
Chapter 17. Fourier series

We have already met the simple periodic functions, of the form cos(ωt − θ). In this chapter we shall look at
periodic functions of more complicated nature.

1. The basic results

A function f(t) is said to be periodic of period T if f(t + T ) = f(t) for all values of t—that is to say, if its graph
repeats every interval of T units. If f(t) is periodic of period T then it is also periodic of period nT for every
integer n. Sometimes the period of f is defined to be smallest possible T for which periodicity holds.

The constant functions have period T for any possible T . The functions cos(2πnt/T ) and sin(2πnt/T ) are all
periodic of period T/n, hence of period T itself. Likewise the complex exponential function e2πint/T .

The basic result in the theory of Fourier series asserts that any reasonable function with period T can be expressed
as a possibly infinite sum of simple periodic functions with a period dividing T . There are several useful versions
of this. First of all, we know that a simply periodic function of the kind we are looking for is of the form
C cos(2πnt/T − θ) with n 6= 0 an integer, or possibly just a constant function. So the basic claim is this:

• If f(t) is any reasonable function with f(t + T ) = f(t) for all t, then f can be expressed as an infinite linear
combination

f(t) = C0 +
∑
n>0

Cn cos
(
(2πnt/T )− θn

)
.

The problem now is to find a way of calculating the coefficients Cn. To understand how this works, we first
rewrite the expression for f(t). We know that cos

(
(2πnt/T ) − θn

)
can be written as a linear combination of

cos(2πnt/T ) and sin(2πnt/T ), and equally well of e2πint/T and e−2πint/T . So the first part of the following
claims are more or less equivalent to the original one.

• If f(t) is any reasonable function with f(t + T ) = f(t) for all t, then f can be expressed as an infinite linear
combination

f(t) = · · · + c−ne−2πint/T + · · · + c−1e
−2πit/T + c0 + c1e

2πit/T + · · · + cne2πint/T + · · · .

For the (complex) coefficients cn we have the formula

cn =
1
T

∫ T

0

f(t)e−2πint/T dt

=
∫ 1

0

f(sT )e−2πins ds ( setting s = t/T ) .

If f(t) takes only real values then c−n is the conjugate of cn.

• If f(t) is any reasonable function with f(t + T ) = f(t) for all t, then f can be expressed as an infinite linear
combination

f(t) = a0 +
∑
n>0

an cos(2πnt/T ) +
∑
n>0

bn sin(2πnt/T ) .

For the coefficients we have the formulas

a0 =
1
T

∫ T

0

f(t) dt

an =
2
T

∫ T

0

f(t) cos(2πnt/T ) dt (n > 0)

bn =
2
T

∫ T

0

f(t) sin(2πnt/T ) dt (n > 0) .
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We shall see later some justification for these formulas, and the relationship between them. The first version is
the one which is conceptually the most important. The second gives the complex Fourier series of f(t), the third
gives the real Fourier series of f(t). It is at any rate an easy step from the second to the first. If

cn =
1
T

∫ T

0

f(t)e−2πint/T dt

then
Cn = 2|cn|, θn = −arg cn .

We shall not even attempt to prove these results, but we shall see in a while, as already mentioned, some kind of
justification for them. Nor shall we consider carefully what ‘reasonable’ means here. In practice, the functions
we shall apply this theory to are those which have simple formulas in a finite number of pieces of the interval
[0, T ].

Example. Let f(t) be a square wave function of period T :

f(t) =
{

1/2 0 ≤ t < T/2
−1/2 T/2 ≤ t < T

Here is the graph of f(t) with T = 1 (with vertical lines added to improve visibility):

In this case we have

cn =
∫ 1

0

f(sT )e−2πins ds

=
1
2

∫ 1/2

0

e−2πins ds − 1
2

∫ 1

1/2

e−2πins ds

= 0 (n = 0)

=
1
2

[
e−2πins

−2πin

]1/2

0

− 1
2

[
e−2πins

−2πin

]1

1/2

(n 6= 0)

=
(

1 − e−πin

4πin

)
+

(
1 − e−πin

4πin

)

= 0 (n even)

=
1

πin
(n odd)

Note that if we sum the terms for n and −n (n odd) we get
(

1
−πin

)
e−2πint/T +

(
1

πin

)
e2πint/T =

2
2πin

(
e2πint/T − e−2πint/T

)
=

(
2

πn

)
sin(2πnt/T )
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since

sin(x) =
eix − e−ix

2i
,

and finally

f(t) =
∑

nodd,n>0

(
2

πn

)
sin(2πnt/T ) .

