Mathematics 256 — a course in differential equations for engineering students

Introduction

If we drop an object from height hq near the Earth’s surface, then (neglecting air friction) it accelerates at a constant
acceleration g where g = 980 cm/sec?. At time ¢ after release its velocity is gt, and the distance it has fallen is
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so its height will be h(t) = hy — gt?/2. This rule was first discovered by Galileo. If we want to know how long it
takes to drop to height k, we solve the equation for k() to get
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Things are more complicated if we drop the object from a height far above the Earth’s surface. In this case, we
must take into account the fact that the force of gravity weakens as the distance from Earth increases. To be exact,
gravitational acceleration is inversely proportional to the square of the distance » from the centre of the Earth,

and acceleration at radius 7 is )
g
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(so that k = gR?) where g is the gravitational constant at the surface of the Earth and R is the Earth’s radius. For
example, at » = 10, 000 kilometers we have a gravitational acceleration of

10,000 = (9.80)(6370/10000)* = 3.98 m/sec’

since R is about 6370 km. To deal with the new scale of things, we change units from meters to kilometers. We
then combine the formula for gravitational force with Newton’s Second Law F' = ma where a is the acceleration
a = r", to obtain an equation

» _0.00980
(r/R)?
which we can rewrite as
n k397654
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This is a differential equation describing the way in which r changes as a function of time. It is said to be of second
order because it involves the second derivative r'’. The argument we have made here is quite common, and offers
a particular case of one of the basic principles relating mathematics to the real world:

e The laws of physics, when translated directly into mathematics, are frequently expressed as differential
equations.

What happens now if we drop an object from a distance of 10,000 km from the Earth’s centre? How long, for
example, does it take to hit the Earth’s surface? We won’t get an exact answer easily, but we can get some idea of
how things go by making some easy if tedious calculations. The basic idea of the calculation is this:

Suppose that at time ¢ we are at radius r with velocity v. These variables ¢, », v describe completely the state of
the falling object, which is to say that as far as we are concerned here they determine the subsequent behaviour of
the object. The acceleration a at time ¢ is then —k /2. Suppose a small amount of time At passes. The definitions
of velocity and acceleration tell us how to find an approximation for the state at time ¢ + At—in time At the
object falls approximately a distance v At, and its velocity increases by a At. The new radius will therefore be
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approximately » + v At and the new velocity will be approximately v + a At. We can now repeat the same set of
calculations over again for the next time interval. This suggests that we start with an initial state = 10000 and
vg = 0, choose some reasonably small time interval At, and calculate a sequence of approximate states (#,,v,)
at time n At by the rules

an, = —397654/r2

Tpt1 = Tp + Uy At

Unt1 = Up + an AL .

Of course the approximation will be better if we use smaller time intervals. In this case, carrying out the
calculations by hand would be a ridiculous amount of work—so we do it by computer. This illustrates a second
fact about differential equations, and another of the basic principles of this course:

e Frequently, the best way to solve a differential equation is by computer calculation.
In our case, here is a selection from the output of the computation:

h v a

10000.000 0.0000 —0.00398
10000.000 —0.0040 —0.00398
9999.996 —0.0080 —0.00398

N RO -

1264 6377.130 —6.7226 —0.00978
1265 6370.408 —6.7324 —0.00980
1266 6363.676 —6.7422 —0.00982

so that it takes a little more than 1265 seconds to fall from a height of 10, 000 km to Earth.

It is not my point here, however, to give you a practical method for calculating approximations to the solutions
of a differential equation. Instead, | hope it will give you a feel for the essential nature of a differential equation.
The simple calculations suggested above encapsulate this nicely:

e A differential equation is a description of how the state of a physical system changes instantaneously.

However, this is not the whole story. Relatively little of this course will be concerned with numerical calculation.
Instead, we shall look at a number of interesting examples of differential equations which can in fact be solved
exactly. These will often serve as models in understanding what can happen more generally.

e In order to understand what the computer tells us, we shall need to have a stock of simple models to call on,
which we do in fact know how to solve exactly.

In the case of a falling object, for example, if we want to see if the computer is producing reasonable results we
might compare the calculations to Galileo’s simpler case, at least for small values of ¢.

We shall come back later to the question of how to use a computer to approximate the solutions of differential
equations, and we shall return later also to look at differential equations of second order. But first we shall look
at some differential equations of first order modeling simple physical processes.

Exercise 1. At time t = 200, the object dropped from 10,000 km has approximately

r=9920.66 km
—0.7995 km /sec

v

Tell approximately what its height and velocity are at time ¢t = 201.

Exercise 2. The differential equation in this section is rather special, since energy is conserved as the object falls.
The kinetic energy is mv? /2 and the potential energy is —mk/r (a negative coefficient because the object loses
potential energy as it falls). Recall that potential energy is defined up to some fixed constant, and here that
constant is chosen to make the potential energy vanish at r = co. (a) Write down the expression for total energy.
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Differentiate it with respect to time to obtain a first order differential equation for r. (b) Use the second order
differential equation we derived above for r to show that energy is in fact constant.



