
Eigenvectors and eigenvalues

You can find approximations to solutions of differential equations by numerical methods, but you can’t
understand their true behaviour without some more theoretical approach. For differential equations with
constant coefficients, this means looking at eigenvalues and eigenvectors of matrices. The link between the
two is the exponential function applied to matrices.

1. The exponential of a matrix

If X is a matrix, then

eX = I + X +
X2

2
+

X3

3!
+ · · ·

This is a series that always converges, and at about the same rate as that for ex if x is one of the entries in
X .

Example. Say

X =
[

1 0
0 2

]

Then

eX =
[

1 0
0 1

]
+

[
1 0
0 2

]
+ (1/2!)

[
1 0
0 22

]
+ (1/3!)

[
1 0
0 23

]
+ (1/4!)

[
1 0
0 24

]
+ · · ·

=
[

1 + 1 + 1/2! + 1/3! + · · · 0
0 1 + 2 + 22/2! + 23/3! + · · ·

]

=
[

e 0
0 e2

]

And in general if X is a diagonal matrix

X =




x1 0
0 x2 0

. . .
0 . . . 0 xn




then

eX =




ex1 0
0 ex2 0

. . .
0 . . . 0 exn




This formula for the exponential of a diagonal matrix is itself rather special, but it can be combined with
another one. Matrices can often be related to a diagonal matrix by means of its eigenvectors. I recall that
an eignevector of a matrix is a non-zero vector v such that vA is a scalar multiple of v. In other words,
vA = cv for some constant c. The constant is called the corresponding eigenvalue. If A is an n × n matrix
then usually we can find n linearly independent eigenvectors vi. Let V be the matrix whose rows are the
vectors vi. Then the equations viA = civi translate to

V A = CV

where C is a diagonal matrix whose entries are the ci. Then
V AV −1 = C, A = V −1CV .

Here’s where the next rule for exponentials comes in:

• If A = V −1CV then
eA = V −1eCV .

This technique applies in particular to symmetric matrices, for which the eigenvalues are always real, and n
linearly independent eigenvectors always exist.



2. Matrix exponentials and differential equations

If t is a single real variable and A a matrix, then the function

E(t) = etA

will give for each t a matrix whose entries are functions of t. Its derivative is the matrix-valued function we
get just be taking the derivative of each entry. From the definition of etA in terms of the series it is easy to
see that

d

dt
etA = eAtA

jus as if A were a single number. The consequence of this is a method for solving systems of differential
equations

Y ′ = Y A, Y (0) = Y0 .

The solution is
Y (t) = Y0e

At .

This is the extension to systems of the solution of the single differential equation

y′ = ay, y(0) = y0

by
y = y0e

at .

3. Finding an eigenvector for the largest eigenvalue

Suppose A to be an n×n symmetric matrix. There exist n linearly distinctly different eigenvectors. How do
we find them? In these circumstances any vector v may be expressed as a linear combination of eigenvectors
vi with viA = civi):

v = a1v1 + · · · + anvn

where say
|a1| ≥ |a2| ≥ . . . |an|

so that a1 is among the largest in magnitude. Suppose for simplicity in a first explanation that it is strictly
the largest, that it is positive and that a1 happens not to be 0. Then if A is applied to v we get

vA = a1c1v1 + · · · + ancnvn

and
vAm = a1c

m
1 v1 + · · · + ancm

n vn

and as m → ∞ the size of the first vector grows in size compared to the others. Another way to say this is
that the direction of vAm becomes closer and closer to the direction of v1 as m gets larger.

Two vectors u and v have the same direction if their normalizations u/‖u‖ and v/‖v‖ are the same. So the
vectors vAm/‖vAm‖ will converge to v1/‖v1‖. In practice this works pretty well, and as we shall see it can
be improved upon to work very well indeed. Here is a record of the calculation for

A =
[

0 1
1 1

]
, v = [ 1 0 ] .



1.0000000 0.0000000
0.0000000 1.0000000
0.7071068 0.7071068
0.4472136 0.8944272
0.5547002 0.8320503
0.5144957 0.8574929
0.5299990 0.8479983
0.5240974 0.8516583
0.5263546 0.8502652
0.5254929 0.8507980
0.5258221 0.8505946
0.5256963 0.8506723
0.5257444 0.8506426
0.5257260 0.8506540
0.5257331 0.8506496
0.5257304 0.8506513
0.5257314 0.8506506
0.5257310 0.8506508
0.5257311 0.8506508
0.5257311 0.8506508

This doesn’t tell us what the eigenvalue is, but we can find it as the ratio of vA to v if v is an eigenvector.