In the figure below we show successive sums of terms from this series.
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The series seem to converge reasonably well, if not very rapidly, at most points—but there are some problems at
those sharp edges. These problems persist even if a very large number of terms are used. (In the bottom graph
10 non-zero terms were used.) The ‘ears’ remain for all these finite series, and their height remains essentially
constant. This sort of behaviour is not unusual for Fourier series.

Exercise 1.1. Let f(t) be the function which is equal to t in the range [0, 1), and extended periodically outside
this range. Draw the graph of f . Find the complex and real Fourier series of f .

Exercise 1.2. Let a be a constant between 0 and 1, and let

f(t) =
{ 1 0 ≤ t < a

0 a ≤ t < 1

With a = 1/4, graph f(t). With an arbitrary a, find its real Fourier series.

Exercise 1.3. Let a be a constant between 0 and 1, and let

f(t) =
{

t/a 0 ≤ t < a
(1 − t)/(1 − a) a ≤ t < 1

With a = 1/2 and 1/4, graph f(t). With an arbitrary a, find its real Fourier series.

2. Justification

If we have an expression

f(t) = · · · + c−1e
−2πit/T + c0 + c1e

2πit/T + · · · + cne2πint/T + · · · .

Then we can multiply both sides of this equation by e−2πimt/T to get

e−2πimt/T f(t) = · · ·+c−1e
−2πimt/T e−2πit/T +c0e

−2πimt/T +c1e
−2πint/T e2πit/T +· · ·+cne−2πimt/T e2πint/T +· · ·

or
f(t)e−2πimt/T =

∑
n

cne2πi(n−m)t/T .

If we integrate both sides over [0, T ] we get

∫ T

0

f(t)e−2πimt/T dt =
∫ T

0

∑
n

cne2πi(n−m)t/T dt .

Now if k = 0 we have ∫ T

0

e2πikt/T dt =
∫ T

0

dt = 1
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while if k 6= 0 we have ∫ T

0

e2πikt/T dt =
[
e2πikt/T

2πik

]T

0

= 0 .

Therefore all but one of the integrals in the sum on the right vanish and we have

∫ T

0

f(t)e−2πimt/T dt = cmT, cm =
1
T

∫ T

0

f(t)e−2πimt/T dt .

Exercise 2.1. From the formulas for cos(x + y), sin(x + y) add and subtract to get formulas for cos(x) cos(y),
cos(x) sin(y), sin(x) sin(y) in terms of cos(x + y), cos(x − y), sin(x + y), sin(x − y).

Exercise 2.2. Calculate explicitly the following integrals, using the previous exercise, to show

∫ T

0

cos(2πnt/T ) sin(2πmt/T ) dt = 0 ( all m, n)

∫ T

0

cos(2πnt/T ) cos(2πmt/T ) dt = T/2 (m = n > 0)

= 0 (m 6= n)∫ T

0

sin(2πnt/T ) sin(2πmt/T ) dt = T/2 (m = n)

= 0 (m 6= n)

Exercise 2.3. Use the previous result to show that if

f(t) = a0 +
∑
n>0

an cos(2πnt/T ) +
∑
n>0

bn sin(2πnt/T ) .

then for the coefficients we have the formulas

a0 =
1
T

∫ T

0

f(t) dt

an =
2
T

∫ T

0

f(t) cos(2πnt/T ) dt (n > 0)

bn =
2
T

∫ T

0

f(t) sin(2πnt/T ) dt (n > 0) .

Exercise 2.4. Another way to derive the formulas is to set c±n = An ± iBn and then combine c−ne−2πint/T +
cne−2πint/T using Euler’s formula. Do this.

3. Even and odd functions

There are special circumstances in which the calculation of Fourier series becomes a bit simpler than usual. Recall
that the function f(t) is called even if f(−t) = f(t), and odd if f(−t) = −f(t). All the functions cos 2πnt/T are
even, for example, and all the functions sin 2πnt/T are odd. Because of this:

• If f(t) is even its Fourier series can only have cosine terms, and if f(t) is odd it can only have sine terms.

This explains why the Fourier series of the shifted square wave function has the expansion

f(t) =
1
2

+
∞∑

n=0

1
π(2n + 1)

sin π(2n + 1)t
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since f(t) − 1/2 is odd.

