
Mathematics 102 — Fall 1999

Sequences

In this chapter we look at functions whose independent variable ranges over a domain of discrete values.

Arithmetic progressions

The odd positive integers are
1, 3, 5, 7, . . .

In other words, we get them all by starting with 1 and then successively adding an increment of 2. This is one of
the simplest examples of an arithmetic progression. More generally, an arithmetic progression is a sequence we
get by starting with an initial value, say b, and then successively adding on an increment, say a:

b, a + b, 2a + b, 3a + b, . . .

We will assign to each term in this sequence, and indeed in any sequence, an index. The first term gets index 0,
the second gets index 1, etc. Thus the n-th term gets index n − 1, and we write it as tn−1. This may be slightly
confusing, but is extraordinarily convenient, since now we have a simple formula: The term tn with index n is
an + b.

Exercise 1. What is a formula for the n term in the sequence of odd numbers?

From the sequence of odd numbers we can build a second sequence by adding the first several odd numbers
together. We get

0, 1, 1 + 3 = 4, 1 + 3 + 5 = 9, . . .

which we have already seen to be the same as the sequence of non-negative square integers. Note that we start
with 0, so this sequence is defined by this rule: the term with index n is the sum of the first n odd positive integers.

Exercise 2. What is a formula for the n-th term in the sequence 0, 1, 4, . . . ?

Exercise 3. In the sequence of odd numbers, what index does 1001 have? 1617?

In general, a sequence is just a function whose independent variable n takes values among the non-negative integers
0, 1, 2, 3, . . . The index of a term is often written as a subscript. Thus the odd positive integers form a sequence
tn with tn = 2n + 1. A sequence is an example of a function where the independent variable is discrete, which
means that it is taken from a set of isolated numbers. Another example would be a function whose domain
contains all integers, both positive and negative–a two-sided sequence—but we shall not need this notion right
now.

If we are given one sequence
f0, f1, f2, . . .

then we can calculate a second sequence, called its sum sequence, by the rule that the term sn with index n in the
new sequence is the sum of the first n terms in the original sequence. Thus

s0 = 0, s1 = f0, s2 = f0 + f1, . . .

The Greek letter for capital S is Σ (Sigma). So if f is the original sequence, we write Σf for its sum sequence:

(Σf)n = f0 + · · · + fn−1 .

The symbol Σ can usually be read “sum of”.

We can also construct from any sequence fn a new sequence called its difference sequence dn by the rule that
dn = fn+1 − fn. Thus from

0, 1, 4, 9, 16, 25, 36, . . .
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we get the difference sequence
1, 3, 5, 7, 9, 11, . . .

The Greek capital D is ∆ (Delta) so if f is the original sequence we write ∆f for its difference sequence:

(∆f)n = fn+1 − fn .

The symbol ∆ can usually be read as “change in”.

It is often convenient to represent a sequence and these related sequences in one table. We can display a familiar
example here in this way:

∆f 2 2 2 2 2 . . .
f 1 3 5 7 9 11 . . .

Σf 0 1 4 9 16 25 36 . . .

Note that if we are given a sequence fn, then we can calculate any given element of its difference sequence just
by looking at two successive terms fn+1 and fn, but that unless we are lucky, if we want to calculate the term
indexed by n in its sum sequence we will have to calculate all the terms f0, f0 + f1, . . . , f0 + f1 + · · ·+ fn−1, or in
effect all the terms of the sum sequence up to the one we want. Inefficient, perhaps a lot of work, but nonetheless
possible. And, furthermore, this summing process is indeed a rule, and not a very complicated one. It does
illustrate that a rule that defines a function is just some well determined process for calculating something, not
necessarily an efficient one. In general, there may or may not turn out to be some simple rule short-circuiting the
sum sequence definition.

Also, it is commonly the case that the difference sequence is simpler than the original sequence, and that we can
often figure out a rule for a sequence by looking at its difference sequence. For example, here are the first few
terms of a ‘mystery sequence’.

1, 4, 10, 19, 31, . . .

What is the next term? If we calculate the difference sequence we get

3, 6, 9, 12, . . .

It is natural to guess that this continues as

3, 6, 9, 12, 15, 18, 21, . . .

which means that we can extend the original sequence:

3 6 9 12 15 18 21 . . .
1 4 10 19 31 46 64 . . .

Exercise 4. Find a rule for the sum sequence of fn = n. Of fn = an + b.

Exercise 5. Find an explicit formula for the difference sequences of n2, n3, n4. Hint: Let’s do the first one. We
have

∆f)n = fn+1 − fn = (n + 1)2 − n2 = (n2 + 2n + 1) − n2 = 2n + 1 .

Exercise 6. Write down the first 6 terms of the difference sequence for

1, 2, 4, 8, 16, 32, . . .

Of the sum sequence.

Exercise 7. Find a formula for the term with index n for the sequence 1, 4, 10, 19, . . . .

Exercise 8. True or false? A sequence whose difference sequence takes constant values is an arithmetiuc
progression.
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We can picture a sequence in any of several ways: (1) a simple plot of data points; (2) a bar graph; (3) a comb. The
difference between a bar graph and a comb is largely one of width, but notice that (a) the comb teeth are centered
on the x-values, while (b) the bars have their left side at these values, and run all the way to the next one.

Exercise 9. What sequence are we plotting here?

In all the examples we have looked at, the sequences have integer terms. But a sequence can have real values as
well, for example:

1, 1/2, 1/4, 1/8, . . .

or
3.2, 6.4, 9.6, 12.8, . . .

Exercise 10. What are the next 3 terms in these sequences? Plot the first 7 terms by bar graphs.


