI(G̃′, ζ̃′), by our assumption. Since the orbital integrals of f are supported on

the elliptic set, f ′ in fact belongs to the subspace SIcusp(G̃′, ζ̃′) of SI(G̃′, ζ̃′). We

can therefore define f ′(φ′) by (28.1), for any element φ′ ∈ Φ2(G̃
′, ζ̃′). As a linear

form on Hcusp(G, ζ), f ′(φ′) is easily seen to be the restriction of some distribution
in F(G, ζ). It therefore has an expression

(28.2) f ′(φ′) =
∑

τ∈Tell(G,ζ)

∆G(φ′, τ)fG(τ), f ∈ Hcusp(G, ζ),

in terms of the basis Tell(G, ζ).
The coefficients ∆G(φ′, τ) in (28.2) are to be regarded as spectral transfer

factors. They are defined a priori for elements φ′ ∈ Φ2(G̃
′, ζ̃′) and τ ∈ Tell(G, ζ).

However, it is easy to extend the construction to general elements φ′ ∈ Φ(G̃′, ζ̃′)
and τ ∈ T (G, ζ). To do so, we represent φ′ and τ respectively as Weyl orbits {φ′M ′}
and {τM} of elliptic elements φ′M ∈ Φ2(M̃

′, ζ̃′) and τM ∈ Tell(M, ζ) attached to

Levi subgroups M̃ ′ ⊂ G̃′ and M ⊂ G. We then define ∆G(φ′, σ) = 0 unless M ′ can
be identified with an elliptic endoscopic group for M , in which case we set

∆G(φ′, τ) =
∑

w∈W (M)

∆M (φ′M ′ , wτM ).

It is not hard to deduce that for a fixed value of one of the arguments, ∆G(φ′, τ)
has finite support in the other.

Suppose now that f is any function in H(G, ζ). For any G′ ∈ Eell(G), we define
the spectral transfer of f to be the function

f ′
gr(φ

′) =
∑

τ∈T (G,ζ)

∆G(φ′, τ)fG(τ), φ′ ∈ Φ′(G̃′, ζ̃′).

(The subscript gr stands for the grading on the space I(G, ζ) provided by the basis
T (G, ζ) of F(G, ζ).) It is by no means clear, a priori, that f ′

gr coincides with the
Langlands-Shelstad transfer f ′. The problem is this. We defined the coefficients
∆G(φ′, τ) by stabilizing elliptic (virtual) characters Tell(G, ζ) on the elliptic set.
However, these characters also take values at nonelliptic elements. Why should
their stabilization on the elliptic set, where they are uniquely determined, induce a
corresponding stabilization on the nonelliptic set? The answer is provided by the
following theorem.
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Theorem 28.1. (a) Suppose that G is quasisplit and that φ ∈ Φ(G, ζ). Then
the distribution

f −→ fGgr(φ), f ∈ H(G, ζ),

is stable, and therefore lifts to a linear form

fG −→ fG(φ), f ∈ H(G, ζ),

on SI(G, ζ).
(b) Suppose that G is arbitrary, that G′ ∈ Eell(G), and that φ′ ∈ Φ(G̃′, ζ̃′).

Then

f ′(φ′) = f ′
gr(φ

′), f ∈ H(G, ζ).

Remark. The theorem asserts that for any φ′ ∈ Φ(G̃′, ζ̃′), the mapping f →
f ′(φ′) is a well defined element in F(G, ζ), with an expansion

(28.3) f ′(φ′) =
∑

τ∈T (G,ζ)

∆G(φ′, τ)fG(τ), f ∈ H(G, ζ).

Since Π(G, ζ) is another basis of F(G, ζ), we could also write

(28.4) f ′(φ′) =
∑

π∈Π(G,ζ)

∆G(φ′, π)fG(π),

for complex numbers ∆G(φ′, π).

The two assertions (a) and (b) of the theorem coincide with Theorems 6.1 and
6.2 of [A22], the main results of that paper. The proof is global. One chooses a
suitable group over F that is isomorphic to G over k = Fv. By taking a global test
function that is cuspidal at two places distinct from v, one can apply the simple trace
formula of Corollary 23.6. The fundamental lemma and the Langlands-Shelstad
transfer mapping provide a transfer of global test functions to endoscopic groups.
One deduces the assertions of the theorem by a variant of the arguments used to
establish Theorem 25.1(b) [DKV] and local base change [AC, §1]. �

We have taken some time to describe a weak form of spectral transfer. This is of
course needed to stabilize the general trace formula. However, we would also like to
contrast it with the stronger version expected from the theory of endoscopy, which
among many other things, ought to give rise to compatible normalizing factors. For
we are trying to see why we need another form of the invariant trace formula.

One expects to be able to identify Φ(G) with the set of Langlands parameters.

A Langlands parameter for G is a Ĝ-conjugacy class of relevant L-homomorphisms

φ : Lk −→ LG,

from the local Langlands group

Lk = Wk × SU(2)

to the Weil form LG = Ĝ ⋊ Wk of G over k = Fv. (In this context, an L-

homomorphism is a continuous homomorphism for which the image in Ĝ of any
element is semisimple, and which commutes with the projections of Lk and LG
onto Wk. Relevant means that if the image of φ is contained in a Levi subgroup
LM of LG, then LM must be the L-group of a Levi subgroup M of G over k.) Let
us temporarily let Φ(G) denote the set of such parameters, rather than the abstract



28. LOCAL SPECTRAL TRANSFER AND NORMALIZATION 211

indexing set above. Then Φtemp(G) corresponds to those homomorphisms whose

image projects to a relatively compact subset of Ĝ. The subset Φ2(G) corresponds
to mappings whose images are contained in no proper Levi subgroup LM of LG,
while Φtemp,2(G) is of course the intersection of Φtemp(G) with Φ2(G). For any

φ, one writes Sφ for the centralizer in Ĝ of the image of φ, and Sφ for the group

of connected components of the quotient Sφ = Sφ/Z(Ĝ)Γk . The R-group Rφ of φ
is defined as the quotient of Sφ by the subgroup of components that act by inner

automorphism on S
0

φ. A choice of Borel subgroup in the connected reductive group

Sφ induces an embedding of Rφ into Sφ.
In the case that G is abelian, Langlands constructed a natural bijection φ→ π

from the set of parameters Φ(G) onto the set Π(G) of quasicharacters on G [Lan12].
We can therefore set

Sell(φ, γ) = Θ(π, γ) = π(γ), γ ∈ G(k),

in this case. For example, if G = GL(1), a parameter in Φ(G) is tantamount to a
continuous homomorphism

Lk = Wk × SU(2) −→ Ĝ = C∗.

Since SU(2) is its own derived group, and the abelianization of Wk is isomorphic
to k∗ ∼= G(k), a parameter does indeed correspond to a quasicharacter. If G is a
general group, with central torus Z, there is a canonical homomorphism from LG to
LZ. A parameter in Φ(G) then yields a quasicharacter ζ on Z, whose corresponding
parameter is the composition

Lk
φ−→ LG −→ LZ.

The entire set of parameters Φ(G) thus decomposes into a disjoint union over ζ of
the subsets Φ(G, ζ) with central quasicharacter ζ on Z.

Suppose that ζ is a character on Z. For each parameter φ ∈ Φtemp(G, ζ), it
is expected that there is a canonical nonnegative integer valued function dφ(π) on
Πtemp(G, ζ) with finite support, such that the distribution

f −→ fG(φ) =
∑

π

dφ(π)fG(π), f ∈ H(G, ζ),

is stable. The sum

S(φ, δ) =
∑

π

dφ(π)I(π, γ), γ ∈ Γreg(G),

would then depend only on the stable conjugacy class δ of γ. Moreover, the finite
packets

Πφ =
{
π ∈ Πtemp(G, ζ) : dφ(π) > 0

}
, φ ∈ Φtemp(G, ζ),

are supposed to be disjoint, and have union equal to Πtemp(G, ζ). The subset
Πtemp,2(G, ζ) of Πtemp(G, ζ) should be the disjoint union of packets Πφ, in which φ
ranges over the subset Φtemp,2(G, ζ) of Φtemp(G, ζ).

Suppose that these properties hold in general, and that G′ ∈ Eell(G) and

φ′ ∈ Φtemp(G̃
′, ζ̃′). Then f ′(φ′) is a well defined linear form in f ∈ H(G, ζ).

The pair (G̃′, ζ̃′) is constructed in such a way that φ′ maps to a parameter φ ∈
Φtemp(G, ζ). For example, if G̃′ happens to equal G′, φ is just the composition of
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φ′ with the underlying embedding of LG′ into LG. It is believed that the expansion
of f ′(φ′) into irreducible characters on G takes the form

(28.5) f ′(φ′) =
∑

π∈Πφ

∆G(φ′, π)fG(π),

for complex coefficients ∆G(φ′, π) that are supported on the packet Πφ.
The other basis Ttemp(G, ζ) would also have a packet structure. For the ele-

ments of Πφ ought to be irreducible constituents of induced representations

(28.6) IP (σ), P ∈ P(M), σ ∈ ΠφM ,

where M ⊂ G is a minimal Levi subgroup whose L-group LM ⊂ LG contains the
image of φ, and φM is the parameter in Φtemp,2(M, ζ) determined by φ. Recall
that as a representation in Π2(M, ζ), σ has its own R-group Rσ. In terms of the
R-group of φ, Rσ ought to be the stabilizer of σ under the dual action of Rφ on M .
Let Tφ be the subset of Ttemp(G, ζ) represented by triplets

(M,σ, r), σ ∈ ΠφM , r ∈ Rσ.
If the packet Πφ is defined as above, the packet Tφ gives rise to a second basis of
the subspace of F(G, ζ) spanned by Πφ. It provides a second expansion

(28.7) f ′(φ′) =
∑

τ∈Tφ

∆G(φ′, τ)fG(τ),

for complex coefficients ∆G(φ′, τ). As φ varies over Φtemp(G, ζ), Ttemp(G, ζ) is a
disjoint union of the corresponding packets Tφ.

Given their expected properties, Langlands’ parameters become canonical in-
dexing sets. If G is quasisplit and Z contains AG, we can set

Sell(φ, δ) =

{
S(φ, δ), if δ ∈ ∆reg,ell(G),

0, otherwise,

for any φ ∈ Φ2(G, ζ). The family {Sell(φ, ·)} then serves as the basis of SIcusp(G, ζ)
chosen earlier. The improvement of the conjectural transfer (28.5) or (28.7) over
the weaker version (28.4) or (28.3) that one can actually prove (modulo the fun-
damental lemma) is obvious. For example, the hypothetical coefficients in (28.5)
are supported on disjoint sets parametrized by Φtemp(G, ζ). However, the actual
coefficents in (28.4) could have overlapping supports, for which we have no control.

The hypothetical coefficients in (28.5) are expected to have further striking
properties. Suppose for example that G is quasisplit. In this case, it seems to be

generally believed that coefficients will give a bijection from Πφ onto the set Ŝφ of
irreducible characters on Sφ. This bijection would depend on a noncanonical choice
of any base point π1 in Πφ at which the integer dφ(π1) = ∆G(φ, π1) equals 1. The
irreducible character attached to any π ∈ Πφ ought then to be the function

(28.8) s→ 〈s, π|π1〉 = ∆(φ′, π)∆(φ′, π1)
−1, s ∈ Sφ,

where s is the projection onto Sφ of the semisimple element s′ ∈ Sφ attached to the
elliptic endoscopic datum G′. There is also a parallel interpretation that relates the
hypothetical coefficients (28.7) and the packets Tφ with the representation theory
of the finite groups Sφ. In the case that G is not quasisplit, similar properties are
expected, but they are weaker and not completely understood. (See [LL], [Lan10,
§IV.2].)
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We have been assuming that the parameter φ is tempered. Suppose now that
φ is a general parameter. Then φ is the image in Φ(G) of a twist φM,λ, for a Levi
subgroup M ⊂ G, a tempered parameter φM ∈ Φtemp(M), and a point λ in the

chamber (a∗M )+P in a∗M attached to a parabolic subgroup P ∈ P(M). The packet
Πφ can be defined to be the set of irreducible representations obtained by taking
the unique irreducible quotient (the Langlands quotient) of each representation

(28.9) IP (πM,λ), πM ∈ ΠφM .

Similar constructions allow one to define the packet Tφ in terms of the tempered
packet TφM . One can thus attach conjectural packets to nontempered parameters.
The Langlands classification for real groups [Lan11] extends to p-adic groups, to the
extent that it reduces the general classification to the tempered case [BW, §XI.2].
Combined with the expected packet structure of tempered representations, it then
gives a conjectural classification of Π(G) into a disjoint union of finite packets Πφ,
indexed by parameters φ ∈ Φ(G). Moreover, for φ, φM , and λ as above, the finite
group Sφ equals the corresponding group SφM attached to the tempered parameter
φM for M . We can therefore relate the representations in Πφ to characters on
Sφ, if we are able to relate the representations in the tempered packet ΠφM with
characters in SφM . However, the nontempered analogues of the character relations
(28.5) and (28.7) will generally be false.

Suppose that G = GL(n). In this case, the centralizer Sφ of the image of
any parameter φ ∈ Φ(G) is connected. The group Sφ is therefore trivial, and the
corresponding packet Πφ should consequently contain exactly one element. The
Langlands classification for G = GL(n) thus takes the form of a bijection between
parameters φ ∈ Φ(G) and irreducible representations π ∈ Π(G). It has recently
been established by Harris and Taylor [HT] and Henniart [He].

We have assumed that the local field k was nonarchimedean. The analogues
for archimedean fields k = Fv of the conjectural properties described above have all
been established. They are valid as stated, except that Lk is just the Weil group

Wk, and the correspondence Πφ → Ŝφ is an injection rather than a bijection. As
we mentioned earlier, the classification of irreducible representations Π(G) in terms
of parameters φ ∈ Φ(G) was established by Langlands and Knapp-Zuckermann.
(See [KZ1].) The transfer identities (28.5) and (28.7) for tempered parameters φ,

together with the description of packets in terms of characters Ŝφ, were established
by Shelstad [She2], [She3]. In particular, there is a classification of irreducible
representations of G(k) in terms of simple invariants attached to the dual group
LG. One would obviously like to have a similar classification for nonarchimedean
fields.

One reason for wanting such a classification is to give a systematic construction
of L-functions for irreducible representations. Suppose that k = Fv is any comple-
tion of F . One can attach a local L-function L(s, r) and ε-factor ε(s, r, ψ) of the
complex variable s to any (continuous, semisimple) representation r of the local
Weil group Wk, and any nontrivial additive character ψ: k → C. The ε-factors are
needed for the functional equations of L-functions attached to representations of
the global Weil groupWF . Deligne’s proof [D1] that they exist and have the appro-
priate properties in fact uses global arguments. Suppose that the local Langlands
conjecture holds for G = Gv. That is, any irreducible representation π ∈ Π(G)
lies in the packet Πφ attached to a unique parameter φ. We write φW for the
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restriction of φ to the subgroup Wk of Lk. Suppose that ρ is a finite dimensional
representation of the L-group LG. We can then define a local L-function

(28.10) L(s, π, ρ) = L(s, ρ ◦ φW )

and ε-factor

(28.11) ε(s, π, ρ, ψ) = L(s, ρ ◦ φW , ψ)

in terms of corresponding objects for Wk. For example, suppose that k = Fv is
nonarchimedean, and that π, ρ, and ψ are unramified. Then π is parametrized by a
semisimple conjugacy class c = c(π) in LG. The associated parameter φ: Lk → LG
is trivial on both SU(2) and the inertia subgroup Ik of Wk. It maps the element
Frobk that generates the cyclic quotient Wk/Ik to c. In this case, ε(s, π, ρ, ψ) = 1,
and

L(s, π, ρ) = det
(
1− ρ(c)q−s

)
,

where q = qv.
Langlands has conjectured that local L-functions give canonical normalizing

factors for induced representations. Suppose that π ∈ Π(M) is an irreducible rep-
resentation of a Levi subgroup M of G over k = Fv. Recall that the unnormalized
intertwining operators

JQ|P (πλ) : IP (πλ) −→ IQ(πλ), P,Q ∈ P(M),

between induced representations are meromorphic functions of a complex variable
λ ∈ a∗M,C. Let ρQ|P be the adjoint representation of LM on the Lie algebra of the

intersection of the unipotent radicals of the parabolic subgroups P̂ and Q̂ of Ĝ. We
can then set

(28.12) rQ|P (πλ) = L(0, πλ, ρQ|P )
(
ε(0, πλ, ρ

∨
Q|P , ψ)L(1, πλ, ρQ|P )

)−1
,

assuming of course that the functions on the right have been defined. Langlands
conjectured [Lan5, Appendix II] that for a suitable normalization of Haar measures
on the groups NQ ∩NP̄ , these meromorphic functions of λ are an admissible set of
normalizing factors, in the sense that they satisfy the conditions of Theorem 21.4.
It is this conjecture that Shahidi established in case G = GL(n), and that was
used in the applications described in §25 and §26. (We recall that for GL(n), the
relevant local L and ε-factors were defined independently of Weil groups. Part of
the recent proof of the local Langlands classification for GL(n) by Harris-Taylor
and Henniart was to show that these L and ε-factors were the same as the ones
attached to representations of Wk.)

However, we do not have a general classification of representations in the pack-
ets Πφ. We therefore cannot use (28.10) and (28.11) to define the factors on the
right hand side of (28.12). The canonical normalization factors are thus not avail-
able. This is our pretext for normalizing the weighted characters in a different
way.

Instead of normalizing factors r = {rQ|P (πλ)}, we use Harish-Chandra’s canon-
ical family µ = {µQ|P (πλ)} of µ-functions. We recall that

µQ|P (πλ) =
(
JQ|P (πλ)JP |Q(πλ)

)−1
=
(
rQ|P (πλ)rP |Q(πλ)

)−1
,

for any Q,P ∈ P(M), π ∈ Π(M) and λ ∈ a∗M,C. Suppose that π is in general

position, in the sense that the unnormalized intertwining operators JQ|P (πλ) are
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analytic for λ ∈ ia∗M . For fixed P , the operator valued family

JQ(Λ, π, P ) = JQ|P (π)−1JQ|P (πΛ), Q ∈ P(M),

is a (G,M)-family of functions of Λ ∈ ia∗M . The normalized weighted characters
used in the original invariant trace formula were constructed from the product
(G,M)-family

RQ(Λ, π, P ) = rQ(Λ, π, P )−1JQ(Λ, π, P ),

where

rQ(Λ, π, P ) = rQ|P (π)−1rQ|P (πΛ).

