
Chapter 7. Homogeneous equations with constant coefficients

It has already been remarked that we can write down a formula for the general solution of any linear second
differential equation

y′′ + a(t)y′ + b(t) = f(t)

but that it would not be so explicit as the formula for first order linear equations. In fact, it is a formula that
is almost useless unless we make some special assumption about the equation. The reason for this is that the
formula involves the general solution to the homogeneous equation—the associated equation where f(t) = 0.
For this there is bad news and good news:

• There is no general formula for solving second order homogeneous linear differential equations.

• In case the homogeneous linear equation has constant coefficients, however, there is a way to find all of its
solutions.

In other words, what the formula does is solve the inhomogeneous case in terms of the homogeneous case, but we
are usually stopped right there. But–there is one large category of equations which can be solved, however—those
linear homogeneous equations where the coefficients a(t) and b(t) are constants not depending on t. Even in this
relatively simple case there is much to be said, and we shall spend a fair amount of time in this chapter on this
topic.

1. Linear equations with constant coefficients

Let’s now consider such an equation, which we shall write in a form slightly different from what we saw earlier:

y′′ + ay′ + by = 0 .

To get some feel for what will happen, let’s look at an explicit example

y′′ − y = 0 .

This can be written in the old form
y′′ = y

so that solutions of this differential equation are those functions y(t) whose double derivatives are equal to
themselves. There is certainly one function y(t) = et which comes to mind quickly. Another and similar function
is y(t) = e−t, since for this function y′ = −y, y′′ = −(−y) = y. Now the solutions to any linear homogeneous
equation satisfy the linearity principle, so we can obtain lots more solutions by taking linear combinations

aet + be−t

of the ones we already have. The converse turns out also to be true.

• Any solution of the differential equation
y′′ − y = 0

can be expressed as a linear combination
aet + be−t .

This is another way of saying that we can assign coordinates, here the constants a and b, to every solution of the
equation.

The proof involves a calculation we shall repeat often. The point of the argument is to reduce the claim to the fact
we already know: Any second order equation is determined by the value of y and y′ at any fixed point t0.
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The first step is to construct first the fundamental solutions associated to t = 0 from the solutions et, e−t. The
fundamental solution y0 for example satisfies

y0(0) = 1
y′
0(0) = 0 .

We speculate that y0 is a linear combination of et and e−t. Set

y0 = aet + be−t, y′
0 = aet − be−t .

Then
y0(0) = a + b, y′

0(0) = a − b .

We must see if we can choose a and b so that
a + b = 1
a − b = 0 .

This gives us two equations in the two unknowns a and b, and has the solution

a = 1/2, b = 1/2 .

Therefore

y0 = y0,0 =
et + e−t

2
.

Similarly we can calculate that

y1 = y1,0 =
et − e−t

2
.

But now if we are given any solution of the differential equation we can write it as a linear combination of y0 and
y1, according to reasoning I presented earlier, and then we can write it in turn as a linear combination of et and
e−t.

Much of what I have said here applies to more general linear differential equations with constant coefficients.
The first step is to realize that solving such equations always involves exponential functions of some kind. To
see why this should be so, and to understand why exponential functions arise in this context, is important and
interesting in its own right.

• Any homogeneous linear differential equation–of any order whatsoever—with constant coefficients has at
least one solution of the form

y = eλt

for a suitable choice of λ.

In solving the equation, we will therefore simply have to find what λ has to be. It turns out that this reduces to a
simple problem in algebra. But before I discuss the algebra involved, I will discuss in the next section why this
extraordinary result is true. This discussion will illustrate an important way of thinking about linear differential
equations with constant coefficients, and introduces for them an important principle which distinguishes them
from linear differential equations with variable coefficients.

Exercise 1.1. Find exponential solutions of y′′ − 4y = 0, y′′ + y = 0. Find also fundamental solutions at 0.

2. Time invariance and the translation principle

Physical systems which give rise to linear second order equations with constant coefficients are time invariant. I
have said that a differential equation is often the mathematical formulation of Newton’s Law. The coefficients
which occur are physical quantities associated to the system, and they will be constant precisely when the physical
situation that the differential equation encodes is one which does not vary with time. The system is time invariant,
but this is not the same as saying that the solutions of the system are time-invariant. What it does mean is that if
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we shift the initial conditions in time, then the solutions will likewise be shifted in time. Mathematically, a shift
by time interval h means replacing a function f(t) by f(t − h), and the principle of time invariance for constant
coefficient equations is this:

• If y(t) is a solution of a linear homogeneous differential equation with constant coefficients, then for any
constant h so is y(t − h).

