Mathematics 102 — Fall 1999

The formal rules of calculus

So far we have calculated the derivative of each function we have looked at all over again from scratch, applying
what is essentially the definition of the derivative as a limit of secant slopes. In this chapter we shall see that a
very small number of general rules, together with just a few applications of the techniques we have seen so far,
will allow us to calculate by algebraic manipulation the derivative of almost any function we can write down.

The three basic rules

There are just three basic rules for calculating derivatives which imply all the others, given that we know the
derivatives of a few simple functions.

e The sum rule. Suppose f(x) and g(x) are two functions whose derivatives we know. Then the sum of these
two functions is defined by

(f+9)(z) = f(x) +g(x) .

The derivative of the sum is just the sum of the two derivatives:

(f+9)(x)=f(z)+d(x).

e The product rule. Suppose f(x) and g(x) are two functions whose derivatives we know. Then the product
of these two functions is defined by

(f-9)(=@) = f(z)-g(z) .

The derivative of the product is given by this formula:

(f-9)(z) = fl(x)g(x) + f(2)g'(2) .

e The composition rule. Suppose f(z) and g(x) are two functions whose derivatives we know. Then the
composition of these two functions is defined by

(fog)(x) = flg(x)) .

The derivative of the composition is given by this formula:
(fog)(z)=f(9(z))g ().

The third rule is by far the most complicated, since it is probably not even clear at first what it means. We shall
discuss this in detail in a moment. Itis also called the chain rule since the composition of two functions is obtained
in a sense by linking the two functions in a chain of calculations. It is important to keep in mind that the order in
which we chain them together is important.

We can now proceed in one of two ways: (1) We can try to understand why these rules are true, or (2) we can see
how they are applied in practice and how they can be extended to make up other rules, without worrying about
where they come from. We shall follow the second path, although why they are true is very closely related to the
basic meaning of the derivative. We shall take up this question somewhere else. In any event, we shall see that
these rules are very, very powerful.

Before we go on, however, we shall make a remark about their history. Much of what we have said so far, (in
earlier chapters) was known, although perhaps in slightly different terminology, to Isaac Newton and a few of
his predecessors. Newton himself undoubtedly knew the rules themselves, and used them constantly. But his
notation was exceedingly clumsy. Often, as many of our previous arguments did, his methods relied on explicit
geometric reasoning. And it was not easy at all to apply them in practical problems. It was Leibniz, who all
his life pursued the idea of ‘automatic thinking,” who was largely responsible for our modern emphasis on the
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importance of simple formal rules and convenient notation in calculus. It was he who pointed out, among other
things, the importance of of functions, which he might be said to have invented. That is to say, he was the first
to think of all functions in a similar way-as a general class of things—and we think it is fair to say that he used
our definition of a function as a rule. He also gave us the name ‘calculus’ for the techniques of calculation he
formulated so clearly, in conscious analogy with the more primitive rules of arithmetic to which the term had
previously been applied. (‘Calculus’ was originally a Latin word for the small pebbles used in an abacus.)

Now, the contributions of Leibniz over and above those of Newton were almost purely formal. No one doubts
that in the hands of Newton Leibniz’ formalism would have been of no importance. But for mathematicians with
less talent, it was a tremendous relief to be able to use calculus without demonstrating every time you used it that
you understood it more or less at all levels.

We know almost exactly what the importance of Leibniz’ contribution was, because even within a few years of
Leibniz’ work mathematicians on the mainland of Europe had adopted his style of calculus without pain, and
during the next century used it to solve an almost unbelievable range of problems in mathematics and in science
more generally. On the other hand, in England for all of that time Leibniz’ ideas were shunned as un-English,
and using them was considered an insult to the memory of Newton. During the Eighteenth century, while
the Continent was building astronomy and physics, the English were trying to understand no more than what
Newton had written. It is a sad story. Unless you happen to be from one of those other countries, of course. Or
perhaps Scottish.

A few simple consequences

In this section we shall look at a few of the simplest examples of how to apply the first two rules. In the next we
shall look at the chain rule. But even in this one we shall see how the basic rules can be extended to include a
number of other important formulas for derivatives.

The basic rules tell us only how to find some new derivatives if we already know some others. In order to use
them, we have to have something to start with. As this course proceeds, we shall accumulate and occasionally
modify a relatively small list or dictionary of some very simple functions whose derivatives must be calculated
from basic principles. Our initial list will include just two easy ones:

e If f(x) is a constant, then f'(x) = 0.
o If f(z) =xthen f'(z) = 1.

Both of these ought to be immediately apparent, since a constant function has a horizontal graph with slope 0,
and the graph y = x is a straight line with constant slope 1. Later on we shall expand our dictionary of ‘simple’
functions whose derivatives we have to calculate from basic principles—to include principally exponential
functions and trigonometric functions—but even the two above will get us a long way. So what we are going to
do now is start with the three basic rules and these two examples and see what we can deduce.

Example 1. Suppose f(z) = x + 1. Then the sum rule tells us that f'(z) = 1.
Example 2. Suppose f(x) = cx where cis a constant. Then f'(x) = 'z + ca’ = ¢.