If c1 < 0? The directions flip sign every other iteartion.

4. Other eigenvectors

If v is an eigenvector for A then vA = cv, so if A isinvertible then vA−1 = c−1v, and v is also an eigenvector
for A−1. If c is the smallest among the eigenvalues d then c−1 will be the largest among the d−1 so c−1 will
be the largest among the eigenvalues for A−1. Therefore if we calculate normalized vectors vA−n/‖vA−n‖
we can find an eigenvector for the smallest eigenvalue of A.

But what about all the ones in between? Suppose c∗ to be a scalar. The eigenvectors of A − c∗I are the
same as those of A since if vA = cv then

v(A − c∗I) = vA − c∗v = (c − c∗)v

so that c− c∗ is an eigenvalue of A − c∗I for the same eigenvector. And then (c− c∗)−1 is an eigenvector of
(A − c∗I)−1. Now if c∗ is close to c then c − c∗ will be small and (c − c∗)−1 will be large, and if it is close
enough then it will be the largest among the eigenvalues of A − c∗I . So by making a lucky guess we can
find the eigenvectors for (A − c∗I)−1 by calculating and normalizing the v(A − c∗I)−m for large m. There
are clever ways to make guesses by skill rather than by luck, but I won’t describe those here. What I will
point out is that the possible eigenvalues are sandwiched in bewteen the smallest and the largest, so you
don’t have an infinite range to work in. Very occasionally it will turn out that A− c∗I has no inverse. This
is luck indeeed, since then c∗ must itself be an eigenvalue. But you then need to choose a slightly different
c∗ to find an eigenvector.



5. An example

Let

A =


 2 1 0

1 2 1
0 1 2


 .

If we apply A over again and normalize, we get the limit vector [0.5, 0.70710677, 0.5]. In fact, the exact value
of the eigenvector is [1/2,

√
2/2, 1/2].

The next step is to calculate A−1. For large matrices the Gauss-Jordan procedure is the best way to do this,
but for 3× 3 matrices a simple formula is best. If C = [ai,j ] is any n× n matrix, then its adjoint Cadj is the
n× n matrix whose entry at position i, j is the determinant of the complementary (n− 1)× (n− 1) matrix,
multiplied by (−1)i+j . Thus the adjoint of


 a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3




is 


∣∣∣∣ a2,2 a2,3

a3,2 a3,3

∣∣∣∣ −
∣∣∣∣ a2,1 a2,3

a3,1 a3,3

∣∣∣∣
∣∣∣∣ a2,1 a2,2

a3,1 a3,2

∣∣∣∣
−

∣∣∣∣ a1,2 a1,3

a3,2 a3,3

∣∣∣∣
∣∣∣∣ a1,1 a1,3

a3,1 a3,3

∣∣∣∣ −
∣∣∣∣ a1,1 a1,2

a3,1 a3,2

∣∣∣∣
∣∣∣∣ a1,2 a1,3

a2,2 a2,3

∣∣∣∣ −
∣∣∣∣ a1,1 a1,3

a2,1 a2,3

∣∣∣∣
∣∣∣∣ a1,1 a1,2

a2,1 a2,2

∣∣∣∣




.

The inverse of A is the transpose of the adjoint, divided by the determinant of A. The transpose is what
you get by flipping A with respect to its NW-SE diagonal.

For a 3 × 3 matrix the determinant is

a1,1a2,2a3,3 + a1,2a2,3a3,1 + a1,3a2,1a3,2 − a1,3a2,2a3,1 − a1,2a2,1a3,3 − a1,1a3,2a2,3 .

At any rate, when we apply the iteration and normalization to A−1 we get the eigenvector is [1/2,−√
2/2, 1/2].

The maximum and minumum eigenvaluyes can be calculated to be 2+
√

2 ∼ 3.4142 and 2/(2+
√

2) ∼ 0.5958.
What about the middle eigenvalue? If we try the technique mentioned above with c = 2 we get an error in
inverting A− cI , which means that c = 2 is an eigenvalue. We were lucky! This will not find the eigenvector;
to do this we must set c to something near 2, say 1.99. We then get [

√
2/2, 0,−√

2/2].