Keep in mind: it is not the particular motions of a system which are time invariant, but the underlying physical
law which controls its dynamics. This statement about time shifts is the way to formulate this precisely.

A very closely related fact is this:

• If y(t) is a solution of a linear homogeneous differential equation with constant coefficients, then so is its
derivative y′(t).

The way in which these two principles are related is that

y′ = lim
h→0

y(t + h) − y(t)
h

so that the derivative of a function is the limit of a linear combination of y and its shifts.

Both of these are straightforward to prove. The second, for example: Suppose that y is a solution of the linear
equation

y′′ + a(t)y′ + b(t)y = 0

where for the moment I don’t assume a and b to be constants. Take the derivative of both sides:

y′′′ + a′(t)y′ + a(t)y′′ + b′(t)y + b(t)y′ = 0 .

But now if we assume a(t) and b(t) are constant, then a′(t) = 0 and b′(t) = 0, and the equation becomes

(y′)′′ + a(y′)′ + b(y′) = 0

which means that y′ is also a solution.

So we are now in the following circumstances: we have an operator y 7→ y′ on the set of all solutions of the
differential equation, and the set of solutions is a two dimensional vector space. The operator is linear, because
it clearly satisfies scalability and superposition. This means that if we express it in terms of coordinates, we get a
2 × 2 matrix. But now one thing we know about 2 × 2 matrices is that they always have at least one eigenvalue.
In our circumstances, this means that there exists at least one solution y of the differential equation which is taken
into a multiple of itself by the differentiation operator.

y′ = λy

for some constant λ, the eigenvalue. However, this eigenvalue equation is nothing but a first order linear
differential equation! We know that it has as solution the exponential function eλt.

• Linearity together with time invariance imply that we can find at least one solution which is an exponential
function.

Exercise 2.1. The method we apply to second order equations works for the equation y′′′ = y, too. Find one
exponential solution. Find all exponential solutions.

3. Finding explicit solutions

We now look into what we have to do to find an exponential solution y = eλt to the linear homogeneous
differential equation with constant coefficients

y′′ + ay′ + by = 0 .
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Of course we just set y = eλt and substitute it into the equation. We have

y = eλt

y′ = λeλt

y′′ = λ2eλt

and
y′′ + ay′ + by = (λ2 + aλ + b)eλt .

To obtain a solution of the equation we must set λ equal to a root of the characteristic equation

λ2 + aλ + b = 0 .

Example.
y′′ − y = 0

Here the characteristic equation is
λ2 = 1

and we get the same solutions
et, e−t

we got before.

Example.
y′′ − 3y′ + 2y = 0

The characteristic equation is
λ2 − 3λ + 2 = 0

with roots λ = 2, 1 and we get solutions
e2t, et

• The simplest case is when the characteristic equation has two distinct roots λ1 6= λ2. Then the general
solution to the equation is

c1e
λ1t + c2e

λ2t .

Example.
y′′ + y = 0

Characteristic equation
λ2 + 1 = 0

Here the roots are λ = ±i, and we get solutions

eit, e−it .
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What good are these? We recall Euler’s formula

eit = cos t + i sin t

and write
eit = cos t + i sin t

e−it = cos t − i sin t .

We now recall that linear combinations of solutions are solutions. Adding and then subtracting the expressions
above we get solutions

eit + e−it = 2 cos t

eit − e−it = 2i sin t

Dividing by constants is also allowed, so we also get solutions

eit + e−it

2
= cos t

eit − e−it

2i
= sin t

and these are the solutions which are of interest to us.

• When we have complex roots of the characteristic equation we also have as solutions their real and imaginary
parts, which we calculate according to Euler’s formula. More explicitly, if λ = a + ib is a root of the
characteristic equation then the general solution of the equation is

c1e
at cos bt + c2e

at sin bt .

Example. For
y′′ + y′ + y = 0

the roots are

−1
2

+
√−3

2
and the solutions are

e−t/2 cos(
√

3t/2), e−t/2 sin(
√

3t/2)

Example.
y′′ = 0

Here the characteristic equation is
λ2 = 0

so we get a single root λ = 0, and a solution y = e0 t = 1. How do we get another solution? It is trivial to see
here that it is y = t.

• When the characteristic equation has just a single root λ then the general solution to the equation is

c1e
λt + c2te

λt .
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When there is only a single root, the characteristic polynomial must be of the form

(λ − c)2

and the differential equation looks like
y′′ − 2c y′ + c2 = 0 .