The normalized weighted characters for the second version are to be constructed
from the product (G,M)-family

(28.13) MQ(Λ, π, P ) = µQ(Λ, π, P )JQ(Λ, π, P ),

where

µQ(Λ, π, P ) = µQ|P (π)−1µQ|P (π 1
2Λ).

They are defined by setting

(28.14) JM (π, f) = tr
(
MM (π, P )IP (π, f)

)
, f ∈ H(G),

where

(28.15) MM (π, P ) = lim
Λ→0

∑

Q∈P(M)

MQ(Λ, π, P )θQ(Λ)−1,

as usual. Notice that we are using the same notation for the two sets of normalized
weighted characters. It there is any danger of confusion, we can always denote the
original objects by JrM (π, f), and the ones we have just constructed by JµM (π, f).

Proposition 28.2. The linear form JM (π, f) = JµM (π, f), defined for
π ∈ Π(M) in general position, is independent of the fixed group P ∈ P(M). More-
over, if π ∈ Πunit(M) is any unitary representation, JM (πλ, f) is an analytic func-
tion of λ ∈ ia∗M .

The two assertions are among the main results of [A24]. We know that for
the original weighted characters JrM (π, λ), the assertions are simple consequences
of the properties of the normalizing factors r. We form a second (G,M)-family

rQ(Λ, π) = rQ|Q(π)−1rQ|Q(π 1
2Λ), Q ∈ P(M),

from the normalizing factors. The new weighted characters are then related to the
original ones by an expansion

JµM (π, f) =
∑

L∈L(M)

rLM (π)JrL(πL, f),

which one derives easily from the relations between the functions {rQ|P (πλ)} and
{µQ|P (πλ)} [A24, Lemma 2.1]. The first assertion follows immediately [A24,
Corollary 2.2]. To establish the second assertion, one shows that for π ∈ Πunit(M),
the functions rLM (πλ) are analytic on ia∗M [A24, Proposition 2.3]. �
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29. The stable trace formula

In this section, we shall discuss the solution to the problem posed at the end
of §27. We shall describe how to stabilize all of the terms in the invariant trace
formula. The stabilization is conditional upon the fundamental lemma. It is also
contingent upon a generalization of the fundamental lemma, which applies to un-
ramified weighted orbital integrals.

The results are contained in the three papers [A27], [A26], and [A29]. They
depend on other papers as well, including some still in preparation. Our discussion
will therefore have to be quite limited. However, we can at least try to give a
coherent statement of the results. The techniques follow the model of inner twistings
of GL(n), outlined in some detail in §25. However, the details here are considerably
more elaborate. The results discussed in this section are in fact the most technical
of the paper.

We have of course to return to the global setting, with which we were preoccu-
pied before the local interlude of the last section. Then G is a fixed reductive group
over the number field F . There are two preliminary matters to deal with before we
can consider the main problem.

The first is to reformulate the invariant trace formula for G. Since it is based
on the construction at the end of the last section, this second version does not
depend on the normalization of intertwining operators. In some ways, it is slightly
less elegant than the original version, but the two are essentially equivalent. In
particular, our stabilization of the second version would no doubt give a stabilization
of the first, if we had the compatible normalizing factors provided by a refined local
correspondence of representations.

Our reformulation of the invariant trace formula entails a couple of other minor
changes. It applies to test functions f on the group GV = G(FV ), where V is a
finite set of valuations of F that contains the set Sram = Sram(G) of places at which
G is ramified. We can take V to be large. However, we want to distinguish it from
the large finite set S that occurs on the geometric side of the original formula. In
relating the two versions of the formula, S would be a finite set of places that is
large relative to both V and the support of some chosen test function on GV . The
terms in our second version will be indexed by conjugacy classes in MV (rather than
M(Q)-conjugacy classes or (M,S)-classes) and irreducible representations of MV

(rather than automorphic representations of M(A)). In order to allow for induction
arguments, we also need to work with equivariant test functions on GV . We fix a
suitable central torus Z ⊂ G over F , and a character ζ on Z(A)/Z(F ). We then
assume that V contains the larger finite set Sram(G, ζ) of valuations at which any
of G, Z or ζ ramifies. We write GZV for the subgroup of elements x ∈ GV such that
HG(x) lies in the image of aZ in aG, and ζV for the restriction of ζ to ZV . Our test
functions are to be taken from the Hecke algebra

H(G, V, ζ) = H(GZV , ζV ),

and its invariant analogue

I(G, V, ζ) = I(GZV , ζV ).

Observe that if Z equals 1, GZV equals the group G(FV )1. In this case, H(G, V, ζ)
embeds in the original space H(G) = H

(
G(A)1

)
of test functions.



29. THE STABLE TRACE FORMULA 217

There is a natural projection from the subspaceH(G, V ) = H
(
G(FV )1

)
ofH(G)

onto H(G, V, ζ). Let J be the basic linear form on H(G) whose two expansions give
the noninvariant trace formula. If f lies in H(G), and fz denotes the translate of
f by a point z ∈ Z(A)1, the integral

∫

Z(F )\Z(A)1
J(fz)ζ(z)dz

is well defined. If f belongs to the subspace H(G, V ), the integral depends only on
the image of f in H(G, V, ζ). It therefore determines a linear form on H(G, V, ζ),
which we continue to denote by J . To make this linear form invariant, we define
mappings

(29.1) φM : H(G, V, ζ) −→ I(M,V, ζ), M ∈ L,
in terms of the weighted characters at the end of last section. In other words,
the operator valued weight factor is to be attached to a product over v ∈ V of
(G,M)-families (28.13), rather than the (G,M)-family defined in §23 in terms of
normalized intertwining operators. The mapping itself is defined by an integral
analogous to (23.2) (with X = 0), but over a domain ia∗M,Z/ia

∗
G,Z (where ia∗M,Z is

the subspace of elements in ia∗M that vanish on the image of ia∗Z on ia∗M). It follows
from the proof of Propositions 23.1 and 28.2 that φM does indeed mapH(G, V, ζ) to
I(M,V, ζ). We can therefore define an invariant linear form I = IG on H(G, V, ζ)
by the analogue of (23.10). The problem is to transform the two expansions of
Theorem 23.4 into two expansions of this new linear form.

We define weighted orbital integrals JM (γ, f) for functions f ∈ H(G, V, ζ) ex-
actly as in §18. The element γ is initially a conjugacy class in MZ

V . However,
JM (γ, f) depends only on the image of γ in the space D(MZ

V , ζV ) of invariant
distributions on MZ

V , defined as at the beginning of §28. We can therefore regard
JM (·, f) as a linear form on the subspace Dorb(MZ

V , ζV ) of D(MZ
V , ζV ) generated by

conjugacy classes. There is actually a more subtle point, which we may as well raise
here. As it turns out, stabilization requires that JM (γ, f) be defined for all elements
in the space D(MZ

V , ζ). If v is nonarchimedean, Dorb(Mv, ζv) equals D(Mv, ζv). In
this case, there is nothing further to do. However, if v is archimedean, D(Mv, ζv) is
typically much larger than Dorb(Mv, ζv), thanks to the presence of normal deriva-
tives along conjugacy classes. The construction of weighted orbital integrals at
distributions in this larger space demands a careful study of the underlying differ-
ential equations. Nevertheless, one can in the end extend JM (γ, f) to a canonical
linear form on the space D(MZ

V , ζV ). (See [A31].) One then uses the mappings
(29.1) as in (23.3), to define invariant distributions

IM (γ, f), γ ∈ D(MZ
V , ζV ), f ∈ H(G, V, ζ).

These distributions, with γ restricted to the subspace Dorb(MZ
V , ζV ) of D(MZ

V , ζV ),
will be the terms in the geometric expansion.

The coefficients in the geometric expansion should really be regarded as ele-

ments in D(MZ
V , ζV ), or rather, the appropriate completion D̂(MZ

V , ζV ) of
D(MZ

V , ζV ). As such, they have a natural pairing with the linear forms IM (·, f) on
D(MZ

V , ζV ). However, we would like to work with an expansion like that of (23.11).

We therefore identify D̂(MZ
V , ζV ) with the dual space of D(MZ

V , ζV ) by fixing a
suitable basis of Γ(MZ

V , ζV ) of D(MZ
V , ζV ). Since we can arrange that the elements
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in
Γorb(MZ

V , ζV ) = Γ(MZ
V , ζV ) ∩ Dorb(M

Z
V , ζV )

be parametrized by conjugacy classes in MV = MV /ZV , we will still be dealing
essentially with conjugacy classes. We define coefficient functions on Γ(MZ

V , ζV ) by
compressing the corresponding coefficients in (23.11). It is done in two stages. For
a given γM ∈ Γ(MV , ζV ), we choose a large finite set S ⊃ V , and take k to be a
conjugacy class in M(FSV ) that meets KS

V . We then define a function aMell(γM × k)
as a certain finite linear combination of coefficients aM (γ) in (23.11), taken over
those (M,S)-equivalence classes γ ∈ Γ(M)S that map to γM × k [A27, (2.6)]. For
any given k, we can form the unramified weighted orbital integral

(29.2) rGM (k) = JM (k, uVS ),

where uVS = uV,ζS is the projection onto H(GVS , ζ
V
S ) of the characteristic function of

KV
S . If γ is now an element in Γ(GZV , ζV ), we set

(29.3) aG(γ) =
∑

M∈L

|WM
0 ||WG

0 |−1
∑

k

aMell(γM × k)rGM (k),

where γ → γM is the restriction operator that is adjoint to induction of conjugacy
classes (and invariant distributions). (See [A27, (2.8), (1.9)].)

Proposition 29.1. Suppose that f ∈ H(G, V, ζ). Then

I(f) =
∑

M∈L

|WM
0 ||WG

0 |−1
∑

γ∈Γ(M,V,ζ)

aM (γ)IM (γ, f),

where Γ(M,V, ζ) is a discrete subset of Γ(MZ
V , ζV ) that contains the support of

aM (γ), and on which IM (γ, f) has finite support.

See [A27, Proposition 2.2]. �

The spectral expansion of I(f) begins with the decomposition

(29.4) I(f) =
∑

t≥0

It(f), f ∈ H(G, V, ζ),

relative to the norms t of archimedean infinitesimal characters. The summand It(f)
is as in Remark 10 of §23, the invariant version of a linear form Jt(f) on H(G, V, ζ)
defined as at the end of §21. The sum itself satisfies the weak multiplier estimate
(23.13), and hence converges absolutely. We shall describe the spectral expansion
of It(f).

We define weighted characters JM (π, f), for functions f ∈ H(G, V, ζ), by a
minor modification of the construction of §22. The element π lies in Πunit(MV , ζV ),
and can therefore be regarded as a distribution in the space F(GZV , ζV ). As with
the mappings (29.1), JM (π, f) is defined in terms of the product over v ∈ V of
(G,M)-families in (28.13), and an integral analogous to (22.4), but over a domain
ia∗M,Z/ia

∗
G,Z. We then form corresponding invariant distributions IM (π, f) from

the mappings (29.1) as in (23.4) (or rather the special case of (23.4) with X = 0).
The coefficients in the spectral expansion are parallel to those in the geometric

expansion. The analogues of the classes k in (29.3) are families

c = {cv : v 6∈ V }
of semisimple conjugacy classes in LM . We allow only those classes of the form
c = c(πV ), where πV = πV (c) is an unramified representation of MV = M(AV )
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whose ZV -central character is equal to the corresponding component ζV of ζ. There
is an obvious action

c −→ cλ = {cv,λ : v 6∈ S}, λ ∈ ia∗M,Z ,

such that πV (cλ) = πV (c)λ. If πV (c) is unitary, we write

π × c = π ⊗ πV (c)

for the representation in Πunit

(
M(A), ζ

)
attached to any representation π in

Πunit(MV , ζV ). Similar notation holds if π belongs to the quotient Πunit(M
Z
V , ζV )

of Πunit(MV , ζV ), with the understanding that π is identified with a representa-
tive in Πunit(MV , ζV ). We define Πt,disc(M,V, ζ) to be the set of representations
π ∈ Πunit(M

Z
V , ζV ) such that for some c, π × c belongs to the subset Πt,disc(M, ζ)

of Πt,disc(M) attached to ζ. We also define CVdisc(M, ζ) to be the set of c such that
π × c belongs to Πt,disc(M, ζ), for some t and some π ∈ Πt,disc(M, ζ).

If c belongs to CVdisc(M, ζ) and λ ∈ a∗M,Z,C, the unramified L-function

L(s, cλ, ρ) =
∏

v 6∈V

det
(
1− ρ(cv,λ)q−sv

)−1

converges absolutely for Re(s) large. In case ρ is the representation ρQ|P of LM ,
it is known that L(s, cλ, ρ) has analytic continuation as a meromorphic function of
s, and that for any fixed s, L(s, cλ, ρ) is a meromorphic function of λ ∈ a∗M,Z,C.

Following (28.12), we define the unramified normalizing factor

rQ|P (cλ) = L(0, cλ, ρQ|P )L(1, cλ, ρ
∨
Q|P )−1, P,Q ∈ P(M).

We then define a (G,M)-family

rQ(Λ, cλ) = rQ|Q̄(cλ)
−1rQ|Q̄(cλ+ 1

2 Λ), Q ∈ P(M),

and a corresponding meromorphic function

(29.5) rGM (cλ) = lim
Λ→0

∑

Q∈P(M)

rQ(Λ, cλ)θQ(Λ)−1

of λ. One shows that rGM (cλ) is an analytic function of λ ∈ ia∗M,Z , whose integral

against any rapidly decreasing function of λ converges [A27, Lemma 3.2]. If π is
now a representation in Πt,unit(GV , ζV ), we define

(29.6) aG(π) =
∑

M∈L

|WM
0 ||WG

0 |−1
∑

c

aMdisc(πM × c)rGM (c),

where π → πM is the restriction operation that is adjoint to induction of characters.
We define a subset Πt(G, V, ζ) of Πt,unit(GV , ζV ), which contains the support of
aG(π), and a measure dπ on Πt(G, V, ζ) by following the appropriate analogues of
(22.6) and (22.7). (See [A27, p. 205].)

Proposition 29.2. Suppose that f ∈ H(G, V, ζ). Then

It(f) =
∑

M∈L

|WM
0 ||WG

0 |−1

∫

Πt(M,V,ζ)

aM (π)IM (π, f)dπ.

(See [A27, Proposition 3.3].) �
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The identity obtained from (29.4) and Propositions 29.1 and 29.2 is the required
reformulation of the invariant trace formula. Observe that the spectral factors
rGM (c) in the coefficients (29.6) are constructed from canonical unramified normal-
izing factors, while their counterparts rGM (πλ) in the earlier coefficients (22.8) were
constructed from noncanonical global normalizing factors. This is a consequence
of the modified definition of the mappings (29.1). The geometric factors rGM (k) in
the coefficients (29.3) have no counterparts in the earlier coefficients (19.6). They
occur in the original geometric expansion (23.11) instead as implicit factors of the
distributions IM (γ, f). This is because the set V is fixed, whereas S is large, in a
sense that depends on the support of f ∈ H(G, V, ζ).

The second preliminary matter pertains directly to the notion of stability. If
T is a maximal torus in G over F , and v is archimedean, the subset D(T/Fv) of
E(T/Fv) in (27.4) can be proper. On the other hand, the v-components of the
summands fκG(δ) in Langlands’ stabilization (27.6) are parametrized by points κv
in the dual group K(T/Fv) of E(T/Fv). If D(T/Fv) is proper in E(T/Fv), the
mapping

fv −→ fκvv,G(δv), κv ∈ K(T/Fv), fv ∈ H(Gv),

from functions fv,G ∈ I
(
G(Fv)

)
to functions on K(T/Fv), is not surjective. This

makes it difficult to characterize the image of the collective transfer mappings

I(G, V, ζ) −→
⊕

G′

SI(G̃′, V, ζ̃′).

It was pointed out by Vogan that the missing elements in D(T/Fv) could be
attached to other groups. He observed that E(T/Fv) could be expressed as a disjoint
union

E(T/Fv) =
∐
Dαv (T/Fv),

over sets Dαv (T/Fv) attached to a finite collection of groups Gαv over Fv related
by inner twisting. (See [AV] and [ABV] for extensions and applications of this
idea.) Kottwitz then formulated the observations of Vogan in terms of the transfer
factors. His formulation gives rise to a notion that was called a K-group in [A25].
Over the global field F , a K-group is an algebraic variety

G =
∐

α

Gα, α ∈ π0(G),

whose connected components are reductive algebraic groupsGα over F , and which is
equipped with two kinds of supplementary structure. One consists of cohomological
data, which include inner twists ψαβ : Gβ → Gα between any two components. The
other is a local product structure, which for any finite set V ⊃ Vram(G) allows us
to identify the set

GV =
∐

α

Gα,V =
∐

α

Gα(FV )

with a product ∏

v∈V

Gv =
∏

v∈V

Gv(Fv)

of Fv-points in local K-groups Gv over Fv. The local K-group Gv is a finite disjoint
union

Gv =
∐

αv

Gαv
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of connected groups if v is archimedean, but it is just a connected group if v is
nonarchimedean. In particular, the set Vram(G) = Vram(Gα) is independent of α.
(See [A27, p. 209–211].)