Example 3. Suppose f(z) = x2. We can write it as the product of = and . Therefore we can apply the product
rule to get
fllxy=(z-2) =z’ +2'2v=0+2=22.

Example 4. If f(z) = 2% + 2 then f'(z) = 22 + 1.

Example 5. Suppose f(z) = x3. We can write it as the product of = and 2, so we can calculate

flz)=(z-2%) =2' 2> + 2 (2?) = 2% + 2 - 22 = 322

Example 6. This sort of thing can be continued. It looks very much as though
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e The derivative of 2" is always nz™ !, where n is a positive integer.

If we know it to be true for n, then we can look at "1, the product of z and z™. We have
f@)=(z-2") =za2" +z (@) =2" +na" = (n+1)z" .
We know the rule works for n = 0 and n = 1, and then this reasoning allows to conclude in turn for n = 2, 3, etc.
and eventually any positive integer n.
Example 7. Suppose f(x) = cg(z). Then f'(x) = 'g(x) = cg'(z) = cg'(z).

Example 8. The sum rule repeated many times will tell us the rule for finding the derivative of a polynomial
co+clx+02x2+~'

which we have sen before.

Example 9. Suppose f(x) = v/z. There is no direct way to see what f'(z) is, but we can proceed indirectly. We
know that f(x)? = (y/r)? = 2. This might be called the defining equation of the square root. Therefore we can
write

(f(2)?) = f'(2)f(z) + fla)f'(z) =2’ =1

and hence
1 1

Example 10. Now let f(z) = 1/z. Again, we can do an indirect calculation. The defining equation of the
function f(z) = 1/xis

From this we get

f(z)g(z) =1
f(@)g(x) + f(x)g'(z) =0
iy — @) (@)
f(z) = o(0)
I AC)
g9(x)?
Example 12. Suppose
)= 42
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Then

This is called the quotient rule. It should be considered as a fourth basic rule, to be memorized along with the
original three basic ones.

Exercise 1. Find the derivative of (x + 1)/(z — 1).
Exercise 2. Find the derivative of 1/(z? + z + 1).
Exercise 3. Find the derivative of (z2 — 1)/(z% + 1).

Exercise 4. Find the derivative of 1/./.
The chain rule

We have defined the composition of two functions by the formula

(fog)(x) = flg(x)) -

Let’s see what this means by looking at an example.

Example 13. Let h(x) = v/x + 1. What do we have to do to evaluate this function, say at x = 1? Well, first we
calculate z + 1 = 2, and then we calculate /T + 1 = v/2. In other words, we calculate h(1) in a two-step process.
This is always a situation in which we are looking at a composition of functions. One very good way to think of
a function is as a black box—or maybe even a sausage grinder! Numbers go in one side, and generally different
numbers come out the other. The composition of two functions is what you get when you feed in to a second box
the stuff that comes out of the first one. Here the first box takes in x and spits out = + 1. The second then takes
this output and feeds it into the \/~ box, which then produces v/x + 1. In our formulation of the composition
rule g is the first box and f is the second, because first we calculate g(x) and then evaluate f at that. So:

g(e)=e+1
flo) =/
because then we have
(fog)(@)=flg(z)) =flz+1)=Va+1.

We don’t use = here because we want to emphasize (once more) that we are really thinking of the function as a
rule for producing other numbers, not an expression.

Example 14. Let h(x) = g(x)™. This will be our second look at what composition means, since we evaluate h(x)
first calculating g(x), and then evaluating the n-power of that. In other words, h(x) is the composition of the two
functions (a) taking e to g(e) and (b) e to ™. Again, we use e as a variable because it might be more confusing to
use z twice in different roles. So if f(z) = 2™ then h = f o g. By the composition rule

W (z) = f'(g(x))g (x) = ng(x)" g’ (x)
since the derivative of " is nz" 1.
Exercise 5. Find the derivative of (22 + x + 1)%°,

Exercise 6. Suppose f(x) = g(z™), which we get by chaining these same two functions in the opposite order.
Find a formula for f(z).
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Exercise 7. What is the derivative of (x> + x + 1) //x2 + 1?

Exercise 8. Calculate the derivative of z'/™ where n is a positive integer. Explain how the rules apply.

Exercise 9. Calculate the derivative of z™/™ where m and n are positive integers. Explain how the rules apply.
Exercise 10. Calculate the derivative of z—™/" where m and n are positive integers. Explain how the rules apply.

Exercise 11. Find one single formula for x™ where r is any fraction. Explain how the rules apply.
A new class of functions to go in the dictionary

We have computed at various points entries in this tabel:

flx)  f(x)
0

1

T 1

N Ve N
1/x —1/2?

vV 1/(3Va?)
These are all examples of a single general rule

(s r—1

T rr

as you can check for yourself (with r = —1, 1/2, 1/3). This formula can be proven from things we know when r is
a fraction +m /n, but deducing it for arbitrary r is not so simple. We shall do this later on when we are introduced
to exponential functions. For now, however, we shall add it to our basic dictionary of relatively simple functions
whose derivatives we have to memorize. In fact we can restrict our list to just two types: (1) f(z) constant; (2)

flw)=a".
More about the formal rules

Let’s summarize—all of the functions we normally deal with in this course can be obtained by a few simple
methods from a small list of elementary ones. The elementary ones we know so far are (1) constants and (2)
powers of z of the form z”. This last includes negative powers such as x—! = 1/z as well as fractional ones like
Vz = z'/2. Eventually we shall add to this list a few more functions like exponentials and logarithms, as well as
trigonometric ones.

