
Mathematics 102 — Fall 1999

Differential equations

A differential equation is an equation relating the derivative of a function to the function itself, as well as the
independent variable. We have seen a small number of differential equations so far in this course, for example
the equation

y′ = y

satisfied by the function y = ex. In this chapter we shall look at several more examples, and explore what a
differential equation means.

Differential equations are important because the laws of nature are often most directly expressed in terms of
them. The laws they express are often very simple, and the equations themselves relatively simple once you get
used to the basic idea of a differential equation, but understanding how to derive from them predictions about
the behaviour of natural systems is not usually so simple. This is the principal problem mathematics has to deal
with regarding differential equations.

The main technical problem turns out to be that of finding all functions satisfying the equation. This is called
solving the differential equation. In general, a differential equation will have lots of solutions. For example,
suppose the equation to be y′ = y. We know that y = ex is a solution. But if we let y = cex then this y is also
a solution. It is not too difficult to see that these functions, as c varies, make up all solutions of the differential
equation. This is generally true—the solutions to a differential equation form a family with a ‘constant that can
be varied’ to give different solutions.

Radioactivity

One of the simplest places where a differential equation occurs is in the theory of radioactivity. Let’s recall first
what radioactivity involves. The atoms of some elements, such as radium or uranium, occasionally spit out from
their nucleus an α particle (2 protons and 2 neutrons) or a β particle (an electron). In this way the charge on their
nucleus changes (down by 2 units in case an α particle is emitted, up by 1 if a β particle), and the element changes
into some other element. For example, radium has atomic number 88 and atomic weight 226, and it decays into a
form of the gas radon with atomic number 86 and weight 222. There is an amazing fact about this process, which
can be summarized in the single odd assertion that atoms don’t grow old. People, by contrast, grow old. What
this means is that their chances of dying increase after a while, and it becomes a near certainty in time. This does
not happen to atoms. Whether an atom of radium decays radioactively in any given time interval is completely
independent of when that time interval starts. To tell the truth, although we possess in quantum mechanics some
very elaborate theories which describe what goes on very exactly, the underlying reasons for what we see are
only imperfectly understood. Nonetheless, what we say about the probability of decay is true, and we accept it
as given.

Radioactive decay is a statistical process. If we could look at only a very small number of radium atoms, then
how many of them if any decay in the next ten minutes—or the next ten years, or the next ten thousand years—is
totally unpredictable. But if we assemble a very large number of them, as is in fact present in any measurable
quantity of radium, statistical fluctuations cancel out, and the process looks very regular. If we were to graph
the exact number of radium atoms present in a sample of radium at time t the true graph would have a very
large number of small steps in it, but the size of those steps would be insignificant compared to the total numbers
involved. The graph would look smooth from a distance, and it is not a serious error to assume that it is actually
smooth.

Now the radioactivity of a given sample of radium is proportional to the quantity we are looking at. If one sample
is twice the size of another, then twice as many atoms will decay in any given interval of time. Another way to
say this:
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• At any given moment, the rate of radioactive decay of a radioactive substance is proportional to the amount
present.

This is the fundamental law of radioactivity. Taken together with what we said earlier, it can be translated directly
(as a matter of definition, really) into the mathematical equation

dr

dt
= −kr

where k is a positive constant (no aging, decrease of substance), uniquely determined for every radioactive
substance.

Think about it: r = r(t) is a function of time whose derivative is equal to some constant times itself. It is easy to
come up with a function with this property—r(t) = e−kt. And it is also easy to see that any constant multiple of
this satisfies the same differential equation. In fact, all solutions of the differential equation are of this form. So if
r(t) is the amount of radioactive substance present at any time t, then

r(t) = ce−kt

for some constants c and k. The physical meaning of c is simple—if we set t = 0 we get r(0) = c, so c is the initial
amount of substance present. What about k? It controls the rate of radioactivity. This can also be measured by
something called the half-life of the substance, the time interval h it takes for the amount present to reduce by
1/2. If t = h we therefore get from the formula for r

1/2 = e−kh, −kh = log(1/2), k = log 2/h .

So the constant k is a simple multiple of 1/h.