We assume for the rest of this section that G is a K-group over F . Many
concepts for connected groups carry over to this new setting without change in
notation. For example, we define Γreg(GV ) to be the disjoint union over α of the
corresponding sets Γreg(Gα,V ) for the connected groups Gα. Similar conventions
apply to the sets Π(GV ), Πunit(GV ), and Πtemp(GV ) of irreducible representations.
We define compatible central character data Z = {Zα} and ζ = {ζα} for G by
choosing data Zα and ζα for any one component Gα. This allows us to form the sets
Π(GV , ζV ), Πunit(GV , ζV ), and Πtemp(GV , ζV ) as disjoint unions of corresponding
sets attached to components Gα. We can also define the vector spaces H(GV , ζV ),
H(G, V, ζ), I(GV , ζV ), I(G, V, ζ), D(GZV , ζV ), F(GZV , ζV ), etc., by taking direct
sums of the corresponding spaces attached to components Gα. Finally, we define
sets Γ(GZV , ζV ), Γ(G, V, ζ), Πt(G

Z
V , ζV ), Πt(G, V, ζ), and Πt,disc(G, V, ζ), again as

disjoint unions of corresponding sets attached to components Gα.
There is also a notion of Levi subgroup (or more correctly, Levi K-subgroup)

M of G. For any such M , the objects aM , AM , W (M), P(M), L(M), and F(M)
all have meaning, and play a role similar to that of the connected case. (See [A25,
§1].) We again write L for the set L(M0) attached to a fixed minimal Levi subgroup
M0 of G. With these conventions, the objects in the expansions of Proposition 29.1
and 29.2 now all have meaning for the K-group G over F . The invariant trace
formula for G is an identity

∑

M∈L

|WM
0 ||WG

0 |−1
∑

γ∈Γ(M,V,ζ)

aM (γ)IM (γ, f)

=
∑

t

∑

M∈L

|WM
0 ||WG

0 |−1

∫

Πt(M,V,ζ)

aM (π)IM (π, f)dπ,
(29.7)

which holds for any f ∈ H(G, V, ζ). It is obtained by applying (29.4) and Proposi-
tions 29.1 and 29.2 to the components fα ∈ H(Gα,V , ζα,V ) of f , and then summing
the resulting expansions over α.

Stable conjugacy in GV has to be formulated slightly differently. We define
two strongly regular elements γ ∈ Gα,V and δ ∈ Gβ,V to be stably conjugate if
ψαβ(δ) is stably conjugate in Gα,V to γ. We then define SI(GV , ζV ) as a space of
functions on the set ∆reg(GV ) of strongly regular stable conjugacy classes in GV .
This leads to the notion of a stable distribution on GV , and allows us to define
the subspaces SD(GV , ζV ) and SF(GV , ζV ) of stable distributions in D(GV , ζV )
and F(GV , ζV ) respectively. The conventions here are just minor variations of
what we used for connected groups. We define a quasisplit inner twist of G to
be a connected, quasisplit group G∗ over F , together with a family of inner twists
ψα: Gα → G∗ of connected groups such that ψβ = ψα ◦ ψαβ . For any such G∗,
there is a canonical injection δ → δ∗ from ∆reg(GV ) to ∆reg(G

∗
V ). There is also

a surjective mapping S∗ → S from the space of stable distributions on G∗
V to the

space of stable distributions on GV . We say that G is quasisplit if one of the
components Gα is quasisplit. In this case, the mapping δ → δ∗ is a bijection, and
the mapping S∗ → S is an isomorphism.

Because the components Gα of G are related by inner twists, they can all be

assigned a common dual group Ĝ, and a common L-group LG. We recall that
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endoscopic data were defined entirely in terms of Ĝ. We can therefore regard them

as objects G′ attached to the K-group G. The same holds for auxiliary data G̃′

and ξ̃′ attached to G′. Similarly, local endoscopic data G′
v, with auxiliary data G̃′

v

and ξ̃′v, are objects attached to the local K-group Gv.
The main new property is a natural extension of the Langlands-Shelstad con-

struction of local transfer factors to K-groups. For any Gv, G̃
′
v and ξ̃′v, it provides

a function ∆Gv(δ
′
v, γv) of δ′v ∈ ∆G-reg(G̃

′
v) and γv ∈ Γreg(Gv). (See [A25, §2].)

This is the essence of the observations of Kottwitz and Vogan. It has two implica-
tions. One is that the transfer factors are now built around sets D(T/Fv), which
are attached to the local K-group Gv, and are equal to the subgroups E(T/Fv) of
H1(Fv, T ). This places the theory of real and p-adic groups on an even footing.
The other concerns a related point, which we did not raise earlier. The original

Langlands-Shelstad transfer factor attached to G′
v (and (G̃′

v, ξ̃
′
v)) depends on an

arbitrary multiplicative constant. If G′
v is the localization of a global endoscopic

datum, the product over v of these constants equals 1. However, if G′
v is taken in

isolation, the constant reflects an intrinsic lack of uniqueness in the correspondence
fv → f ′

v. The extension of the transfer factors to Gv still depends on an arbitrary
multiplicative constant. However, the constants for the components Gαv of Gv can
all be specified in terms of the one constant for Gv.

Thus, despite their ungainly appearance, K-groups streamline some aspects of
the study of connected groups. This is the reason for introducing them. If we are
given a connected reductive group G1 over F , we can find a K-group G over F
such that Gα1 = G1 for some α1 ∈ π1(G). Moreover, G is uniquely determined
by G1, up to a natural notion of isomorphism. In particular, for any connected
quasisplit group G∗, there is a quasisplit K-group G such that Gα∗ = G∗, for some
α∗ ∈ π0(G).

Let V be a fixed finite set of valuations that contains Sram(G,Z, ζ). Suppose
that for each v ∈ V , G′

v represents an endoscopic datum (G′
v,G′v, s′v, ξ′v) for G over

Fv, equipped with auxiliary data G̃′
v → G′

v and ξ̃′v: G′v → LG̃′
v, and a corresponding

choice of local transfer factor ∆v = ∆Gv . We are assuming the Langlands-Shelstad
transfer conjecture. Applied to each of the components Gαv of Gv, it gives a

mapping fv → f ′
v = f G̃

′

v from H(Gv, ζv) to SI(G̃′
v, ζ̃

′
v), which can be identified

with a mapping av → a′v from I(Gv, ζv) to SI(G̃′
v, ζ̃

′
v). We write G̃′

V , ζ̃′V , and ξ̃′V
for the product over v ∈ V of G̃′

v, ζ̃
′
v, and ξ̃′v respectively. The product

∏

v

av −→
∏

v

a′v, av ∈ I(Gv , ζv),

then gives a linear transformation a → a′ from I(GV , ζV ) to SI(G̃′
V , ζ̃

′
V ). This

mapping is attached to the product G′
V of data G′

v, which we can think of as an

endoscopic datum for G over FV , equipped with auxiliary data G̃′
V and ξ̃′V , and a

corresponding product ∆V of local transfer factors. We can think of the transfer
factor ∆V over FV as the primary object, since it presupposes a choice of the other

objects G′
V , G̃′

V , ζ̃′V and ξ̃′V .
Letting G′

V vary, we obtain a mapping

(29.8) I(GV , ζV ) −→
∏

G′
V

SI(G̃′
V , ζ̃

′
V )
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by putting together all of the individual images a′. Notice that we have taken a
direct product rather than a direct sum. This is because G′

V ranges over the infinite

set of endoscopic data, equipped with auxiliary data G̃′
V and ξ̃′V , rather than the

finite set of isomorphism classes. However, the fact that G is a K-group makes it
possible to characterize the image of I(GV , ζV ) in this product. The image fits into
a sequence of inclusions

IE (GV , ζV ) ⊂
⊕

{G′
V
}

IE(G′
V , GV , ζV ) ⊂

∏

∆V

SI(G̃′
V , ζ̃

′
V )

in which the summand IE(G′
V , GV , ζV ) depends only on the FV -isomorphism class

of G′
V . Roughly speaking, IE(G′

V , GV , ζV ) is the subspace of products
∏
a′v of

functions attached to choices of transfer factors ∆V for {G′
V } that have the ap-

propriate equivariance properties relative to variations in these choices. The space
IE(GV , ζV ) is defined as the subspace of functions in the direct sum whose vari-
ous components are compatible under restriction to common Levi subgroups. One
shows that the transfer mapping gives an isomorphism

a −→ aE =
∏

∆V

a′, a ∈ I(GV , ζV ),

from I(GV , ζV ) onto IE (GV , ζV ). This in turn determines an isomorphism from
the quotient

I(G, V, ζ) = I(GZV , ζV )

of I(GV , ζV ) onto the corresponding quotient

IE(G, V, ζ) = IE(GZV , ζV )

of IE(GV , ζV ). (See [A31].) The image fits into a sequence of inclusions

(29.9) IE(GZV , ζV ) ⊂
⊕

{G′
V }

IE(G′
V , G

Z
V , ζV ) ⊂

∏

G′
V

SI
(
(G̃′

V )Z̃
′

, ζ̃′V
)
.

The mappings of functions we have described have dual analogues for distri-

butions. Given G′
V (with auxiliary data G̃′

V and ξ̃′V ), assume that δ′ belongs to

the space of stable distributions SD
(
(G̃′

V )Z̃
′

, ζ̃′V
)
. If f belongs to H(G, V, ζ), the

transfer f ′ of f can be evaluated at δ′. Since f → f ′(δ′) belongs to D(GZV , ζV ), we
can write

(29.10) f ′(δ′) =
∑

γ∈Γ(GZ
V
,ζV )

∆G(δ′, γ)fG(γ),

for complex numbers ∆G(δ′, γ) that depend linearly on δ′. Now (29.9) is dual to a
sequence of surjective linear mappings

∏

G′
V

SD
(
(G̃′

V )Z̃
′

, ζ̃′V
)
7→
⊕

{G′
V
}

DE(G′
V , G

Z
V , ζV ) 7→ DE(GZV , ζV )

between spaces of distributions. Since f ′ is the image of the function fG ∈ I(G, V, ζ),
f ′(δ′) depends only on the image δ of δ′ in DE(GZV , ζV ). In other words, f ′(δ′) equals
fE
G(δ), where fE

G is the image of fG in IE(G, V, ζ). The same is therefore true of
the coefficients ∆G(δ′, γ). We can write

∆G(δ, γ) = ∆G(δ′, γ), γ ∈ Γ(GZV , ζV ),
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for complex numbers ∆G(δ, γ) that depend linearly on δ ∈ DE(GZV , ζV ). We note
that the image in DE(GZV , ζV ) of the subspace

SD
(
(G∗

V )Z
∗

, ζ∗V
) ∼7→ SD(G∗

V , G
Z
V , ζV )

can be identified with the space SD(GZV , ζV ) of stable distributions in D(GZV , ζV ).
The constructions above were given in terms of products G′

V of local endoscopic
data for G. The stabilization of the trace formula is based primarily on global
endoscopic data, particularly the subset Eell(G, V ) of global isomorphism classes
in Eell(G) that are unramified outside of V . If G′ is any endoscopic datum for
G over F , we can form the product G′

V of its completions. We can also attach

auxiliary data G̃′
V and ξ̃′V for G′

V to global auxiliary data G̃′ and ξ̃′ for G′. The

datum G′
V , together with G̃′

V and ξ̃′V , indexes a component on the right hand side
of (29.9). There are of course other components in (29.9) that do not come from
global endoscopic data.

We are trying to formulate stable and endoscopic analogues of the terms in
the invariant trace formula (29.7). We start with the local terms IM (γ, f) on the
geometric side. Specializing the distributional transfer coefficients above to Levi
subgroups M ∈ L, we can define a linear form

(29.11) IM (δ, f) =
∑

γ∈Γ(MZ
V
,ζV )

∆M (δ, γ)IM (γ, f),

for any δ ∈ DE (MZ
V , ζV ). However, the true endoscopic analogue of IM (γ, f) is a

more interesting object. It is defined inductively in terms of an important family
EM ′(G) of global endoscopic data for G.

Suppose that M ′ represents a global endoscopic datum (M ′,M′, s′M , ξ
′
M ) for

M , which is elliptic and unramified outside of V . We assume that M′ is an L-
subgroup of LM and that ξ′M is the identity embedding. We define EM ′(G) to be
the set of endoscopic data (G′,G′, s′, ξ′) for G, taken up to translation of s′ by

Z(Ĝ)Γ, in which s′ lies in s′MZ(M̂)Γ, Ĝ′ is the connected centralizer of s′ in Ĝ, G′
equalsM′Ĝ′, and ξ′ is the identity embedding of G′ and LG. For each G′ ∈ EM ′(G),

we fix an embedding M ′ ⊂ G′ for which M̂ ′ ⊂ Ĝ′ is a dual Levi subgroup. We

also fix auxiliary data G̃′ → G′ and ξ̃′: G′ → LG̃′ for G′. These objects restrict

to auxiliary data M̃ ′ → M ′ and ξ̃′M : M′ → LM̃ ′ for M ′, whose central character

data Z̃ ′ and ζ̃′ are the same as those for G′. Observe that G∗ belongs to EM ′(G) if
and only if M ′ equals M∗. We write

E0
M ′(G) =

{
EM ′(G)− {G∗}, if G is quasisplit,

EM ′(G), otherwise.

For any G′ ∈ EM ′(G), we also define a coefficient

ιM ′ (G,G′) = |Z(M̂ ′)Γ/Z(M̂)Γ||Z(Ĝ′)Γ/Z(Ĝ)Γ|−1.

Suppose that δ′ belongs to SD
(
(M̃ ′

V )Z̃
′

, ζ̃′V
)
. We assume inductively that for

everyG′ ∈ E0
M ′(G), we have defined a stable linear form SG̃

′

M̃ ′
(δ′, ·) onH

(
(G̃′

V )Z̃
′

, ζ̃′V
)
.

We impose natural conditions of equivariance on SG̃
′

M̃ ′
(δ′, ·), which imply that the

linear form

f −→ ŜG̃
′

M̃ ′(δ
′, f ′), f ∈ H(G, V, ζ),
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on H(G, V, ζ) depends only on the image of δ′ in the space DE(M ′
V ,M

Z
V , ζV ). In

particular, the last linear form is independent of the choice of auxiliary data G̃′ and

ξ̃′. If G is not quasisplit, we define an “endoscopic” linear form

(29.12) IEM (δ′, f) =
∑

G′∈EM′(G)

ιM ′(G,G′)ŜG̃
′

M̃ ′(δ
′, f ′).

In the case that G is quasisplit, we define a linear form

(29.13) SGM (M ′, δ′, f) = IM (δ, f)−
∑

G′∈E0
M′(G)

ιM ′(G,G′)ŜG̃
′

M̃ ′(δ
′, f ′),

where δ is the image of δ′ in DE(MZ
V , ζV ). In this case, we also define the endoscopic

linear form by the trivial relation

(29.14) IEM (δ′, f) = IM (δ, f).

These definitions represent the first stage of an extensive generalization of the
constructions of §25. To see this more clearly, we need to replace the argument δ′

in IEM (δ′, f) by an element γ ∈ D(MZ
V , ζV ). It turns out that there is a canonical

bilinear form IEM (γ, f) in γ and f such that

(29.15) IEM (δ′, f) =
∑

γ∈Γ(MZ
V
,ζ)

∆M (δ′, γ)IEM (γ, f),

for any (M ′, δ′). Since M ′ was chosen to be an endoscopic datum over F , IEM (γ, f)
is not uniquely determined by (29.15). However, the definitions (29.13) and (29.14)
apply more generally if M ′ is replaced by an endoscopic datum M ′

V over FV . (See
[A25, §5].) One shows directly that the resulting linear form

IEM (δ, f) = IEM (δ′, f)

depends only on the image δ of δ′ in DE(MZ
V , ζV ). The distribution IEM (γ, f) is

then defined by inversion from the corresponding extension of (29.15). (See [A31].)
To complete the inductive definition, one still has to prove something in the spe-

cial case that G is quasisplit and M ′ = M∗. Then δ′ = δ∗ belongs to
SD
(
(M∗

V )Z
∗

, ζ∗V
)
, and the image δ of δ′ in DE(MZ

V , ζV ) lies in the subspace

SD(MZ
V , ζV ) of stable distributions. The problem in this case is to show that

the linear form

(29.16) SGM (δ, f) = SGM (M∗, δ∗, f)

is stable. Only then would we have a linear form

ŜG
∗

M∗(δ∗, f∗) = SGM (δ, f)

on SI
(
(G∗

V )Z
∗

, ζ∗V
)

that is the analogue for (G∗,M∗) of the terms ŜG̃
′

M̃ ′
(δ′, f ′) in

(29.12) and (29.13). This property is deep, and is a critical part of the stabilization
of the general trace formula. In the case that G is quasi-split but M ′ 6= M∗, there
is a second question which is as deep as the first. The problem in this case is to
show that SGM (M ′, δ′, f) vanishes for any δ′ and f .

The analogue for unramified valuations v 6∈ Vram(G) of this second problem is
of special interest. It represents the generalization of the fundamental lemma to
weighted oribital integrals. To state it, we write

rGvMv
(kv) = JMv

(kv, uv), kv ∈ ΓG-reg(Mv),
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where uk is the characteristic function of Kv in Gv(Fv), and Mv is a Levi subgroup
of Gv. Since v is nonarchimedean, the associated component Gv of G is a connected
reductive group over Fv. In this context, we may as well take Zv = 1, since for any
endoscopic datum G′

v over Fv, there is a canonical class of L-embeddings of LG′
v

in LGv [Hal1, §6]. If M ′
v is an unramified elliptic endoscopic datum for Mv, and

ℓ′v ∈ ∆G-reg(M
′
v), we write

rGvMv
(ℓ′v) =

∑

kv

∆Mv
(ℓ′v, kv)r

Gv
Mv

(kv).

We can also obviously write EM ′
v
(Gv) and ιMv

(Gv, G
′
v) for the local analogues of

the global objects defined earlier.

Conjecture. (Generalized fundamental lemma). For any M ′
v and ℓ′v, there is

an identity

(29.17) rGvMv
(ℓ′v) =

∑

G′
v∈EM′

v
(Gv)

ιM ′
v
(Gv, G

′
v)s

G′
v

M ′
v
(ℓ′v),

for functions s
G′
v

M ′
v
(ℓ′v) that depend only on G′

v, M
′
v and ℓ′v.

If M ′
v = M∗

v and ℓ′v = ℓ∗v, G
∗
v belongs to EM ′

v
(Gv), and (29.17) represents an

inductive definition of sGvMv
(ℓ∗v). If M ′

v 6= M∗
v , G∗

v does not belong to EM ′
v
(Gv),

and (29.17) becomes an identity to be proved. The reader can check that when
Mv = Gv, the identity reduces to the standard fundamental lemma, which we
described near the end of §27. We assume from now on that this conjecture holds
for G, at least at almost all valuations v 6∈ Sram(G), as well as for any other
groups that might be required for induction arguments. Since this includes the
usual fundamental lemma, it also encompasses our assumption that the Langlands-
Shelstad transfer conjecture is valid [Wa2].