In this case you can verify explicitly that tect does satisfy the equation.

Exercise 3.1. Prove that if
y′′ + ay + by = 0

has a characteristic equation with only one root λ, then teλt is a solution.

Exercise 3.2. Find general solutions of

(a) y′′ + 5y′ + 6y = 0
(b) y′′ + 4y′ + 4y = 0
(c) y′′ + y′ + y = 0
(d) y′′ − y′ − y = 0
(e) y′′ + 2y′ + y = 0
(f) y′′ + 4y′ + 3y = 0
(g) y′′ + 8y′ − 9y = 0
(h) y′′ − 2y′ + y = 0
(i) y′′ + 2y′ + 2y = 0

4. Initial conditions

The procedure described above gives us two different solutions of the differential equation. All other solutions
will be linear combinations of these two. Solving for initial conditions amounts to solving two equations for the
two unknown coefficients.

Example. To find the solution of
y′′ − 3y′ + 2y = 0

such that y(0) = 0, y′(0) = 1 we set
y = Aet + Be2t .

Then y′ = Aet + 2Be2t and we get
A + B = 0

A + 2B = 1

which leads to A = −1, B = 1. The solution we want is e2t − et.

Exercise 4.1. Find the solution of y′′ + 4y′ + 3y = 0 such that y(0) = 1, y(1) = 1.

5. More about fundamental solutions

If
y′′ + a(t)y′ + b(t)y = 0
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is any second order linear homogeneous differential equation, then the fundamental solutions with respect to the
point t0 are the two solutions y0(t), y1(t) such that

y0(t0) = 1 y′
0(t0) = 0

y1(t0) = 0 y′
1(t0) = 1 .

I recall that since these solutions depend on the parameter t0, we write them as y0,t0 , y1,t0 .

One reason they are useful is that if you want to solve the equation above with initial conditions

y(t0) = y#, y′(t0) = v#

then you just set
y = y# · y0,t0 + v# · y1,t0 .

But usually it is more work to find y0,t0 and y1,t0 than to solve for the initial conditions directly.

Example. Take
y′′ − y = 0, t = 0 .

All solutions are combinations of et and e−t, so we set

y = c1e
t + c2e

−t

and solve first the system
y(0) = c1 + c2 = 1
y′(0) = c1 − c2 = 0

to get
y0,0 = (1/2)(et + e−t) .

Next we solve
y(0) = c1 + c2 = 0
y′(0) = c1 − c2 = 1

to get
y1,0 = (1/2)(et − e−t) .

Example. For
y′′ + y = 0, t = 0

we have
y0,0 = cos t

y1,0 = sin t .

Exercise 5.1. Find the second fundamental equation at t = 0 for each of these equations:

(a) y′′ + 5y′ + 6y = 0
(b) y′′ + 4y′ + 4y = 0
(c) y′′ + y′ + y = 0
(d) y′′ − y′ − y = 0
(e) y′′ + 2y′ + y = 0
(f) y′′ + 4y′ + 3y = 0
(g) y′′ + 8y′ − 9y = 0
(h) y′′ − 2y′ + y = 0
(i) y′′ + 2y′ + 2y = 0
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Exercise 5.2. Graph each of the solutions from the previous exercise.

6. Fundamental solutions and the translation principle

The graph of the function y(t) when shifted to the right by t0 is the graph of the function y(t − t0). This new
function of x is called the translation of y by t0. Just below, for example, are the graphs of y = t2 and y = (t−3)2.

I recall the translation principle for equations with constant coefficients. If y(t) is a solution of the differential
equation

y′′(t) + a(t)y′(t) + b(t)y(t) = 0

then also for any t0
y′′(t − t0) + a(t − t0)y′(t − t0) + b(t − t0)y(t − t0) = 0 .

In particular, if a(t) and b(t) are constants we see that if y(t) is a solution of a differential equation with constant
coefficients then so are all translations y(t− t0). I also recall that this is related to the principle that derivatives of
solutions are solutions, since if y(t) is a solution so is y(t+h), and then according to linearity so is [y(t+h)−y(t)]/h.
But then

y′(t) = lim
h→0

y(t + h) − y(t)
h

.

If z(t) = y(t − t0) then z(t0) = y(0) and z′(t0) = y′(0). Therefore for differential equations with constant
coefficients

y0,t0 = y0,0(t − t0)
y1,t0 = y1,0(t − t0) .

In other words

• to find the fundamental solutions for any point t0 we have only to find those for t0 = 0 and translate them
by t0.