The half life is one simple measure of how fast something decays. Antoher is the relaxation time τ , the amount of
time it takes to decay by a factor equal to 1/e, where e = 2.718 . . . Here we have

1/e = e−kτ , −kτ = −1, k = 1/τ .

So k is exactly equal to the inverse of the relaxation time.

Exercise 1. What is k for radium? For radon (half life 3.825 days); U238 (half life 4.498× 109 years)? Strontium90

(25 years)? Relaxation time? How long for each of them to reduce by a factor of 100?

The basic theoretical fact about a first order differential equation

Given a differential equation
y′ = f(x, y)

and a point (x0, y0) in the plane, there exists a unique curve through this point representing the graph of a
solution. Finding the unique solution with this property is called solving the differential equation with the given
initial condition. The most common value for x0 is 0. Each possible y0 then gives a unique solution, and this can
be considered the ‘constant that varies’. In the case of y′ = y we have said that the solutions are all of the form
y = cex. If we set x = 0 we get y(0) = c, so c = y0.
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Slope fields

You can picture a differential equation geometrically through a slope field. You should imagine at each point in
the (x, y) plane a very small line segment whose slope is equal to f(x, y). The relationship between this and the
differential equation is that

• The graph of any solution has the property that at each point of the graph y = y(x) the slope of the graph,
that is to say y′(x), is equal to the slope of one of the segments in the slope field, which is f(x, y).

In practice, to draw a slope field, (1) you should fix some region of the plane and a grid covering it; (2) at each
point of the grid draw a small segment with the right slope. There several reasons why you might want to do
this. The principal one is that almost always the picture you see will suggest what the graphs of solutions look
like.

On the left is the slope field for y′ = −y + 1, and on the right a few solution graphs superimposed on it.

Finding an approximate solution

The most important thing to know about solving a differential equation is that there is no formula that works all
the time. The best we can do if we are confronted with an arbitrary equation and initial condition

y′ = f(x, y), y(x0) = y0

is to find good approximations. There are many ways to do this. Unfortunately the ones which are very accurate
are also very complicated, and in this chapter we just look at a simple one which is not too accurate, but accurate
enough to be useful. It is called Euler’s method. All methods have one thing in common. They start with
(x0, y0) and then produce a sequence of points (x1, y1), (x2, y2) , . . . which will generally lie close to the graph
of the true solution we are looking for. The values of x are easy to calculate—we choose an interval ∆x, and set
x1 = x0 + ∆x, x2 = x1 + ∆x, . . . In other words, the values of x just march across uniformly. The values for
y are a bit trickier. The basic idea is not too complicated, however. If we have just calculated a point (x, y), we
know that the slope of the graph through that point is s = f(x, y). This represents, essentially, the ratio of the
rate of change in the value of y to that in x. If we change x by ∆x, then the change in the value of y will be
approximately s∆x. So we set the next value of y to be y + f(x, y)∆x. Laid out in detail, here is Euler’s method:
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(1) Choose a step size ∆x by which x changes in each step.
(2) Decide how far you are going to go, or equivalently how many steps you are going to take.
(3) If you have just calculated (xn, yn), you do the next step by calculating

xn+1 = xn + ∆x

yn+1 = yn + f(xn, yn)∆x

(4) Stop when you have gone as far as you wanted to.

If you are drawing the graph of the approximation, the best thing to do is plot the points (xn, yn) you get and
connect them by line segments (‘connect the dots’).

Let’s do one example completely. Suppose the equation and initial condition are

y′ = −y + 1, y(0) = 0 .

Let’s choose a step size of ∆x = 0.2, and decide to to 5 steps, so we shall have an approximation to the solution
across the x-range [0, 1].

We have already seen the slope field.