We can now state the first of four theorems, which together comprise the stabi-
lization of the invariant trace formula. They are all dependent on our assumption
that the generalized fundamental lemma holds.

Theorem 29.3. (a) If G is arbitrary,

IEM (γ, f) = IM (γ, f), γ ∈ D(MZ
V , ζV ), f ∈ H(G, V, ζ).

(b) Suppose that G is quasisplit, and that δ′ belongs to SD
(
(M̃ ′

V )Z̃
′

, ζ̃′V
)
, for

some M ′ ∈ Eell(M,V ). Then the linear form

f −→ SGM (M ′, δ′, f), f ∈ H(G, V, ζ),

vanishes unless M ′ = M∗, in which case it is stable.

The linear forms IEM (γ, f) and SGM (δ, f) ultimately become terms in endoscopic
and stable analogues of the geometric side of (29.7). These objects are to be re-
garded as the local components of the expansions. The global components are
endoscopic and stable analogues of the coefficients aG(γ) in (29.7). As before, the
new coefficients really belong to a completion of the appropriate space of distribu-
tions. However, we again identify them with elements in a dual space by choosing

bases of the relevant spaces of distributions. We fix a basis ∆
(
(G̃′

V )Z̃
′

, ζ̃′V
)

of

SD
(
(G̃′

V )Z̃
′

, ζ̃′V
)

for any FV -endoscopic datum G′
V , with auxiliary data G̃′

V and
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ξ̃′V . We also fix a basis ∆E(GZV , ζV ) of the space DE(GZV , ζV ). Among various
conditions, we require that the subset

∆(GZV , ζV ) = ∆E(GZV , ζV ) ∩ SD(GZV , ζV )

of ∆E(GZV , ζV ) be a basis of SD(GZV , ζV ), and in the case that G is quasisplit, that

∆(GZV , ζV ) be the isomorphic image of the basis ∆
(
(G∗

V )Z
∗

, ζ∗V
)
.

We assume inductively that for every G′ in the set

E0
ell(G, V ) =

{
Eell(G, V )− {G∗}, if G is quasisplit,

Eell(G, V ), otherwise,

we have defined a function bG̃
′

(δ′) on ∆
(
(G̃′

V )Z̃
′

, ζ̃′V
)
. If G is not quasisplit, we can

then define the “endoscopic” coefficient

(29.18) aG,E(γ) =
∑

G′∈Eell(G,V )

∑

δ′

ι(G,G′)bG̃
′

(δ′)∆G(δ′, γ),

as a function of γ ∈ Γ(GZV , ζV ). In the case that G is quasisplit, we define a “stable”
coefficient function bG(δ) of δ ∈ ∆E(GZV , ζV ) by requiring that

(29.19)
∑

δ

bG(δ)∆G(δ, γ) = aG(γ)−
∑

G′∈E0
ell(G,V )

∑

δ′

ι(G,G′)bG̃
′

(δ′)∆G(δ′, γ),

for any γ ∈ Γ(GZV , ζV ). In this case, we also define the endoscopic coefficient by the
trivial relation

aG,E(γ) = aG(γ).

In both (29.18) and (29.19), the numbers ι(G,G′) are Langlands’ original global co-

efficients from (27.3), while δ′ and δ are summed over ∆
(
(G̃′

V )Z̃
′

, ζ̃′V
)

and ∆E(GZV , ζV )
respectively. To complete the inductive definition, we set

bG
∗

(δ∗) = bG(δ), δ∗ ∈ ∆
(
(G∗

V )Z
∗

, ζ∗V
)
,

when G is quasisplit and δ is the preimage of δ∗ in the subset ∆(GZV , ζV ) of
∆E(GZV , ζV ).

Theorem 29.4. (a) If G is arbitrary,

aG,E(γ) = aG(γ), γ ∈ Γ(GZV , ζV ).

(b) If G is quasisplit, bG(δ) vanishes for any δ in the complement of ∆(GZV , ζV )
in ∆E(GZV , ζV ).

We have completed our description of the geometric ingredients that go into the
stabilization of the trace formula. The spectral ingredients are entirely parallel. In

place of the spaces of distributions D(GZV , ζV ), SD
(
(G̃′

V )Z̃
′

, ζ̃′V
)
, DE(G′

V , G
Z
V , ζV ),

and DE(GZV , ζV ), we have spectral analogues F(GZV , ζV ), SF
(
(G̃′

V )Z̃
′

, ζ̃′V
)
,

FE(G′
V , G

Z
V , ζV ), and FE(GZV , ζV ). The subspace SD(GZV , ζV ) of DE (GZV , ζV ) is

replaced by a corresponding subspace SF(GZV , ζV ) of FE(GZV , ζV ). In place of the
prescribed basis Γ(GZV , ζV ) of D(GZV , ζV ), we have the basis

Π(GZV , ζV ) =
∐

t≥0

Πt(G
Z
V , ζV )
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of F(GZV , ζV ) consisting of irreducible characters. If φ′ belongs to SF
(
(G̃′

V )Z̃
′

, ζ̃′V
)
,

the distribution f → f ′(φ′) belongs to F(GZV , ζV ). It therefore has an expansion

f ′(φ′) =
∑

π∈Π(GZ
V
,ζV )

∆(φ′, π)fG(π)

that is parallel to (29.15). The coefficients

∆(φ, π) = ∆(φ′, π), π ∈ Π(GZV , ζV ),

are products over v of local coefficients in (28.4) (or rather, linear extensions in φ′v
of such coefficients), and depend only on the image φ of φ′ in FE(GZV , ζV ).

The definitions (29.13)–(29.16) have obvious spectral variants. They provide
linear forms IM (φ, f), IEM (φ′, f), SGM (M ′, φ′, f), IEM (π, f), and SM (φ, f) in
f ∈ H(G, V, ζ), which also depend linearly on the distributions φ, φ′ and π.

Theorem 29.5. (a) If G is arbitrary,

IEM (π, f) = IM (π, f), π ∈ F(MZ
V , ζV ), f ∈ H(G, V, ζ).

(b) Suppose that G is quasisplit, and that φ′ belongs to SF
(
(M̃ ′

V )Z̃
′

, ζ̃′V
)
, for

some M ′ ∈ Eell(M,V ). Then the linear form

f −→ SGM (M ′, φ′, f), f ∈ H(G, V, ζ),

vanishes unless M ′ = M∗, in which case it is stable.

The linear forms IEM (π, f) and SGM (φ, f) ultimately become local terms in en-
doscopic and stable analogues of the spectral side of (29.7). The global terms are
endoscopic and stable analogues of the coefficients aG(π) in (29.7). We fix a basis

Φ
(
(G̃′

V )Z̃
′

, ζ̃′V
)

of the space SF
(
(G̃′

V )Z̃
′

, ζ̃′V
)
, for each G′

V , G̃′
V and ξ̃′V , which we

can form from local bases Φ(G̃′
v, ζ̃

′
v). If v is nonarchimedean, we take Φ(G̃′

v, ζ̃
′
v) to

be the abstract basis discussed in §28. If v is archimedean, we can identify Φ(G̃′
v, ζ̃

′
v)

with the relevant set of archimedean Langlands parameters φv, thanks to the work
of Shelstad. Since any such φv has an archimedean infinitesimal character, there is
a decomposition

Φ
(
(G̃′

V )Z̃
′

, ζ̃′V
)

=
∐

t≥0

Φt
(
(G̃′

V )Z̃
′

, ζ̃′V
)
.

We also fix a basis ΦE(GZV , ζV ) of the space DE (GZV , ζV ), which can in fact be taken

to be a set of equivalence classes in the union of the various bases Φ
(
(G̃′

V )Z̃
′

, ζ̃′V
)
.

Among other things, this implies that the subset

Φ(GZV , ζV ) = ΦE(GZV , ζV ) ∩ SF(GZV , ζV )

of ΦE(GZV , ζV ) is a basis of SF(GZV , ζV ), and in the case that G is quasisplit, is the

isomorphic image of the basis Φ
(
(G∗

V )Z
∗

, ζ∗V
)
.

Having fixed bases, we can apply the obvious spectral variants of the defi-
nitions (29.18) and (29.19). We thereby obtain functions aG,E(π) and bG(φ) of
π ∈ Π(GZV , ζV ) and φ ∈ ΦE(GZV , ζV ) respectively.

Theorem 29.6. (a) If G is arbitrary,

aG,E(π) = aG(π), π ∈ Π(GZV , ζV ).
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(b) If G is quasisplit, bG(φ) vanishes for any φ in the complement of Φ(GZV , ζV )
in ΦE(GZV , ζV ).

Theorems 29.3 and 29.4 are general analogues of Theorem 25.5 for inner twist-
ings of GL(n). The extra assertions (b) of theorems were not required earlier, since
the question of stability is trivial for GL(n). Similarly, Theorems 29.5 and 29.6 are
general analogues of Theorem 25.6. Taken together, Theorems 29.3–29.6 amount
to a stabilization of the general trace formula. This will become clearer after we
have stated the general analogues of Lemmas 25.3 and 25.4.

The four theorems are proved together. As in the special case in §25, the
argument is by double induction on dim(G/Z) and dim(AM ). The first stage of
the proof is to obtain endoscopic and stable analogues of the expansions on each
side of (29.7). For this, one needs only the induction assumption that the global

assertions (b) of Theorems 29.4 and 29.6 be valid if (G, ζ) is replaced by (G̃′, ζ̃′),
for any G′ ∈ E0

ell(G, V ).
Let I be the invariant linear form onH(G, V, ζ) defined by either of the two sides

of (29.7). If G is not quasisplit, we define an “endoscopic” linear form inductively
by setting

(29.20) IE(f) =
∑

G′∈Eell(G,V )

ι(G,G′)Ŝ′(f ′),

for stable linear forms Ŝ′ = ŜG̃
′

on SI(G̃′, V, ζ̃′). In the case that G is quasisplit,
we define a linear form

(29.21) SG(f) = I(f)−
∑

G′∈E0
ell(G,V )

ι(G,G′)Ŝ′(f ′).

We also define the endoscopic linear form by the trivial relation

(29.22) IE(f) = I(f).

In the case G is quasisplit, we need to show that the linear form SG on I(G, V, ζ)
is stable. Only then will we have a linear form

ŜG
∗

(f∗) = SG(f)

on SI(G∗, V, ζ∗) that is the analogue for G∗ of the summands in (29.20) and (29.21)
needed to complete the inductive definition. We would also like to show that
IE(f) = I(f). These properties are obviously related to the assertions of the four
theorems.

The reader will recognize in the definitions (29.20)–(29.22), taken with the
assertions that SG(f) is stable and IE(f) = I(f), an analogue of Langlands’ stabi-
lization (27.3) of the regular elliptic terms. This construction is in fact a model for
the stabilization of any part of the trace formula. For example, let

(29.23) Iorb(f) =
∑

γ∈Γ(G,V,ζ)

aG(γ)fG(γ)

be the component with M = G in the geometric expansion in (29.7). This sum
includes the regular elliptic terms, as well as orbital integrals over more general
conjugacy classes. Its complement I(f) − Iorb(f) in I(f), being a sum over M in
the complement L0 of {G} in L, can be regarded as the “parabolic” part of the
geometric expansion. We define linear forms IEorb(f) and SGorb(f) on H(G, V, ζ) by
the obvious analogues of (29.20)–(29.22).
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Proposition 29.7. (a) If G is arbitrary,

IE(f)− IEorb(f) =
∑

M∈L0

|WM
0 ||WG

0 |−1
∑

γ∈ΓE(M,V,ζ)

aM,E(γ)IEM (γ, f),

where ΓE(M,V, ζ) is a natural discrete subset of Γ(MZ
V , ζV ) that contains the sup-

port of aM,E(γ).
(b) If G is quasisplit,

SG(f)− SGorb(f)

=
∑

M∈L0

|WM
0 ||WG

0 |−1
∑

M ′∈Eell(M,V )

ι(M,M ′)
∑

δ′∈∆(M̃ ′,V,ζ̃′)

bM̃
′

(δ′)SGM (M ′, δ′, f),

where ∆(M̃ ′, V, ζ̃′) is a natural discrete subset of ∆
(
(M̃ ′

V )Z̃
′

, ζ̃′V
)

that contains the

support of bM̃
′

(δ′).

See [A27, Theorem 10.1]. �

Let It(f) be the summand of t on the spectral side of (29.7). We attach
linear forms IEt (f) and SGt (f) to It(f) by the analogues of (29.20)–(29.22). The
decomposition in (29.7) of I(f) as a sum over t ≥ 0 of It(f) leads to corresponding
decompositions

(29.24(a)) IE(f) =
∑

t≥0

IEt (f)

and

(29.24(b)) SG(f) =
∑

t≥0

SGt (f)

of IE(f) and SG(f). Each of these sums satisfies the analogue of the weak multiplier
estimate (23.13), and hence converges absolutely. (See [A27, Proposition 10.5].)
For any t, we write

(29.25) It,unit(f) =

∫

Πt(G,V,ζ)

aG(π)fG(π)dπ

for the component with M = G for the spectral expansion of It(f) in (29.7). We
then define corresponding linear forms IEt,unit(f) and SGt,unit(f) on H(G, V, ζ), again

by the obvious analogues of (29.20)–(29.22).

Proposition 29.8. (a) If G is arbitrary,

IEt (f)− IEt,unit(f) =
∑

M∈L0

|WM
0 ||WG

0 |−1

∫

ΠE
t (M,V,ζ)

aM,E(π)IEM (π, f)dπ,

where ΠE
t (M,V, ζ) is a subset of Πt(M

Z
V , ζV ), equipped with a natural measure dπ,

that contains the support of aM,E(π).
(b) If G is quasisplit,

SGt (f)− SGt,unit(f)

=
∑

M∈L0

|WM
0 ||WG

0 |−1
∑

M ′∈Eell(M,V )

ι(M,M ′)

∫

Φt′ (M̃
′,V,ζ̃′)

bM̃
′

(φ′)SGM (M ′, φ′, f)dφ′,
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where t′ is a translate of t, and Φt′(M̃
′, V, ζ̃′) is a subset of Φt′

(
(M̃ ′

V )Z̃
′

, ζ̃′V
)
,

equipped with a natural measure dφ′, which contains the support of bM̃
′

(φ′).

See [A27, Theorem 10.6]. �

In contrast to the special cases of Lemmas 25.3 and 25.4, we have excluded the
terms with M = G from the expansions of Propositions 29.7 and 29.8. This was
only to keep the notation slightly simpler in the assertions (b). It is a consequence
of the definitions that

(29.26(a)) IEorb(f) =
∑

γ∈ΓE(G,V,ζ)

aG,E(γ)fG(γ)

and

(29.26(b)) SGorb(f) =
∑

δ∈∆E(G,V,ζ)

bG(δ)fE
G(δ),

where ∆E(G, V, ζ) is a certain discrete subset of ∆E (GZV , ζV ) that contains the
support of bG. Similarly, we have

(29.27(a)) IEt,unit(f) =

∫

ΠE
t (G,V,ζ)

aG,E(π)fG(π)dπ

and

(29.27(b)) SGt,unit(f) =

∫

ΦE
t (G,V,ζ)

bG(φ)fE
G(φ)dφ,

where ΦE
t (G, V, ζ) is a subset of ΦE

t (G
Z
V , ζV ), equipped with a natural measure

dφ, that contains the support of bG(φ). (See [A27, Lemmas 7.2 and 7.3].) We can
obviously combine (29.26(a)) and (29.27(a)) with the expansions (a) of Propositions
29.7 and 29.8. This provides expressions for IE(f) and IEt (f) that are more clearly
generalizations of those of Lemmas 25.3 and 25.4. On the other hand, the sums
in (29.26(b)) and (29.27(b)) are not of the same form as those in the expansions
(b) of Propositions 29.7 and 29.8. Their substitution into these expansions leads
to expressions for SG(f) and SGt (f) that, without the general assertions (b) of the
four theorems, are more ungainly.

We shall say only a few words about the proof of the four theorems. If G is
not quasisplit, one works with the identity obtained from (29.24(a)), (29.26(a)),
(29.27(a)), and Propositions 29.7(a) and 29.8(a). The problem is to compare the
terms in this identity with those of the invariant trace formula (29.7). If G is qua-
sisplit, one works with the identity obtained from (29.24(b)), (29.26(b)), (29.27(b)),
and Propositions 29.7(b) and 29.8(b). The problem here is to show that if fG = 0,
the appropriate terms in the identity vanish. The arguments are long and compli-
cated, but they do follow the basic model established in §25. In particular, they
frequently move forward under their own momentum.

There is one point we should mention explicitly. The geometric coefficients
aG(γ) are compound objects, defined (29.3) in terms of the original coefficients
aMell(γM × k). The identities stated in Theorem 29.4 have analogues that apply to
endoscopic and stable forms of the coefficients aGell(γ × k). The role of the general-
ized fundamental lemma is to reduce Theorem 29.4 to these basic identities [A27,
Proposition 10.3]. (The case M = G of the generalized fundamental lemma, namely
the ordinary fundamental lemma, carries the more obvious burden of establishing
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the existence of the mappings f → f ′.) One has then to reduce these basic identi-
ties further to the special case of classes in G(FS) that are purely unipotent. This
turns out to be a major undertaking [A26], which depends heavily on Langlands-
Shelstad descent for transfer factors [LS2]. The reduction to unipotent classes can
be regarded as an extension of the stabilization of the semisimple elliptic terms by
Langlands [Lan10] and Kottwitz [Ko5].

The spectral coefficients aG(π) are also compound objects. They are defined
(29.6) in terms of the original spectral coefficients aMdisc(πM × c). The identities
stated in Theorem 29.6 have analogues for endoscopic and stable forms of the
coefficients aGdisc(π × c). It is interesting to note that the generalized fundamental
lemma has a spectral variant [A27, Proposition 8.3], albeit one which is much less
deep, and which has a straightforward proof. (For example, the case M = G of
this spectral result is entirely vacuous. The cases with M 6= G reflect relatively
superficial aspects of the deeper geometric conjecture.) The role of the spectral
result is to reduce Theorem 29.6 to the identities for endoscopic and stable forms
of the coefficients aGdisc(γ × k) [A27, Proposition 10.7].