The basic ways to get new functions from old ones are to (1) add them, (2) multiply them, (3) combine them
(or chain them together), and (4) divide them. In order to find the derivative of a function, you must figure out
how it is obtained from elementary ones by these processes. It is important to realize right at the beginning that
although we can tell you a sure-fire way to go about finding derivatives, it is not a simple process. You should
not think yourself unintelligent if it does not look obvious to you. It is certainly better adapted for a computer
than for most of you. But you should be able to handle cases of medium complexity without fear.

Let’s do an example. Let
fl@)=va2+1.

Now as we try to calculate the derivative of this, we shall be dealing with simpler and simpler functions. Let’s
keep a list of jobs to do as we proceed. We shall number the functions as they are listed, too. We start by putting
vz2 + 1 on the list. We shall use e (‘blob’) for the variable to remind ourselves that we must think of functions
as rules, not just expressions.

So the list starts with
L fi(e) = Ve +1

Being on this list means we want to find its derivative.
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This function is the composite of two others, namely
2. f2(0) = /e
3. fa(e) =’ +1

That is to say, in order to evaluate f;(x) we first evaluate f3(x) = 2 + 1 and then evaluate / f3(x). We can keep
track of things better if we modify the first item to read

fi(e) = Ve +1
= (f20 f3)(e)

1.

The chain rule tells us that we can calculate f](e) if we can calculate f} and f%, so we add to the entry for fi:

fi(e) = Vo2 +1
= (f20 f3)(e)
fi(e) = f5(fs(e)) f5(e)

1.

The function in 2. is the same as #'/2, and we know its derivative to be (1/2)e~'/2. We now make a new kind of
entry to our list, whenever we find a derivative for one on the list:

2.

fa(8) = /e
fo(e) = (1/2)e 1/

As for 3. we can apply the sum rule and power rule to get

3.
fa(e) =0 +1

f3(0) =20

Now we can go back to 1. We get

fi(®) = f3(f3(e)) f5(e)

= [(1/2)(f3(e))"/?][2 o]
= [(1/2)(02 + 1)_1/2} [2 o]
= 7o

That’s it! Of course this is a somewhat long-winded process. You will get faster at this sort of thing with practice.
But as | have often suggested in this course, if forced to make a choice between speed and security, your best bet
nearly always is to go for security.

Let’s do another example in the same style. Let

1
J@) =gttt
1.
fl(.): .:_14'.24‘3
= fa(®) + f3(e
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2.
fQ(.) = .t 1 —|- .2
= (fao f5)(e)
fa(®) = fi(f5(0)) f5(e)
3. 1
f3(e) = 2
— o2
fi(e) = —207°
4.
fi(o) = /e
fi(e) = (1/2)071/2
5. o
— 2
fs(o) = o+ 1 te
= fo(®) + fr(e)
f5(e) = fe(e) + f7(e)
6. o
fo(o) = o+ 1
R (e+1)—1-9
fe(e®) (o +1)2
B 1
(et 1)
7.
fr(e) = o2
fr(e) =20
And now we go back up the path. In 5. we get
ron 1
f5(8) = (er1)2 +2e

and in 2. we get

fa(®) = fa(f5(e)) f5(e)

= (1/2) (fs(e) ((.+11)2 +2')

= (1/2) (ﬁ + .2>_1/2 ((. Ji e 2.)

fi(®) = f3(0) + fi(o)
=(1/2) (ﬁ + )/ (ﬁ + 2.) 94

Whew! This is complicated. But it is the overall process which is complicated. Each single step is very simple.
And keep in mind that most of the time just one step will be needed.

Finally in 1.
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Final remarks on this process

We can visualize this process in a diagram that some might find helpful. We shall look at the last example again.

We start with
_ ]_* 2, 1
fl(.) .+1+.+.2'
We write it as the sum of two pieces fo + f3 where
[}

— 2

= -t 1 + o

1

02

f2(e)
f3(e)
We then break down f»(e) in turn, but don’t have to break down f3(e) because it is a power function. Etc. We
can visualize what is going on by a diagram like this, which we shall explain in a moment.

° 9 L
1/._'_14-0 +.2
+

¢]

+
..+1 o’
/
° o+ 1
+
° 1

The rule for this diagram is very simple. Each function is obtained from the two below it to left and right,
according to the symbol immediately below it and in between them. If a function in the diagram is a power rule
or a constant, it does not have to be broken down. Furthermore, each combination matches one of the basic rules,
so moving up the tree we can always calculate derivatives at one level from derivatives at the level below it.

You will not be too surprised to know that this diagram matches exactly how a computer could be used to
calculate derivatives.