The calculations we have to make are not too difficult, but it is best to lay it out in a table, which starts out like
this:

n x y f(x, y) = −y + 1 ∆y = f(x, y)∆x
0 0 1

We can fill in the first row easily enough:

n x y f(x, y) ∆y
0 0 0 1 0.2

But then we can do the second row—y1 = y0 + f(x0, y0)∆x:

n x y f(x, y) ∆y
0 0 0 1 0.2
1 0.2 0.2

And finally the full table of calculations:

0 0.0000 0.0000 1.0000 0.2000
1 0.2000 0.2000 0.8000 0.1600
2 0.4000 0.3600 0.6400 0.1280
3 0.6000 0.4880 0.5120 0.1024
4 0.8000 0.5904 0.4096 0.0819
5 1.0000 0.6723 0.3277 0.0655

Here is a picture of the approximating polygonal path:
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A final remark. The polygon we get is certainly not the graph of a true solution. In this case, for example, as
the line segments march across at a constant slope, the true slope indicated by the slope field decreases. So the
polygon will lie too high. We can improve the accuracy of the approximation by decreasing the step size.

Newton’s law of cooling

Suppose you pour hot coffee into a cup and set it down in a room at a normal temperature. The coffee will of
course start to cool off. One interesting feature of the way it cools is that its rate of cooling will be greater the
hotter the coffee is. In other words, the rate at which it cools down will be greatest when you first pour the
coffee, and as the coffee cools off the rate at which it cools down also decreases. Very near room temperature, for
example, it will cool very slowly. This situation is reasonably well modeled by Newton’s law of cooling, which
says that

• Any small object in a large environment, changes temperature at a rate proportional to the difference in
temperature between the object and its environment,.

This was first suggested rather casually by Isaac Newton. To a reasonable extent, the constant of proportionality
depends on physical properties of the object and the environment (such as the size of the cup, and what the cup
itself is made of), but does not depend on the temperatures themselves. It is important that the object be small
in order that it make sense to speak of it as having a single temperature. If it is large, the temperature will vary
throughout the interior of the object in a possibly very complicated way. For example, a coffee cup might be
considered small in this sense, but a human body not. It is important that the environment be large so that we do
not have to worry about the interaction between the object and its environment.

Newton’s law can be directly translated into mathematics. Suppose that θ(t) is the temperature of the object, θE

that of the environment. The law asserts that

dθ

dt
= −k(θ(t) − θE)

where k is a positive constant. The larger k is, the more rapidly the object will change temperature. Because of
the minus sign, if the difference θ(t) − θE is positive the object will cool off, and if it is negative the object will
heat up. One thing that is useful to realize is that θE here may itself vary with time. For example, the room might
be heating up because someone has just turned the heater on, or cooling off because someone left the door to the
outside open. But even if θE does vary, Newton’s law will still remain essentially correct. It is not an exact law,
but as long as the temperature difference is not too large it will be a good approximation to reality.
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It is simple to solve the differential equation

dθ

dt
= −k(θ(t) − θE)

when the room temperature θE is fixed. Since θE is a constant, the derivative of θ − θE is the same as the
derivative of θ. Thus we can also write the differential equation as

d(θ − θE)
dt

= −k(θ − θE) .

But we know that the differential equation
dy

dt
= −ky

has solutions y = ce−kt, so we deduce

θ − θE = ce−kt, θ = θE + ce−kt

for some constant c. If we set t = 0, we get

θ0 = θE + c, c = θ0 − θE

where θ0 is the initial temperature. All in all

θ(t) = θE + (θ0 − θE)e−kt .

is a formula for the temperature at time t if it is initially θ0 and the room temperature is a constant θE .

Exercise 2. Find a similar formula for the solution of

y′ = ay + b .

Exercise 3. The coffee cup takes 20 minutes to cool from 90◦ to 50◦ in a room at 20◦. What temperature is it after
20 minutes more? How long from the beginning does it take to cool to 25◦?

Exercise 4. Same coffee cup, same room. Coffee poured at 90◦. Right at the beginning you throw away half the
coffee and replace it by an equal amount of milk at 5◦. Doing this has the effect of reducing the temperature to
the average temperature of coffee and milk, but does not otherwise change anything. What temperature is the
mixture after 20 minutes? Suppose that instead you first let the coffee cool for 20 minutes and then put in the
milk (straight out of the refrigerator). What is the temperature of the mixture then?

Exercise 5. The differential equation
y′ = −y + x

ahs a solution of the form y = Ax + B. Find A and B.

Exercise 6. The differential equation
y′ = −y + cosx

has a solution of the form y = A cosx + B sin x. Find A and B.