We have touched on a couple of aspects of the first half of the argument. The
second half of the proof is contained in [A29]. It is based on a comparison of
the expansions in Propositions 29.7 and 29.8 with those in (29.7). Among the
many reductions on the geometric sides, one establishes the required cancellation
of almost all of the terms in Iorb(f), IEorb(f), and SGorb(f) by appealing to the
reductions of Theorem 29.4 described above. Those that remain correspond to
unipotent elements. They can be separated from the complementary terms in the
expansions by an approximation argument. Among the spectral reductions, one sees
that many of the terms in It,unit(f), IEt,unit(f), and SGt,unit(f) also cancel, thanks
to the reduction of Theorem 29.6 we have mentioned. Those that remain occur
discretely. They can be separated from the complementary terms in the expansions
by the appropriate forms of the weak multiplier estimate (23.13).

These sparse comments convey very little sense of the scope of the argument. It
will suffice for us to reiterate that much of the collective proof of the four theorems
is in attempting to generalize arguments described in the special case of §25. �

Corollary 29.9. (a) (Endoscopic trace formula). The identity

(29.28(a))

∑

M∈L

|WM
0 ||WG

0 |−1
∑

γ∈ΓE(M,V,ζ)

aM,E(γ)IEM (γ, f)

=
∑

t≥0

∑

M∈L

|WM
0 ||WG

0 |−1

∫

ΠE
t (M,V,ζ)

aM,E(π)IEM (π, f)

holds for any f ∈ H(G, V, ζ). Each term in the identity is equal to its corresponding
analogue in the invariant trace formula (29.7).

(b) (Stable trace formula). If G is quasisplit, the identity

(29.28(b))

∑

M∈L

|WM
0 ||WG

0 |−1
∑

δ∈∆(M,V,ζ)

bM (δ)SM (δ, f)

=
∑

t≥0

∑

M∈L

|WM
0 ||WG

0 |−1

∫

Φt(M,V,ζ)

bM (φ)SM (φ, f)dφ

holds for any f ∈ H(G, V, ζ). The terms in the identity are all stable in f .
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The identity (29.28(a)) follows immediately from Propositions 29.7(a) and
29.8(a) and expansions (29.26(a)) and (29.27(a)), as we have already noted. Asser-
tions (a) of the four theorems give the term by term identification of this identity
with the invariant trace formula.

To establish (29.28(b)), we combine the expansions of Propositions 29.7(b) and
29.8(b) with (29.26(b)) and (29.27(b)). This yields a rather complicated formula.
However, assertions (b) of the four theorems imply immediately that the formula
collapses to the required identity (29.28(b)). Supplementary assertions in Theorems
29.3(b) and 29.5(b) tell us that the linear forms SM (δ, f) and SM (φ, f) in (29.28(b))
are stable in f . �

The endoscopic trace formula (29.28(a)) is a priori quite different from the orig-
inal formula (29.7). In case G is not quasisplit, it is defined as a linear combination
of stable trace formulas for endoscopic groups G′. Our conclusion that it is in fact
equal to the original formula amounts to a stabilization of the trace formula.

We recall that G =
∐
Gα is a K-group over F . However, if f is supported on a

component Gα(FV ), the sums in (29.28(a)) can be taken over geometric and stable
objects attached to Gα. Moreover, if G is quasisplit, the stable distributions on GV
are in bijective correspondence with those on G∗

V . It follows that the assertions of
Corollary 29.9 hold as stated if G is an ordinary connected group over F .

There is one final corollary. To state it, we return to the setting of earlier
sections. We take G to be a connected reductive group over F , and f to be a
function in the adelic Hecke algebra H(G, ζ) = H

(
G(A)Z , ζ

)
. The t-discrete part

It,disc(f) of the trace formula (21.19) represents its spectral core. It is the part that
is actually used for applications.

Corollary 29.10. There are stable linear forms

SGt,disc(f), f ∈ H(G, V ), t ≥ 0,

defined whenever G is quasisplit, such that

(29.29) It,disc(f) =
∑

G′∈Eell(G)

ι(G,G′)ŜG̃
′

t,disc(f
′),

for any G, t and f .

We define linear forms IEt,disc and SGt,disc inductively by analogues of (29.20)–

(29.22). Recall that there is an expansion

It,disc(f) =
∑

π∈Πt,disc(G)

aGdisc(π)fG(π),

which serves as the definition of the coefficients aGdisc(π), and is parallel to the
definition (29.25) of It,unit(f). This leads to corresponding expansions of IEt,disc(f)

and SGt,disc(f), which are parallel to (29.27(a)) and (29.27(b)). We have already
noted that the assertions of Theorem 29.6 reduce to corresponding assertions for
the coefficients of these latter expansions. Theorem 29.6 therefore implies that
IEt,disc(f) = It,disc(f), and that SGt,disc(f) is stable in case G is quasisplit. The

identity (29.29) then follows from the definition of IEt,disc(f). �
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30. Representations of classical groups

To give some sense of the power of the stable trace formula, we shall describe
a broad application. It concerns the representations of classical groups. We shall
describe a classification of automorphic representations of classical groups G in
terms of those of general linear groups GL(N). Since it depends on the stable
trace formula for G, the classification is conditional on the fundamental lemma
(both the standard version and its generalization (29.17)) for each of the classical
groups in question. It also depends on the stabilization of a twisted trace formula
for GL(N). The classification is therefore conditional also on the corresponding
twisted fundamental lemma (both standard and generalized) for GL(N), as well as
twisted analogues (yet to be established) of the results of §29.

It is possible to work in a more general context. One could take a product
of general linear groups, equipped with a pair α = (θ, ω), where θ is an outer
automorphism, and ω is an automorphic character of GL(1). This is the setting
adopted by Kottwitz and Shelstad in their construction of twisted transfer factors
[KoS]. There is much to be learned by working in such generality. However,
we shall adopt the more restricted setting in which α = θ is the standard outer
automorphism of GL(N). For reasons on induction, it is important to allow N
to vary. The groups G will then range the quasisplit classical groups in the three
infinite families SO(2n + 1), Sp(2n), and SO(2n). The results have yet to be
published. My notes apply only to the special case under discussion, but I will try
to write them up in greater generality.

The groups G arise as twisted endoscopic groups. For computational purposes,
we represent θ as the automorphism

θ(x) −→ tx
−1 = J tx−1J−1, x ∈ GL(N),

of GL(N), where

tx = J txJ = J txJ−1, J =

(
0 1

.
. .

1 0

)
,

is the “second transpose” of x, about the second diagonal. Then θ stabilizes the
standard Borel subgroup of GL(N). (For theoretical purposes [KoS], it is some-
times better to work with the automorphism

θ′(x) = J ′ tx−1(J ′)−1, J ′ =




0 1
. .

.

(−1)N+1 0


 ,

that stabilizes the standard splitting in GL(N) as well.) We form the connected
component

G̃ = G̃N = GL(N) ⋊ θ

in the nonconnected semidirect product

G̃+ = G̃+
N = GL(N) ⋊ (Z/2Z),

whose identity component we denote by G̃0. Twisted endoscopic data are like
ordinary endoscopic data, except that their dual groups are connected centralizers

of semisimple automorphisms within the inner class defined by G̃, rather than the
earlier identity class of inner automorphisms. We have then to consider semisimple

elements s in the component
̂̃
G =

̂̃
G0 ⋊ θ, acting by conjugation on G̃0. It suffices
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to work here with the Galois form of L-groups. In the present context, a twisted

endoscopic datum for G̃ can be taken to be a quasisplit group G, together with an

admissible L-embedding ξ of G = LG into the centralizer in LG̃0 = GL(N,C)×ΓF
of some element s. We define G to be elliptic if AG = {1}, which is to say that the

group Z(Ĝ)ΓF is finite. We then write Eell(Ĝ) for the set of isomorphism classes of

elliptic (twisted) endoscopic data for G̃.
Suppose for example that N is odd, and that s = θ. Then the centralizer of s

in
̂̃
G0 is a group we will denote by O(N,C), even though it is really the orthogonal

group with respect to the symmetric bilinear attached to J . The element s therefore

yields a twisted endoscopic group G for which Ĝ is the special orthogonal group
SO(N,C). Since N is odd, G is isomorphic to the split group Sp(N−1). The group
O(N,C) has a second connected component, represented by the central element
(−I) in GL(N,C). This means that there are many admissible ways to embed LG

into LG̃0. They are parametrized by isomorphisms from ΓF to Z/2Z, which by
class field theory correspond to characters η on F ∗\A∗ with η2 = 1. The set of such

η parametrizes the subset of Eell(G̃) attached to s. This phenomenon illustrates a
second point of departure in the twisted case. The different embeddings represent
distinct isomorphism classes of twisted endoscopic data, even though the underlying
twisted endoscopic groups and associated elements s are all the same.

To describe the full set Eell(G̃), we consider decompositions of N into a sum
Ns +No of nonnegative integers, with Ns even. We then take the diagonal matrix

s =

0
BB@

−Is 0
Io

0 Is

1
CCA,

where Is is the identity matrix of rank (Ns/2), and Io is the identity matrix of rank

No. The centralizer of s in
̂̃
G0 is a product

Sp(Ns,C)×O(No,C)

of complex classical groups, defined again by bilinear forms supported on the second
diagonal. It corresponds to a twisted endoscopic group G with dual group

Ĝ = Sp(Ns,C)× SO(No,C).

The group O(No,C) has two connected components if No > 0. We have then also to
specifiy an idèle class character η with η2 = 1. If No is odd, the twisted endoscopic
group is the split group

G = SO(Ns + 1)× Sp(No − 1)

over F . In this case, η serves to specify the embedding of LG into LG̃0, as in the
special case above. We emphasize again that η is an essential part of the associated
endoscopic datum. If No is even, the nonidentity component of O(No,C) acts on
the identity component SO(No,C) as an outer automorphism. In this case, the
twisted endoscopic group is the quasisplit group

G = SO(Ns + 1)× SO(No, η),

where SO(No, η) is the outer twist of the split group SO(No) determined by η.

The character η also determines an L-embedding of LG into LG̃0 in this case. If
No = 2, the group SO(No) is abelian. In this case, η must be nontrivial in order
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that corresponding twisted endoscopic datum be elliptic. In all other cases, η can be
arbitrary. It is a straightforward exercise to check that the twisted endoscopic data
obtained from triplets (Ns, No, η) in this way give a complete set of representatives

of Eell(G̃).
It is possible to motivate the discussion above in more elementary terms. One

does so by analyzing continuous representations

r : ΓF −→ GL(N,C)

that are self-contragredient, in the sense that the representation

tr
−1 : σ −→ tr(σ)−1, σ ∈ ΓF ,

is equivalent to r. Since r is continuous, it factors through a finite quotient of ΓF .
The analysis is therefore essentially that of the self-contragredient representations
of an abstract finite group. One sees that twisted endoscopic data arise naturally
in terms of decompositions of r into symplectic and orthogonal components. (See
[A23, §3].)

The general results are proved by induction on N . We therefore have a particu-

lar interest in elements G ∈ Eell(G̃) that are primitive, in the sense either Ns or No
equals zero. There are three cases. They correspond to N = Ns even, N = No odd,
and N = No even. The associated twisted endoscopic groups are the split group

G = SO(N + 1) with dual group Ĝ = Sp(N,C), the split group G = Sp(N − 1)

with dual group Ĝ = SO(N,C), and the quasisplit group G = SO(N, η) with dual

group Ĝ = SO(N,C). We write Eprim(G̃) for the subset of primitive elements in

Eell(G̃).

Suppose that G ∈ Eprim(G̃). Regarding G simply as a reductive group over F ,
we can calculate its (standard) elliptic endoscopic data G′ ∈ Eell(G). It suffices to

consider diagonal matrices s′ ∈ Ĝ with entries ±1. For example, in the first case

that G = SO(N +1) and Ĝ = Sp(N,C) (for N even), it is enough to take diagonal
elements

s′ =

0
BB@

−I ′ 0
I ′′

0 −I ′

1
CCA,

where I ′ is the identity matrix of rank (N ′/2), and I ′′ is the identity matrix of rank
N ′′. The set Eell(G) is parametrized by pairs (N ′, N ′′) of nonnegative even integers,
with 0 ≤ N ′ ≤ N ′′ and N = N ′ + N ′′. The corresponding endoscopic groups are
the split groups

G′ = SO(N ′ + 1)× SO(N ′′ + 1),

with dual groups

Ĝ′ = Sp(N ′,C)× Sp(N ′′,C) ⊂ Sp(N,C) = Ĝ.

In the second case that G = Sp(N − 1) and Ĝ = SO(N,C), Eell(G) is parametrized
by pairs of (N ′, N ′′) of nonnegative even integers with N = N ′ + (N ′′ + 1), and
idèle class characters η′ with (η′)2 = 1. The corresponding endoscopic groups are
the quasisplit groups

G′ = SO(N ′, η′)× Sp(N ′′),

with dual groups

Ĝ′ = SO(N ′,C)× SO(N ′′ + 1,C) ⊂ Ĝ = SO(N,C).
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In the third case that G = SO(N, η) and Ĝ = SO(N,C), Eell(G) is parametrized
pairs of nonnegative even integers (N ′, N ′′) with 0 ≤ N ′ ≤ N ′′ and N = N ′ +N ′′,
and pairs (η′, η′′) of idèle class characters with (η′)2 = (η′′)2 = 1 and η = η′η′′.
The corresponding endoscopic groups are the quasisplit groups

G′ = SO(N ′, η′)× SO(N ′′, η′′),

with dual groups

Ĝ′ = SO(N ′,C)× SO(N ′′,C) ⊂ SO(N,C) = Ĝ.

In the second and third cases, the character η∗ has to be nontrivial if the corre-
sponding integer N∗ equals 2, and in the case N ′ = 0, η′ must of course be trivial.

Our goal is to try to classify automorphic representations of a group

G ∈ Eprim(G̃) by means of the trace formula. The core of the trace formula for
G is the t-discrete part
(30.1)

It,disc(f) =
∑

{M}

|W (M)|−1
∑

s∈W (M)reg

| det(s− 1)aM |−1tr
(
MP (s, 0)IP,t(0, f)

)
,

of its spectral side. We recall that f is a test function in H(G) = H
(
G(A)

)
, while t

is a nonnegative number that restricts the automorphic constituents of IP,t(0, f) by
specifying the norm of their archimedean infinitesimal characters. The stabilization
described in §29 yields the decomposition

(30.2) It,disc(f) =
∑

G′∈Eell(G)

ι(G,G′)ŜG
′

t,disc(f
′)

stated in Corollary 29.10. We recall that SG
′

t,disc is a stable distribution on G′(A),

while f ′ = fG
′

is the Langlands-Shelstad transfer of f . This is the payoff. It is our
remuneration for the work done in stabilizing the other terms in the trace formula.
But really, how valuable is it? Since G is quasisplit, G = G∗ is an element in
E(G). The stabilization does not provide an independent characterization of the
distribution SGt,disc. In fact, (30.2) can be regarded as an inductive definition of

SGt,disc in terms of Idisc,t and corresponding distributions for groups G′ of dimension

smaller than G. Thus, (30.2) amounts to the assertion that one can modify It,disc(f)
by adding some correction terms, defined inductively in terms of Langlands-Shelstad
transfer, so that it becomes stable. A useful property, no doubt, but not something
that in itself could classify the automorphic representations of G.

What saves the day is the twisted trace formula for G̃. Let f̃ be a test function

in the Hecke space H(G̃) = H
(
G̃(A)

)
attached to the component G̃ = GL(N) ⋊ θ.

The twisted trace formula is an identity of linear forms whose spectral side also has
a discrete part
(30.3)

It,disc(f̃) =
∑

{fM0}

|W (M̃0)|−1
∑

s∈W (fM0)reg

| det(s− 1)
a

eG
fM0

|−1tr
(
M eP 0(s, 0)I eP 0,t(0)

)
(f̃)

with the same general structure as (30.1). (The first sum is over the set of G̃0-

orbits of Levi subgroups M̃0, while the second sum is over the regular elements
in the relevant twisted Weyl set. The other terms are also twisted forms of their
analogues in (30.1), for which the reader can consult [CLL] and [A14, §4].) We
assume that the twisted fundamental lemma (both ordinary and weighted) holds for
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G̃, as well as twisted analogues of the other results described in §29. These include
the twisted analogue of Waldspurger’s theorem that the fundamental lemma implies

transfer. We can therefore suppose that the transfer mapping f̃ → f̃G, defined for

any G ∈ Eell(G̃) by the twisted transfer factors of Kottwitz-Shelstad [KoS], sends

H(G̃) to the space SI(G). The stabilization of the twisted trace formula for G̃ then
yields a decomposition

(30.4) It,disc(f̃) =
∑

G∈Eell(G̃)

ι(G̃,G)ŜGt,disc(f̃
G),

where SGt,disc is the (untwisted) stable distribution on G(A) that appears in (30.2),

and ι(G̃,G) is an explicit constant. This gives an a priori relationship among the
terms SGt,disc defined in the formulas (30.2).

By combining the global identities (30.2) and (30.4), one obtains both local and
global results. In the end, the interplay between the two formulas yields a classifi-
cation of representations of odd orthogonal and symplectic groups, and something
close to a classification in the even orthogonal case. We shall say little more about
the proofs. We shall instead use the rest of the section to try to give a precise
statement of the results.

Since everything ultimately depends on the automorphic spectrum of GL(N),
we begin with this group. We need to formulate the results of Moeglin and Wald-
spurger in a way that can be extended to the classical groups in question.