There are other related consequences we shall use later on in the course. Suppose f(t) to be any function defined
in the interval [0, `]. We can extend it to be defined for all numbers in any of several ways. (1) We can extend it
to a function of period ` by just repeating it over again in every interval [n`, (n + 1)`]. (2) We extend it to be an
even function on [−`, `] and then extend it everywhere as a function of period 2`. (3) We extend it to be an odd
function on [−`, `] and then extend it everywhere as a function of period 2`.

If f(t) is even with period T then we only need to calculate the cosine coefficients. We can restrict the integration
to half the period, since integration over the second half just repeats the integration on the first half. We get in
this case

an =
4
T

∫ T/2

0

f(t) cos(2πnt/T ) dt .

If f(t) is odd with period T then we only need to calculate the sine coefficients. We can restrict the integration to
half the period, since again integration over the second half just repeats the integration on the first half. We get
in this case

bn =
4
T

∫ T/2

0

f(t) sin(2πnt/T ) dt .
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If we put the two features of this section together, we get:

• If f is any function defined on the interval [0, `], there exists a decomposition of f into components

f(t) =
∞∑

n=1

bn sin(πnt/`)

where

bn =
2
`

∫ `

0

f(t) sin(πnt/`) dt .

This is called the sine series for f .

• If f is any function defined on the interval [0, `], there exists a decomposition of f into components

f(t) =
∞∑

n=0

an cos(πnt/`)

where

an =
1
`

∫ `

0

f(t) dt

an =
2
`

∫ `

0

f(t) cos(πnt/`) dt .

This is called the cosine series for f .

We get these decompositions by extending f to an odd and an even function of period 2`, respectively.

Exercise 3.1. Let
f(t) = 1

in [0, 1]. Extend f(t) as an even function of period 2. Graph the extended function. Find the Fourier series for it.

Exercise 3.2. Same f(t). Extend as an odd function.

Exercise 3.3. Let
f(t) =

{
t 0 ≤ t < 1
2 − t 1 ≤ t < 2

Extend f(t) as an odd function of period 4. Graph the extended function. Find the Fourier series for it.

Exercise 3.4. Let
f(t) = t

in [0, 1]. Extend f(t) as an even function of period 2. Graph the extended function. Find the Fourier series for it.

Exercise 3.5. Same f(t). Extend as an odd function.

4. The rate of decrease of Fourier coefficients

Properties of the true convergence of Fourier series are very subtle and not usually of practical importance. The
basic fact that is important and roughly valid always is that if the Fourier series converges at all, in any sense,
then the coefficients decrease to 0.

f(t) =
∑

cne2πint

then
f ′(t) =

∑
cn2πne2πint .
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However, we have to be careful. For example, if f(t) is a square wave then

f(t) =
∑

nodd,n>0

(
2

πn

)
sin(2πnt/T ) .

Taking the derivative on both sides we get the formal identity

f ′(t) =
∑

nodd,n>0

(
4
T

)
cos(2πnt/T ) .

This violates the rule I just asserted! What’s going on? The point here is that the derivative of the square wave
makes no sense—the function f(t) has a step discontinuity at a couple of places in every period, so of course it
has no well defined slope and no derivative there. Therefore its Fourier series does not in fact converge to it in
the normal way, and the claim that the Fourier coefficients decrease is no longer valid.

But we do have the following consequence: if the series for f ′(t) also converges then the coefficients ncn must
also decrease to 0 as |n| → ∞, so that in fact cn must decrease to 0 faster than 1/|n|. And so on, if f(t) has higher
derivatives.

• Roughly speaking, the smoother a function f(t) is the more rapidly its Fourier coefficients cn decrease to 0
as n → ∞.

This is actually a matter of practical importance! Many compression schemes for electronic display apply Fourier
analysis to small chunks of the image. For example, the common JPEG scheme looks at the image on squares of
size 8×8 pixels. It applies a two dimensional version of Fourier analysis to the image, and in order to compress the
amount of storage the image requires, it throws away the terms in the Fourier series of high frequency assuming
that the high frequency coefficients will be smaller than those of low frequency. The first thing it must do is make
a periodic function out of these images. One possibility would be to just extend it by the obvious tiling of squares.
But if this is done, there will be sharp discontinuities at the boundaries of the squres, and this will cause the high
frequency components not to be small, which wrecks the scheme. The trick is to extend the small image to one of
size 16× 16 through even reflection. The boundaries of these images will be continuous, and the high frequency
components can indeed be expected to be small. Of course in doing this even extension you will be calculating a
two-dimensional version of the cosine transform.