We shall represent the discrete spectrum of GL(N) by a set of formal objects
that are parallel to the global parameters at the end of §26. Let Ψ2

(
GL(N)

)
be

the set of formal tensor products

ψ = µ⊠ ν,

where µ is an irreducible, unitary, cuspidal automorphic representation of GL(m),
and ν is the unique irreducible n-dimensional representation of the group SL(2,C),
for positive integers m and n such that N = mn. For any such ψ, we form the
induced representation

(30.5) IGP
(
(µ⊗ · · · ⊗ µ︸ ︷︷ ︸

n

)δ
1
2

P

)
,

of GL(N,A), where P is the standard parabolic subgroup of type (m, . . . ,m). We
then write πψ for the unique irreducible quotient of this representation. The the-
orem of Moeglin and Waldspurger asserts that the mapping ψ → πψ is a bijection
from Ψ2

(
GL(N)

)
onto the set of automorphic representations of GL(N) that occur

in the discrete spectrum. Set

c(ψ) =
{
cv(ψ) : v 6∈ S

}
,

for any finite set S ⊃ S∞ of valuations outside of which µ is unramified, and
semisimple conjugacy classes

cv(ψ) = cv(µ)⊗ cv(φν) = cv(µ)q
( n−1

2 )
v ⊕ · · · ⊕ cv(µ)q

−(n−1
2 )

v

in GL(N,C). The family c(ψ) then equals the family c(πψ) attached to πψ in §26.
We also represent the entire automorphic spectrum of GL(N) by a larger set

of formal objects. Let Ψ
(
GL(N)

)
be the set of formal (unordered) direct sums

(30.6) ψ = ℓ1ψ1 ⊞ · · ·⊞ ℓrψr
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for positive integers ℓi, and distinct elements ψi = µi ⊠ νi in Ψ2

(
GL(Ni)

)
. The

ranks Ni are positive integers of the form Ni = mini such that

N = ℓ1N1 + · · ·+ ℓrNr = ℓ1m1n1 + · · ·+ ℓrmrnr.

For any ψ as in (30.6), take P to be the standard parabolic subgroup with Levi
component

M =
(
GL(N1)× · · · ×GL(N1)︸ ︷︷ ︸

ℓ1

)
× · · · ×

(
GL(Nr)× · · · ×GL(Nr)︸ ︷︷ ︸

ℓr

)
,

and form the corresponding induced representation

(30.7) πψ = IGP
(
(πψ1 ⊗ · · · ⊗ πψ1︸ ︷︷ ︸

ℓ1

)⊗ · · · ⊗ (πψr ⊗ · · · ⊗ πψr︸ ︷︷ ︸
ℓr

)
)
.

As a representation ofGL(N,A) induced from a unitary representation, πψ is known
to be irreducible [Be]. It follows from the theory of Eisenstein series, and Theorem
7.2 in particular, that ψ → πψ is a bijection from Ψ

(
GL(N)

)
onto the set of

irreducible representations of GL(N,A) that occur in the spectral decomposition
of L2

(
GL(N,F )\GL(N,A)

)
. We set

c(ψ) = {cv(ψ) : v 6∈ S},
for any finite set S ⊃ S∞ outside of which each µi is unramified, and semisimple
conjugacy classes

cv(ψ) =
(
cv(ψ1)⊕ · · · ⊕ cv(ψ1)︸ ︷︷ ︸

ℓ1

)
⊕ · · · ⊕

(
cv(ψr)⊕ · · · ⊕ cv(ψr)︸ ︷︷ ︸

ℓr

)
,

in GL(N,C). Then c(ψ) is again equal to c(πψ). The theorem of Jacquet and
Shalika mentioned in §26 [JaS] tells us that the mapping

ψ −→ c(ψ), ψ ∈ Ψ
(
GL(N)

)
,

from Ψ
(
GL(N)

)
to the set of (equivalence classes of) semisimple conjugacy classes

in GL(N,C), is injective.
There is an action πψ → πθψ of the outer automorphism θ on the set of repre-

sentations πψ . If ψ is an element (30.6) in Ψ
(
GL(N)

)
, set

ψθ = ℓ1(µ
θ
1 ⊠ νθ1 ) ⊞ · · ·⊞ ℓr(µ

θ
r ⊠ νθr )

= ℓ(µθ1 ⊠ ν1) ⊞ · · ·⊞ ℓr(µ
θ
r ⊠ νr),

where µθi is the contragredient of the cuspidal automorphic representation µi of
GL(mi). (We can write νθi = νi, since any irreducible representation of SL(2,C) is
self dual.) Then πθψ = πψθ . We introduce a subset

Ψ̃ = Ψ(G̃) =
{
ψ ∈ Ψ

(
GL(N)

)
: ψθ = ψ

}

of elements in Ψ
(
GL(N)

)
associated to the component

G̃ = G̃N = GL(N) ⋊ θ.

It corresponds to those representations πψ of GL(N,A) that extend to group G̃(A)+

generated by G̃(A). We shall say that ψ is primitive if r = ℓ1 = n1 = 1. In other
words, ψ = µ1 is a self-dual cuspidal automorphic representation of GL(N). In this
case ψ has a central character ηψ of order 1 or 2.
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We would like to think of the elements in Ψ̃ as parameters. They ought to
correspond to self dual, N -dimensional representations of a group LF × SL(2,C),
where LF is a global analogue of the local Langlands group LFv . The global Lang-
lands group LF is purely hypothetical. It should be an extension of the global Weil
group WF , equipped with a conjugacy class of embeddings

LFv −→ WFv→֒ →֒

LF −→ WF

of each local group. The hypothetical group LF should ultimately play a funda-
mental role in the automorphic representation theory of any G. In the meantime,
we attach an ad hoc substitute for LF to any ψ.

The proofs of the results we are going to describe include an extended induction
argument. There are in fact both local and global induction hypotheses. We
introduce the global hypothesis first, in order to define our substitutes for LF .

Global induction hypothesis. Suppose that ψ ∈ Ψ̃ is primitive. Then there
is a unique class Gψ = (Gψ ,

LGψ , sψ, ξψ) of (twisted) elliptic endoscopic data in

Eell(G̃) such that

c(ψ) = ξψ
(
c(π)

)
,

for some irreducible representation π of G(A) that occurs in L2
disc

(
G(F )\G(A)

)
.

Moreover Gψ is primitive.

The assertion is quite transparent. Among all the (twisted) elliptic endoscopic

data G for G̃, there should be exactly one source for the conjugacy class data of ψ.
If ψ happens to be attached to an irreducible, self-dual representation of a group
LF , it is an elementary exercise in linear algebra to show that the assertion is valid.
That is, ψ factors through the L-group of a unique Gψ ∈ Eell(G), with Gψ being
primitive. Of course, we do not know that ψ is of this form. We do know that if Gψ
is primitive, the dual group Ĝψ ⊂ GL(N,C) is purely orthogonal or symplectic. If

ηψ 6= 1 or N is odd, Ĝψ is orthogonal, and ηψ determines Gψ uniquely. However,

if ηψ = 1 and N is even, Ĝψ could be either symplectic or orthogonal. In this case,
we will require a deeper property of ψ to characterize Gψ .

In proving the results, one fixes N , and assumes inductively that the hypothesis
holds if N is replaced by a positive integer m < N . The completion of the induction
argument is of course part of what needs to be proved. Our purpose here is simply
to state the results. Therefore, in order to save space, we shall treat the hypothesis
as a separate theorem. In other words, we shall assume that it holds for m = N as
well.

Suppose that ψ is an arbitrary element in Ψ̃. Then θ acts by permutation on
the indices 1 ≤ i ≤ ℓ in (30.6). Let I be the set of i with ψθi = ψi. The complement
of I is a disjoint union of two sets J and J ′, with a bijection j → j′ from J to J ′,
such that ψθj = ψj′ for every j ∈ J . We can then write

ψ =
(
i∈I

ℓiψi

)
⊞

(
j∈J

ℓj(ψj ⊞ ψj′)
)
.

If i belongs to I, we apply the global induction hypothesis to the self-dual, cusp-
idal automorphic representation µi of GL(mi). This gives us a canonical datum

Gi = Gµi in Eprim(G̃mi). If j belongs to J , we simply set Gj = GL(mj). We thus
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obtain a group Gα over F for any index α in I or J . Let LGα be the Galois form
of its L-group. We can then form the fibre product

(30.8) Lψ =
∏

α∈I∪J

(
LGα −→ ΓF

)

of these groups over ΓF . If i belongs to I, the endoscopic datum Gi comes with
the standard embedding

µ̃i : LGi −→ L
(
GL(mi)

)
= GL(mi,C)× ΓF .

If j belongs to J , we define a standard embedding

µ̃j : LGj −→ L
(
GL(2mj)

)
= GL(2mj ,C)× ΓF

by setting

µ̃j(gj × σ) = (gj ⊕ tg
−1
j )× σ gj ∈ Ĝj = GL(mj ,C), σ ∈ ΓF .

We then define the L-embedding

(30.9) ψ̃ : Lψ × SL(2,C) −→ L
(
GL(N)

)
= GL(N,C)× ΓF

by taking the appropriate direct sum

ψ̃ =
(⊕

i∈I

ℓi(µ̃i ⊗ νi)
)
⊕
(⊕

j∈J

ℓj(µ̃j ⊗ νj)
)
.

We can of course interpret the embedding ψ̃ = ψG̃ also as an N -dimensional repre-
sentation of Lψ ×SL(2,C). With either interpretation, we are primarily interested

in the equivalence class of ψ̃, which is a GL(N,C)-conjugacy class of homomor-
phisms from Lψ × SL(2,C) to either GL(N,C) or L

(
GL(N)

)
.

Suppose that G belongs to Eell(G̃). We write Ψ̃(G) for the set of ψ ∈ Ψ̃ such

that ψ̃ factors through LG. By this, we mean that there exists an L-homomorphism

(30.10) ψG : Lψ × SL(2,C) −→ LG

such that

ξ ◦ ψG = ψ̃,

where ξ is the embedding of LG into L
(
GL(N)

)
that is part of the twisted endo-

scopic datum represented by G. Since ψ̃ and ξ are to be regarded as GL(N,C)-
conjugacy classes of homomorphisms, ψG is determined only up to conjugacy by a
subgroup of GL(N,C). We define AutG̃(G) to be the group of automorphisms of
LG induced by conjugation of elements in GL(N,C) that normalize the image of
LG. Then ψG is to be regarded as an AutG̃(G)-orbit of L-homomorphisms (30.10).
One sees easily that the quotient

OutG̃(G) = AutG̃(G)/Int(Ĝ)

is trivial unless the integer No attached to G is even and positive, in which case it
equals Z/2Z. In particular, if G is primitive and equals an even orthogonal group,

there can be two Ĝ-orbits of homomorphisms in the class of ψG. It is for this reason

that we write Ψ̃(G) in place of the more natural symbol Ψ(G).

If ψ belongs to Ψ̃(G), we form the subgroup

(30.11) Sψ = Sψ(G) = Cent
(
Ĝ, ψG

(
Lψ × SL(2,C)

))
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of elements in Ĝ that centralize the image of ψG. The quotient

(30.12) Sψ = Sψ(G) = Sψ/S
0
ψZ(Ĝ)Γ

is a finite abelian group, which plays a central role in the theory. Notice that there
is a canonical element

(30.13) sψ = ψG

(
1,

(
−1 0
0 −1

))

in Sψ. Its image in Sψ (which we denote also by sψ) will be part of the description
of nontempered automorphic representations.

Let Ψ̃2 be the subset of elements ψ ∈ Ψ̃ such that the indexing set J is empty,

and such that ℓi = 1 for each i ∈ I. A general element ψ ∈ Ψ̃ always belongs to a

set Ψ̃(G), for some datum G ∈ Eell(G̃). It belongs to a unique such set if and only

if it lies in Ψ̃2. If G belongs to Eell(G̃), the intersection

Ψ̃2(G) = Ψ̃(G) ∩ Ψ̃2

is clearly the set of elements ψ ∈ Ψ̃(G) such that the group Sψ is finite. We shall

write Ψ̃prim for the set of primitive elements in Ψ̃. Then

Ψ̃prim ⊂ Ψ̃2 ⊂ Ψ̃,

and

Ψ̃prim(G) ⊂ Ψ̃2(G) ⊂ Ψ̃(G),

where

Ψ̃prim(G) = Ψ̃(G) ∩ Ψ̃prim.

Suppose that

ψ = ψ1 ⊞ · · ·⊞ ψr

belongs to Ψ̃2. How do we determine the group G ∈ Eell(G̃) such that ψ lies in

Ψ̃2(G)? To answer the question, we have to be able to write N = Ns + No and

ψ = ψs⊞ψo, where ψs ∈ Ψ2(G̃Ns) is the sum of those components ψi of symplectic

type, and ψo ∈ Ψ2(G̃No) is the sum of the components ψi of orthogonal type.
Consider a general component

ψi = µi ⊠ νi.

The representation µi ∈ Ψprim(G̃mi) has a central character ηi = ηµi of order 1

or 2. It gives rise to a datum Gi ∈ Eprim(G̃mi), according to the global inductive

hypothesis, and hence a complex, connected classical group Ĝi ⊂ GL(m,C). The
ni-dimensional representation νi of SL(2,C) gives rise to a complex, connected

classical group Ĥi ⊂ GL(ni,C), which contains its image. By considering principal

unipotent elements, for example, the reader can check that Ĥi is symplectic when ni
is even, and is orthogonal when ni is odd. The tensor product of the bilinear forms

that define Ĝi and Ĥi is a bilinear form on CNi = Cmini . This yields a complex,

connected classical group Ĝψi ⊂ GL(Ni,C), which contains the image of Ĝi × Ĥi

under the tensor product of the two standard representations. In concrete terms,

Ĝψi is symplectic if one of Ĝi and Ĥi is symplectic and the other is orthogonal, and

is orthogonal if both Ĝi and Ĥi are of the same type. This allows us to designate
ψi as either symplectic or orthogonal. It therefore gives us our decomposition

ψ = ψs ⊕ ψo. The component ψs lies in the subset Ψ̃2(Gs) of Ψ2(G̃Ns), for the
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datum Gs ∈ Eprim(G̃Ns) with dual group Ĝs = Sp(Ns,C). The component ψo lies

in the subset Ψ̃2(Go) of Ψ2(G̃No), for the datum Go ∈ Eprim(G̃No) with dual group

Ĝo = SO(No,C), and character

ηo =

r∏

i=1

(ηi)
ni .

The original element ψ therefore lies in Ψ̃2(G), where G is the product datum

Gs ×Go in Eell(G̃). We note that

Sψ(G) =

{
(Z/2Z)r, if each Ni is even,

(Z/2Z)r−1, otherwise.

Suppose now that F is replaced by a completion k = Fv of F . With this

condition, we treat G̃0 = GL(N) and G̃ = GL(N) ⋊ θ as objects over k, to which
we add a subscript v if there is any chance of confusion. As we noted in §28, one
can introduce endoscopic data over k by copying the definitions for the global field

F . Similarly, one can introduce twisted endoscopic data for G̃ over k. This gives

local forms of the sets Eprim(G̃) ⊂ Eell(G̃).

We can also construct the sets Ψ2

(
GL(N)

)
, Ψ
(
GL(N)

)
, and Ψ̃ = Ψ(G̃) as

objects over k. We define Ψ2

(
GL(N)

)
to be the set of formal tensor products

ψ = µ ⊠ ν, where µ is now an element in the set Πtemp,2

(
GL(m, k)

)
of tempered

irreducible representations of GL(m, k) that are square integrable modulo the cen-
ter. The other component ν remains an irreducible, n-dimensional representation
of SL(2,C), for a positive integer n with N = mn. For any such ψ, we form the
induced representation

IGP
(
(µ⊗ · · · ⊗ µ︸ ︷︷ ︸

n

)δ
1
2

P

)

of GL(N, k), as in (30.5). It has a unique irreducible quotient πψ , which is known
to be unitary. The larger set Ψ

(
GL(N)

)
is again the set of formal direct sums

ψ = ℓ1ψ1 ⊞ · · ·⊞ ℓrψr,

for positive integers ℓi, and distinct elements ψi = µi ⊠ νi in Ψ2

(
GL(Ni)

)
. For any

such ψ, we form the induced representation

πψ = IGP
(
(πψ1 ⊗ · · · ⊗ πψ1)︸ ︷︷ ︸

ℓ1

⊗ · · · ⊗ (πψr ⊗ · · · ⊗ πψr )︸ ︷︷ ︸
ℓr

)

of GL(N, k), as in (30.7). It is irreducible and unitary. Finally, the local set Ψ̃ is
again the subset of elements ψ in the local set Ψ

(
GL(N)

)
such that ψθ = ψ. It has

subsets

Ψ̃prim ⊂ Ψ̃2 ⊂ Ψ̃,

defined as in the global case.
We require a local form of our ad hoc substitute for the global Langlands group.

Given the results of Harris-Taylor and Henniart, it is likely that one could work
with the actual local Langlands group

LFv =

{
WFv × SU(2), if v is nonarchimedean,

WFv , if v is archimedean.
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However, the proof of the results described in this section still requires a local
companion to the global induction hypothesis above. We may as well therefore use
the local induction hypothesis to define analogues of the groups Lψ .

The local induction hypothesis depends on being able to attach a twisted char-

acter f̃ → f̃G̃(ψ) to any f̃ and ψ in the local sets H(G̃) and Ψ̃. Suppose first that
ψ = µ ⊗ ν. By applying the theory of local Whittaker models to the local form
of the induced representation (30.5), one can define a canonical extension of the

quotient πψ to G̃+(k). This in turn provides a canonical extension of πψ to G̃+(k)

for a general parameter ψ ∈ Ψ̃. We define

f̃G̃(ψ) = tr
(
πψ(f̃)

)
, f̃ ∈ H(G̃).

On the other hand, we are assuming that the twisted form of the Langlands-
Shelstad transfer conjecture holds for k = Fv. This gives a mapping

f̃ −→ f̃G

from H(G̃) to SI(G), for any twisted endoscopic datum G for G̃ over k.

Local Induction Hypothesis. Suppose that ψ ∈ Ψ̃ is primitive. Then there

is a unique class Gψ ∈ Eell(G̃) such that f̃G̃(ψ) is the pullback of some stable
distribution

h −→ hGψ(ψ), h ∈ H(Gψ),

on Gψ(k). In other words,

f̃G̃(ψ) = f̃Gψ(ψ), f̃ ∈ H(G̃).

Moreover, Gψ is primitive.

The assertion is less transparent than its global counterpart, for it is tailored
to the fine structure of the terms in the spectral identities (30.1) and (30.3).
It nonetheless serves the same purpose. Among all the local endoscopic data

G ∈ Eell(G̃) for G̃, it singles out one that we can attach to ψ. As with the global
hypothesis, we shall treat the local induction hypothesis as a separate theorem. In

particular, we assume that it holds for Ψprim(G̃m), for any m ≤ N .

We can now duplicate the constructions from the global case. If ψ ∈ Ψ̃ is

a general local parameter for the component G̃ = G̃N over k, we obtain groups

Gi = Gµi in E(G̃mi) for each i. We can then define the local form of the group Lψ.
It is an extension of the local Galois group Γk, and comes with an L-embedding

ψ̃ : Lψ × SL(2,C) −→ LGL(N) = GL(N,C)× Γk.

We again attach a subset Ψ̃(G) of Ψ̃ to any G ∈ Eell(G̃). Any ψ ∈ Ψ̃(G) comes

with an AutG̃(G)-orbit of local L-embeddings (30.10), with ξ ◦ ψG = ψ̃. It also
comes with the reductive group Sψ = Sψ(G), the finite abelian group Sψ = Sψ(G),
and the element sψ in either Sψ or Sψ , defined by (30.11), (30.12), and (30.13)
respectively.

There are a few more observations to be made in the case k = Fv, before we
can state the theorems. We first note that the definitions above make sense if G
is a general endoscopic datum for G̃, rather than one that is just elliptic. The
more general setting is required in the local context under discussion, since the
localization of an elliptic global endoscopic datum need not remain elliptic.
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Suppose that G ∈ Eprim(G̃). The putative Langlands-Shelstad mapping

f̃ → f̃G takes H(G̃) = H
(
G̃(k)

)
to the subspace SĨ(G) = SĨ

(
G(k)

)
of functions

in SI(G) that are invariant under the group OutG̃(G). We recall that this group
is trivial unless G is an even special orthogonal group SO(N), in which case it is
of order 2. In the latter case, the nontrivial element in OutG̃(G) is induced by con-
jugation of the nontrivial connected component in O(N). By choosing a k-rational
element in this component, we obtain an outer automorphism of G(k) (regarded
as an abstract group). We can therefore identify OutG̃(G) as a group of outer au-

tomorphisms of G(k) of order 1 or 2. We write Ĩ(G) = Ĩ
(
G(k)

)
for the space of

functions in I(G) that are symmetric under OutG̃(G), and H̃(G) = H̃
(
G(k)

)
for

the space of functions in H(G) that are symmetric under the image of OutG̃(G) in

Aut
(
G(k)

)
(relative to a suitable section). The mapping f → fG then takes H̃(G)

onto Ĩ(G), while the stable orbital integral mapping f → fG takes H̃(G) onto

SĨ(G). Let Π̃(G) denote the set of OutG̃(G)-orbits in the set Π(G) = Π
(
G(k)

)

of irreducible representations. We also write Π̃fin(G) for the set of formal, finite,

nonnegative integral combinations of elements in Π̃(G). Any element π ∈ Π̃fin then
determines a linear form

f −→ fG(π), f ∈ H̃(G),

on H̃(G). We write Π̃unit(G) and Π̃fin,unit(G) for the subsets of Π̃(G) and Π̃fin(G)
built out of unitary representations. By taking the appropriate product, we can

extend these definitions to any endoscopic datum G for G̃.

Suppose again that G ∈ Eprim(G̃), and that ψ belongs to Ψ̃(G). Suppose also

that s′ is a semisimple element in Sψ(G). Let Ĝ′ be the connected centralizer Ĝs′

of s′ in Ĝ, and set

G′ = Ĝ′ψG(Lψ).

Then G′ is an L-subgroup of LG, for which the identity embedding ξ′ is an L-

homomorphism. We take G′ = Gs′ to be a quasisplit group for which Ĝ′, with the
L-action of ΓF induced by G′, is a dual group. We thus obtain an endoscopic datum

(G′,G′, s′, ξ′) for G. Now the set Ψ̃(G′) can be defined as an obvious Cartesian
product of sets we have already constructed. Since s′ lies in the centralizer of the

image of Lψ in Ĝ, ψG factors through LG′. We obtain an L-embedding

ψG′ : Lψ × SL(2,C) −→ LG′

such that

ξ′ ◦ ψG′ = ψG,

and a corresponding element ψ′ = ψs′ in Ψ̃(G′). Once again, this construction

extends to the case that G is a general twisted endoscopic datum for G̃.
There is one final technical complication. We want the local objects ψ over

k = Fv to represent local components at v of global parameters associated to auto-
morphic representations of GL(N). Because we do not know that the extension to
GL(N) of Ramanujan’s conjecture is valid, we do not know that the local compo-

nents are tempered. This requires a minor generalization of the local set Ψ̃ attached

to k = Fv. We define a larger set Ψ̃+ = Ψ+(G̃) of formal direct sums

ψ = ℓ1ψ1 ⊞ · · ·⊞ ℓrψr,
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by relaxing the condition on the representations µi in components ψi = µi ⊠ νi.
We require only that µi belong to the set Π2

(
GL(mi, k)

)
. In other words, µi is an

irreducible representation of GL(mi, k) that is square integrable modulo the center,
but whose central character need not be unitary. This condition applies only to the
components µi such that µθi 6= µi, since the central character of µi would otherwise

have order 2. If ψ belongs to Ψ̃+, the twisted character f̃ → f̃G̃(ψ) is defined
from the tempered case by analytic continuation in the central characters of the

components µi. The various other objects we have associated to the set Ψ̃ are also

easily formulated for the larger set Ψ̃+.
We shall now state the results as three theorems. They are conditional on the

fundamental lemma, and the further requirements discussed at the beginning of the
section.

Theorem 30.1. Assume that k = Fv is local, and that G ∈ Eprim(G̃).

(a) For each ψ ∈ Ψ̃(G), there is a stable linear form h→ hG(ψ) on H̃(G) such
that

f̃G̃(ψ) = f̃G(ψ), f̃ ∈ H(G̃).

(b) For each ψ ∈ Ψ̃(G), there is a finite subset Π̃ψ of Π̃fin,unit(G), together with
an injective mapping

π −→ 〈·, π〉, π ∈ Π̃ψ ,

from Π̃ψ to the group of characters Ŝψ(G) on Sψ(G) that satisfies the following
condition. For any s′ ∈ Sψ(G),

(30.14) fG
′

(ψ′) =
∑

π∈eΠψ

〈sψs, π〉fG(π), f ∈ H̃(G),

where G′ = G′
s′ , ψ

′ = ψ′
s′ , and s is the image of s′ in Sψ(G).

(c) Let Φ̃temp(G) denote the subset of elements in Ψ̃(G) for which each of the

SL(2,C) components νi is trivial. Then if φ ∈ Φ̃temp(G), the elements in Π̃φ

are tempered and irreducible, in the sense that they belong to the set Π̃temp(G)

of OutG̃(G)-orbits in Πtemp(G). Moreover, every element in Π̃temp(G) belongs to

exactly one packet Π̃φ. Finally, if k is nonarchimedean, the mapping Π̃φ → Ŝφ is
bijective. �

Remarks: 1. The assertions (b) and (c) of the theorem are new only in
the nonarchimedean case. (For archimedean v, they are special cases of results of
Shelstad [She3] and Adams, Barbasch, and Vogan [ABV].) If v is nonarchimedean,
assertion (c) can be combined with the local Langlands conjecture for GL(N) [HT],
[He]. This ought to yield the local Langlands conjecture for G, at least in the case
that OutG̃(G) = 1.

2. The transfer mapping f → fG
′

in (b) depends on a normalization for the
transfer factors ∆G(δ′, γ) for the quasisplit group G′. We assume implicitly that
∆G(δ′, γ) equals the function denoted ∆0(δ

′, γ) on p. 248 of [LS1]. This is the

reason that the characters 〈·, π〉 on Sϕ attached to an element φ ∈ Φ̃temp(G) are
slightly simpler than in the general formulation (28.8).
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3. Suppose that ψ lies in the larger set Ψ̃+(G). We can then combine the
theorem with a discussion similar to that of (28.9). In particular, we can identify

ψ with the image in Ψ̃+(G) induced from a nontempered twist ψM,λ, where M is

a Levi subgroup of G, ψM is an element in Ψ̃(M), and λ is a point in (a∗M )+P . We
can then form the corresponding induced packet

Π̃ψ =
{
IGP (πM,λ) : πM ∈ Π̃ψM

}

for G(k). Since we are dealing with full induced representations, rather than Lang-

lands quotients, the assertions of the theorem extend to Π̃ψ.

Theorem 30.2. Assume that k = F is global, and that G ∈ Eprim(G̃).

(a) Suppose that ψ ∈ Ψ̃(G). If v is any valuation of F , the localization ψv
of ψ, defined in the obvious way as an element in the set Ψ̃+

v = Ψ+(G̃v), has the

property that Lψv is contained in Lψ. In particular, ψv belongs to Ψ̃+(Gv), Sψ(G)
is contained in Sψv(Gv), and there is a canonical homomorphism s → sv from
Sψ(G) to Sψv (Gv). We can therefore define a global packet

Π̃ψ =
{⊗

v

πv : πv ∈ Π̃ψv , 〈·, πv〉 = 1 for almost all v
}
,

and for each element π =
⊗
v
πv in Π̃ψ, a character

〈s, π〉 =
∏

v

〈sv, πv〉, s ∈ Sv,

on Sψ = Sψ(G).
(b) Define a subalgebra of H(G) by taking the restricted tensor product

H̃(G) =

rest⊗

v

H̃(Gv).

Then there is an H̃(G)-module isomorphism

(30.15) L2
disc

(
G(F )\G(A)

) ∼=
⊕

ψ∈Ψ̃2(G)

mψ

( ⊕

{π∈Π̃ψ:〈·,π〉=εψ}

π
)
,

where mψ equals 1 or 2, and

εψ : Sψ −→ {±1}
is a linear character defined explicitly in terms of symplectic root numbers. �

Remarks. 4. The multiplicity mψ is defined to be the number of Ĝ-orbits of
embeddings

Lψ × SL(2,C) −→ LG

in the AutG̃(G)-orbit of ψG. We leave the reader to check that mψ equals 1 unless

N is even, Ĝ = SO(N,C), and the rank Ni of each of the components ψi = µi ⊗ νi
of ψ is also even, in which case mψ = 2.

5. The sign character εψ is defined as follows. We first define an orthogonal
representation

τψ : Sψ × Lψ × SL(2,C) −→ GL(ĝ)
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on the Lie algebra ĝ of Ĝ by setting

τψ(s, g, h) = Ad
(
sψG(g × h)

)
, s ∈ Sψ, g ∈ Lψ , h ∈ SL(2,C).

We then write

τψ =
⊕

α

τα =
⊕

α

(
λα ⊗ µα ⊗ να

)
,

for irreducible representations λα, µα and να of Sψ, Lψ and SL(2,C) respectively.
Given the definition of the global group Lψ , we can regard L(s, µα) as an auto-
morphic L-function for a product of general linear groups. One checks that it is
among those L-functions for which one has analytic continuation, and a functional
equation

L(s, µα) = ε(s, µα)L(1 − s, µ∨
α).

In particular, if µ∨
α = µα, ε(1

2 , µα) = ±1. Let A be the set of indices α such that

(i) τ∨α = τα (and hence µ∨
α = µα),

(ii) dim(να) is even (and hence να is symplectic),
(iii) ε(1

2 , µα) = −1.

Then

(30.16) εψ(s) =
∏

α∈A

det
(
λα(s)

)
, s ∈ Sψ.

Theorem 30.3. Assume that F is global.

(a) Suppose that G ∈ Eprim(G̃), and that ψ = µ belongs to Ψ̃prim(G). Then

Ĝ is orthogonal if and only if the symmetric square L-function L(s, µ, S2) has a

pole at s = 1, while Ĝ is symplectic if and only if the skew-symmetric L-function
L(s, µ,Λ2) has a pole at s = 1.

(b) Suppose that for i = 1, 2, Gi ∈ Eprim(G̃Ni) and that ψi = µi belongs to

Ψ̃prim(Gi). Then the corresponding Rankin-Selberg ε-factor satisfies

ε( 1
2 , µ1 × µ2) = 1,

provided that Ĝ1 and Ĝ2 are either both orthogonal or both symplectic. �

Remarks: 6. Suppose that µ is as in (i). It follows from the fact µθ = µ that

L(s, µ× µ) = L(s, µ, S2)L(2, µ,Λ2).

The Rankin-Selberg L-function on the left is known to have a pole of order 1 at
s = 1. One also knows that neither of the two L-functions on the right can have
a zero at s = 1. The assertion of (a) is therefore compatible with our a priori
knowledge of the relevent L-functions. It is also compatible with properties of
the corresponding Artin L-functions, in case µ is attached to an irreducible N -
dimensional representation of ΓF or WF . The assertion is an essential part of both
the resolution of the global induction hypothesis and the proof of the multiplicity
formula (30.15).

7. Consider the assertion of (b). If µ1 and µ2 are both attached to irreducible
representations of WF , the conditions of (b) reduce to the requirement that the
tensor product of the two representations be orthogonal. The assertion of (b) is
known in this case [D2]. The general assertion (b) is again intimately related to
the global induction hypothesis and the multiplicity formula (30.15).
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We shall add a few observations on the “tempered” case of the multiplicity

formula (30.15). Assume that G ∈ Eprim(G̃), as in Theorem 30.2. Let us write
L2

temp,disc

(
G(F )\G(A)

)
for the subspace of L2

disc

(
G(F )\G(A)

)
whose irreducible

constituents transfer to cuspidal Eisenstein series for G̃0 = GL(N). (The notation
anticipates a successful resolution of the Ramanujan conjecture for GL(N), which
given our theorems, would imply that L2

temp,disc

(
G(F )\G(A)

)
is indeed the subspace

of L2
disc

(
G(F )\G(A)

)
whose irreducible constituents are tempered.) Let Φ̃2(G) =

Φ̃temp,2(G) be the subset of elements in the global set Ψ̃2(G) for which the SL(2,C)-

components νi are all trivial. Then εφ = 1 for every φ ∈ Φ̃2(G). The formula (30.15)

therefore provides an H̃(G)-module isomorphism

(30.17) L2
temp,disc

(
G(F )\G(A)

) ∼=
⊕

φ∈eΦ2(G)

mφ

( ⊕

{π∈eΠφ:〈·,π〉=1}

π
)
.

Suppose that N is odd, or that Ĝ = Sp(N,C). Then mφ = 1. It is also easy

to see that H̃(Gv) = H(Gv) for any v, so that H̃(G) = H(G) in this case. More-

over, the local packets Π̃φv = Πφv attached to elements φv in the set Φ̃temp(Gv) =
Φtemp(Gv) contain only irreducible representations of G(Fv). Now the local com-

ponent φv of an element φ in the global set Φ̃2(G) = Φ2(G) could lie in a set
Φ+

temp(Gv) ⊂ Φ+(Gv) that properly contains Φtemp(Gv). However, it is likely that
the induced representations that comprise the corresponding packet Πφv are still
irreducible. (I have not checked this point in general, but it should be a straight-
forward consequence of the well known structure of generic, irreducible, unitary
representations of GL(N,Fv).) Taking the last point for granted, we see that the
global packet

Πφ =
{⊗

v

πv : πv ∈ Πφv , 〈·, πv〉 = 1 for almost all v
}

attached to any φ ∈ Φ2(G) contains only irreducible representations of G(A). The
injectivity of the mapping π → c(π) implies that the global packets are disjoint. It
then follows from (30.17) that L2

temp,disc

(
G(F )\G(A)

)
decomposes with multiplicity

1 in this case.
In the remaining case, N is even and Ĝ = SO(N,C). If one of the integers Ni

attached to a given global element φ ∈ Φ̃2(G) is odd, mφ equals 1. An argument like
that above then implies that the irreducible constituents of L2

temp,disc

(
G(F )\G(A)

)

attached to φ have multiplicity 1. However, if the integers Ni attached to φ are all
even, mφ equals 2. The multiplicity formula (30.17) then becomes more interesting.
It depends in fact on the integers

Nv,i, 1 ≤ i ≤ ℓv,
attached to the local components φv of φ. If for some v, all of these integers are even,
(30.17) can be used to show that the irreducible constituents of
L2

temp,disc

(
G(F )\G(A)

)
attached to φ again have multiplicity 1. However, it could

also happen that for every v, one of the integers Nv,i is odd. A slightly more elabo-
rate analysis of (30.17) then leads to the conclusion that the irreducible constituents
of L2

temp,disc

(
G(F )\G(A)

)
attached to φ all have multiplicity 2. This represents a

quantitative description of a phenomenon investigated by M. Larsen in terms of
representations of Galois groups [Lar, p. 253].
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The discussion of this section has been restricted to quasisplit orthogonal and
symplectic groups. It is of course important to treat other classical groups as well.
For example, there ought to be a parallel theory for quasisplit unitary groups over
F . The case of unitary groups is in fact somewhat simpler. Moreover, a proof of the
fundamental lemma for unitary groups has been announced recently by Laumon and
Ngo [LN]. It is quite possible that their methods could be extended to weighted
orbital integrals and their twisted analogues. The goal would be to extend the
results of Rogawski for U(3) [Ro2], [Ro3] to general rank.

Finally, we note that there has been considerable progress recently in applying
other methods to classical groups. These methods center around the theory of
L-functions, and a generalization [CP] of Hecke’s converse theorem for GL(2).
They apply primarily to generic representations (both local and global) of classical
groups, but they do not depend on the fundamental lemma. We refer the reader to
[Co] for a general introduction, and to selected papers [CKPS1], [CKPS2], [JiS]
and [GRS].



Afterword: beyond endoscopy

The principle of functoriality is one of the pillars of the Langlands program. It
is among the deepest problems in mathematics, and has untold relations to other
questions. For example, the work of Wiles suggests that functoriality is inextricably
intertwined with that second pillar of the Langlands program, the general analogue
of the Shimura-Taniyama-Weil conjecture [Lan7].

The theory of endoscopy, which is still largely conjectural, analyzes represen-
tations of G in terms of representations of its endoscopic groups G′. In its global
form, endoscopy amounts to a comparison of trace formulas, namely the invariant
(or twisted) trace formula for G with stable trace formulas for G′. It includes the
applications we discussed in §25, §26, and §30 as special cases. The primary aim of
endoscopy is to organize the representations of G into packets. It can be regarded
as a first attempt to describe the fibres of the mapping

π −→ c(π)

from automorphic representations to families of conjugacy classes. However, it also
includes functorial correspondences for the L-homomorphisms

ξ′ : LG′ −→ LG

attached to endoscopic groups G′ for G (in cases where G′ can be identified with
an L-group LG′).

The general principle of functoriality applies to an L-homomorphism

(A.1) ρ : LG′ −→ LG

attached to any pair G′ and G of quasisplit groups. As a strategy for attacking this
problem, the theory of endoscopy has obvious theoretical limitations. It pertains,
roughly speaking, to the case that LG′ is the group of fixed points of a semisimple
L-automorphism of LG. Most mappings ρ do not fall into this category.

Suppose for example that G′ = GL(2) and G = GL(m+ 1), and that ρ is the

(m+1)-dimensional representation of Ĝ′ = GL(2,C) defined by the mth symmetric
power of the standard two-dimensional representation. If m = 2, the image of
GL(2,C) in LG = GL(3,C) is essentially an orthogonal group. In this case, the
problem is endoscopic, and is included in the theory of classical groups discussed in
§30. (In fact, functoriality was established in this case by other means some years
ago [GeJ].) In the case m = 3 and m = 4, functoriality was established recently
by Kim and Shahidi [KiS] and Kim [Ki]. These results came as a considerable
surprise. They were proved by an ingenious combination of the converse theorems
of Cogdell and Piatetskii-Shapiro with the Langlands-Shahidi method. If m ≥ 5,
however, these methods do not seem to work. Since the problem is clearly not
endoscopic in this case, none of the known techniques appear to hold any hope of
success.

We are going to conclude with a word about some recent ideas of Langlands1

[Lan13], [Lan15]. The ideas are quite speculative. They have yet to be shown
to apply even heuristically to new cases of functoriality. However, they have the
distinct advantage that everything else appears to fail in principle. The ideas are
in any case intriguing. They are based on applications of the trace formula that
have never before been considered.

1I thank Langlands for enlightening conversations on the topic.
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The difficulty in attacking the general case (A.1) of functoriality is that it is
hard to characterize the image of LG′ in LG. If ρ(LG′) is the group of fixed points
of some outer automorphism, G′ will be related to a twisted endoscopic group for
G. The corresponding twisted trace formula isolates automorphic representations
of G that are fixed by the outer automorphism. A comparison of this formula with
stable trace formulas for the associated collection of twisted endoscopic groups is
aimed, roughly speaking, at those L-subgroups of LG fixed by automorphisms in
the given inner class. If the image of LG′ in LG is more general, however, the
problem becomes much more subtle. Is it possible to use the trace formula in a
way that counts only the automorphic representations of G(A) that are functorial
images of automorphic representations of G′?

Suppose that r is some finite dimensional representation of LG. We write
Vram(G, r) for the finite set of valuations v of F at which either G or r is ramified.
For ρ as in (A.1), the composition r◦ρ is a finite dimensional representation of LG′.
If this representation contains the trivial representation of LG′, and the L-function
L(s, π′, r ◦ ρ) attached to a given automorphic representation π′ of G′ has the
expected analytic continuation, the L-function will have a pole at s = 1. The same
would therefore be true of the L-function L(s, π, r) attached to an automorphic
representation π of G that is a functorial image of π′ under ρ. On the other hand,
so long as r does not contain the trivial representation of LG, there will be many
automorphic representations π of G for which L(s, π, r) does not have a pole at
s = 1. One would like to have a trace formula that includes only the automorphic
representations π of G for which L(s, π, ρ) has a pole at s = 1.

The objects of interest are of course automorphic representations π of G that
occur in the discrete spectrum. The case that π is nontempered is believed to
be more elementary, in the sense that it should reduce to the study of tempered
automorphic representations of groups Gψ of dimension smaller than G [A17]. The
primary objects are therefore the representations π that are tempered, and hence
cuspidal. If π is a tempered, cuspidal automorphic representation of G, L(s, π, r)
should have a pole at s = 1 of order equal to that of the unramified L-function

LV (s, π, r) =
∏

v 6∈V

det
(
1− r(c(πv))q−sv

)−1
,

attached to any finite set V ⊃ Sram(G, r) outside of which π is unramified. The
partial L-function LV (s, π, r) is not expected to have a zero at s = 1. The order of
its pole will thus equal

n(π, r) = Res
s=1

(
− d

ds
log LV (s, π, r)

)
,

a nonnegative integer that is independent of V .
We can write

− d

ds
log LV (s, π, r)

=
∑

v 6∈V

d

ds
log
(
det(1− r(c(πv))q−sv )

)

=
∑

v 6∈V

∞∑

k=1

log(qv)tr
(
r(c(πv))

k
)
q−ksv ,
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for Re(s) large. Since π is assumed to be tempered, the projection of any conjugacy

class c(πv) onto Ĝ is bounded, in the sense that it intersects any maximal compact

subgroup of Ĝ. It follows that the set of coefficients
{
tr
(
r(c(πv))

k
)

: v 6∈ V, k ≥ 1
}

is bounded, and hence that the last Dirichlet series actually converges for Re(s) > 1.
Since π is also assumed to be cuspidal automorphic, LV (s, π, r) is expected to have
analytic continuation to a meromorphic function on the complex plane. The last
Dirichlet series will then have at most a simple pole at s = 1, whose residue can
be described in terms of the coefficients. Namely, by a familiar application of the
Wiener-Ikehara tauberian theorem, there would be an identity

(A.2) n(π, r) = lim
N→∞

(
V −1
N

∑

{v 6∈V :qv≤N}

tr
(
r(c(πv))

))
,

where

VN = |{v 6∈ V : qv ≤ N}|.
(See [Ser1, p. I-29]. Observe that the contribution of the coefficients with k > 1
to the Dirchlet series is analytic at s = 1, and can therefore be ignored.)

Langlands proposes to apply the trace formula to a family of functions fN
that depend on the representation r. We begin with an arbitrary function f ∈
H
(
G(A)

)
. If V ⊃ Sram(G) is a finite set of valuations such that f belongs to the

subspace H
(
G(FV )

)
of H

(
G(A)

)
, and φ belongs to the unramified Hecke algebra

H
(
G(AV ),KV

)
, the product

fφ : x → f(x)φ(xV ), x ∈ G(A),

also belongs to H
(
G(A)

)
. We choose the function φ = φN so that it depends on r,

as well as a positive integer N . Motivated by (A.2), and assuming that V contains
the larger finite set Sram(G, r), we define φN by the requirement that

(φN )G(πV ) =
∑

{v 6∈V :qv≤N}

r
(
c(πv)

)
,

for any unramified representation πV of G(AV ). Then

n(π, r) = lim
N→∞

(
(φN )G(πV )V −1

N

)
,

for any π as in (A.2). The products

fN = f rN = fφN , N ≥ 1,

or rather their images in H(G), are the relevant test functions.
Set

Itemp,cusp(f) = tr
(
Rtemp,cusp(f)

)
,

where Rtemp,cusp is the representation of G(A)1 on the subspace of
L2

cusp

(
G(F )\G(A)1

)
that decomposes into tempered representations π of G(A)1.

Suppose that we happen to know that LV (s, π, r) has analytic continuation for
each such π. Then the sum

(A.3)
∑

π

n(π, r)mcusp(π)fG(π),
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taken over irreducible tempered representations π of G(A)1, equals the limit

Irtemp,cusp(f) = lim
N→∞

(
Itemp,cusp(fN)V −1

N

)
.

However, it is conceivable that one could investigate the limit Irtemp,cusp(f) without
knowing the analytic continuation of the L-functions. The term Itemp,cusp(fN ) in
this limit is part of the invariant trace formula for G. It is the sum over t ≥ 0 of the
tempered, cuspidal part of the term with M = G in the t-discrete part It,disc(fN ).
(We recall that the linear form It,disc is defined by a sum (21.19) over Levi subgroups
M of G.) For each N , one can replace Itemp,cusp(fN ) by the complementary terms
of the trace formula. Langlands’ hope (referred to as a pipe dream in [Lan15]) is
that the resulting limit might ultimately be shown to exist, through an analysis of
these complementary terms. The expression for the limit so obtained would then
provide a formula for the putative sum (A.3).

In general, it will probably be necessary to work with the stable trace formula,
rather than the invariant trace formula. This is quite appropriate, since we are
assuming that G is quasisplit. The t-discrete part

St,disc(f) = SGt,disc(f)

of the stable trace formula, defined in Corollary 29.10, has a decomposition

St,disc(f) =
∑

c∈Ct,disc(G)

Sc(f), f ∈ H(G),

into Hecke eigenspaces. The indices c here range over “t-discrete” equivalence
classes of families

cV = {cv : v 6∈ V }, V ⊃ Sram(G),

of semisimple conjugacy classes in LG attached to unramified representations
πV = π(cV ) of G(AV ). We recall that two such families are equivalent if they
are equal for almost all v. The eigendistribution Sc(f) is characterized by the
property that

Sc(fφ) = Sc(f)φG(cV ), φ ∈ H
(
G(AV ),KV

)
,

where V is a large finite set of valuations depending on f , cV is some representative
of the equivalence class c, and

φG(cV ) = φG
(
π(cV )

)
.

For any f and t, the sum in c can be taken over a finite set. Let Ctemp,cusp(G) be
the subset of classes in the union

Cdisc(G) =
⋃

t≥0

Ct,disc(G)

that do not lie in the image of Cdisc(M) in Cdisc(G) for any M 6= G, and whose

components cv are bounded in Ĝ. The sum

Stemp,cusp(f) = SGtemp,cusp(f) =
∑

c∈Ctemp,cusp(G)

Sc(f), f ∈ H(G),

is then easily seen to be absolutely convergent.
The sum (A.3) and the limit Ircusp,temp(f) have obvious stable analogues. If the

partial L-function

L(s, cV , r) = LV (s, π, r), πV = π(cV ),



AFTERWORD: BEYOND ENDOSCOPY 255

attached to a class c ∈ Ctemp,cusp(G) has analytic continuation, set n(c, r) equal to
n(π, r). Then

n(c, r) = lim
N→∞

(
V −1
N

∑

{v 6∈V :qv≤N}

tr
(
r(cv)

))

= lim
N→∞

(
(φN )G(cV )V −1

N

)
.

The notation here reflects the fact that the limit is independent of both V and the
representative cV of c. If L(s, cV , r) has analytic continuation for every c, the sum

(A.4)
∑

c∈Ctemp,cusp(G)

n(c, r)Sc(f)

equals the limit

Srtemp,cusp(f) = lim
N→∞

(
Stemp,cusp(fN )V −1

N

)
.

The remarks for Irtemp,cusp(f) above apply again to the limit Srtemp,cusp(f) here.
Namely, it might be possible to investigate this limit without knowing the analytic
continuation of the L-functions. Since Stemp,cusp(fN ) is part of the stable trace
formula for G, we could replace it by the complementary terms in the formula. The
ultimate goal would be to show that the limit exists, and that it has an explicit
expression given by these complementary terms.

An important step along the way would be to deal with the complementary
terms attached to nontempered classes c. These terms represent contributions to
St,disc(fN ) from nontempered representations of G(A) that occur in the discrete
spectrum. The conjectural classification in [A17] suggests that they can be ex-
pressed in terms of groups Gψ of dimension smaller than G. One can imagine that
the total contribution of a group H = Gψ might take the form of a sum

(A.5)
( ∑

{ψ:Gψ=H}

ŜHψ (fψN )
)
V −1
N ,

where SHψ is a component of the linear form SHtemp,cusp on H(H), and fN → fψN is

a transform from H(G) to SI(H). For example, the one-dimensional automorphic
representations χ of G(A) are represented by parameters

ψ : ΓF × SL(2,C) −→ LG,

in which ψ

(
1,

(
1 1
0 1

))
is a principal unipotent element in Ĝ. In this case,H = Gψ

is the co-center of G, and

ŜHψ (fψN ) =

∫

G(A)

fN (x)χ(x)dx.

In general, the transform fψN would be defined by nontempered stable characters,
and the contribution (A.5) of Gψ will not have a limit in N . One would have to
combine the sum over H of these contributions with the sum obtained from the
remaining terms in the stable trace formula. More precisely, one would need to show
that the difference of the two sums does have a limit in N , for which there is an
explicit expression. In the process, one could try to establish the global conjectures
in [A17], in the more exotic cases where endoscopy gives only partial information.
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This is a tall order indeed. The most optimistic prediction might be that the
program can be carried out with a great deal of work by many mathematicians over
a long period of time! However, the potential rewards seem to justify any amount
of effort. A successful resolution to the questions raised so far would be spectacular.
It would give a complicated, but presumably quite explicit, formula for the linear
form Srtemp,cusp(f) in terms that are primarily geometric. The result would be a
stable trace formula for the tempered, cuspidal automorphic representations π of
G such that L(s, π, r) has a pole at s = 1.

The lesson we have learned from earlier applications is that a complicated trace
formula is more useful when it can be compared with something else. The case at
hand should be no different. One could imagine that for any L-embedding ρ as in
(A.1), there might be a mapping f → f r,ρ fromH(G) to SI(G′) by which one could
detect functorial contributions of ρ to Srtemp,cusp(f). The mapping might perhaps
be defined locally. It should certainly vanish unless ρ is unramified outside of V ,
for any finite set V such that f lies in the subspace H(GV ) of H(G). We would
include only those ρ that are elliptic, in the sense that their image is contained in
no proper parabolic subgroup of LG.

From the theory of endoscopy, we know that we have to treat a somewhat larger

class of embeddings ρ. We consider the set of Ĝ-orbits of elliptic L-embeddings

(A.1)∗ ρ : G′ −→ LG,

where G′ is an extension

1 −→ Ĝ′ −→ G′ −→ WF −→ 1

for which there is an L-embedding G′ →֒ LG̃′. It is assumed that Ĝ′ is the L-

group of a quasisplit group G′, and that G̃′ → G′ is a z-extension of quasisplit
groups. For each such ρ, we suppose that there is a mapping f → f r,ρ from

H(G) to SI(G̃′, η̃′), for the appropriate character η̃′ on the kernel of the projection

G̃′ → G′, which vanishes unless ρ is unramified outside of V . One might hope
ultimately to establish an identity

(A.6) Srtemp,cusp(f) =
∑

ρ

σ(r, ρ)Ŝ′
prim(f r,ρ),

where ρ ranges over classes of elliptic L-embeddings (A.1)∗, σ(r, ρ) are global coef-

ficients determined by r and ρ, and S′
prim is a stable linear form on H(G̃′, η̃′) that

depends only on G̃′ and η̃′. In fact, S′
prim should be defined by a stable sum of the

tempered, cuspidal, automorphic representations π′ ∈ Πtemp(G̃
′, η̃′) such that for

any finite dimensional representation r′ of LG̃′, the order of the pole of L(s, π′, r′)

at s = 1 equals the multiplicity of the trivial representation of LG̃′ in r′. For each
G′, one would try to construct a trace formula for S′

prim inductively from the for-

mulas for the analogues for G̃′ of the linear forms Srtemp,cusp. The goal would be to
compare the contribution of these formulas to the right hand side of (A.6) with the
formula one hopes to obtain for the left hand side. If one could show that the two
primarily geometric expressions cancel, one would obtain an identity (A.6).

A formula (A.6) for any G would presumably lead to the general principle
of functoriality. Functoriality in turn implies the analytic continuation of the L-
functions L(s, π, r) (for cuspidal automorphic representations π) and Ramanujan’s
conjecture (for those cuspidal automorphic representations π not attached to the
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SL(2,C)-parameters of [A17]). Both of these implications were drawn in Lang-
lands’ original paper [Lan3]. It is interesting to note that Langlands’ ideas are
based on the intuition gained from the analytic continuation and the Ramanujan
conjecture. However, his strategy is to bypass these two conjectures, leaving them
to be deduced from the principle of functoriality one hopes eventually to establish.

The existence of a formula (A.6) would actually imply something beyond func-
toriality. Let Πprim(G) be the set of tempered, cuspidal, automorphic representa-
tions of G that are primitive, in the sense that they are not functorial images of

representations π′ ∈ Π(G̃′, η̃′), for any L-embedding (A.1)
∗

with proper image in
LG. An identity of the form (A.6) implies that if π ∈ Πprim(G), and r is any finite
dimensional representation of LG, the order of the pole of L(s, π, r) at s = 1 equals
the multiplicity of the trivial representation of LG in r. This condition represents a
kind of converse to functoriality. It implies that any tempered, cuspidal, automor-
phic representation π of G is a functional image under some ρ of a representation π′

in the associated set Πprim(G̃′, η̃′). The condition is closely related to the existence
of the automorphic Langlands group LF . If it fails, the strategy for attacking the
functoriality we have described would seem also to fail.

All of this is implicit in Langlands’ paper [Lan13], if I have understood it
correctly. Langlands is particularly concerned with the case that G = PGL(2), a
group for which the stable trace formula is the same as the invariant trace formula,

and r is the irreducible representation of Ĝ = SL(2,C) of dimension (m+1). In this
case, an elliptic homomorphism ρ will be of dihedral, tetrahedral, octahedral, or
icosahedral type. For each of the last three types, the image of ρ is actually finite.
The poles that any of these three types would contribute to L-functions L(s, π, r)
are quite sparse. (See [Lan13, p. 24].) For example, to detect the contribution of
an icosahedral homomorphism ρ, one would have to take a 12-dimensional repre-

sentation r. For a representation of Ĝ of this size, there will be many terms in the
putative limit Irtemp,cusp(f) = Srtemp,cusp(f) that overwhelm the expected contribu-
tion of ρ. The analytic techniques required to rule out such terms are well beyond
anything that is presently understood. Techniques that can be applied to smaller
representations r are discussed in [Lan13] and [Lan15], and also in the letter [Sar]
of Sarnak.
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Sup. 4 (1971), 193–284.

[F] D. Flath, Decomposition of representations into tensor products, in Automorphic Forms,
Representations and L-functions, Proc. Sympos. Pure Math. vol. 33, Part 1, Amer.
Math. Soc., 1979, 179–184.

[Ge] S. Gelbart, Lectures on the Arthur-Selberg Trace Formula, University Lecture Series,
Amer. Math. Soc., 1995.



260 JAMES ARTHUR

[GeJ] S. Gelbart and H. Jacquet, A relation between automorphic representations of GL(2)
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