
Chapter 8. Inhomogeneous equations

We shall now look at equations
y′′ + a(t)y′ + b(t)y = c(t)

where c(t) is allowed not to vanish. At the beginning, we shall not even have to assume that a(t) and b(t) are
constants. But you might as well.

1. A formula for solving second order inhomogeneous equations

We shall start with a kind of recipe for solving the inhomogeneous equation & initial conditions

y′′ + a(t)y′ + b(t)y = c(x), y(t0) = y0, y′(t0) = v0 .

• Find the fundamental solutions y0,t0 , y1,t0 and a formula for all y1,s.

• The formula we want is

y(x) = y0 · y0,t0 + v0 · y1,t0 +
∫ t

t0

y1,s(t)c(s) ds .

Example. If we want to solve
y′′ + y = c(t), y(0) = 2, y′(0) = −1

we know that y0,0 = cos t, y1,0 = sin t. Then

y0 = 2
v0 = −1

y1,s = sin(t − s)

y = 2 cos t − sin t +
∫ t

0

sin(t − s)c(s) ds

= 2 cos t − sin t +
∫ t

0

(sin t cos s − cos t sin s)c(s) dt

= 2 cos t − sin t + sin t

∫ t

0

c(s) cos s ds − cos t

∫ t

0

c(s) sin s ds

If you put the formula in this section together with an explicit formula for y1,s, you will arrive at a version of this
formula usually called the variation of parameters formula.

2. Analogies with the formula for first order linear equations

The formula for solving the first order linear equation

y′ + a(t)y = b(t), y(t0) = y0

is

y = y0 · e−A(t) + e−A(t)

∫ t

t0

eA(s)b(s) ds

where

A(t) =
∫ t

t0

a(s) ds .
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The function e−A(t) is the solution of the homogeneous equation taking the value 1 at t0. For any other point s,
y(t) = eA(s)e−A(t) will be the solution of the homogeneous which takes the value 1 at s. In other words

y0,s = eA(s)−A(t)

and we can write the first order formula as

y = y0 · y0,t0 +
∫ t

t0

e−A(t)+A(s)b(s) ds

= y0 · y0,t0 +
∫ t

t0

y0,s(t)b(s) ds

which is analogous to the formula for second order equations.

• The essential difference between first and second order equations is that for first order equations we can
always find solutions of the associated homogeneous equation, whereas for second order this may not be
possible.

3. Forgetting the initial conditions

If we are only interested in the general solution, we can use this formula for a solution:

y(x) = c1z1 + c2z2 +
∫ t

y1,s(x)c(s) ds

Here z1 and z2 are any two essentially distinct solutions of the homogeneous equation. We can get by with the
indefinite integral because for any fixed t0 and t1 the integral

∫ t1

t0

y1,s(x)c(s) ds

is a solution to the homogeneous equation. This is because

y1,s(t) = c1(s)z1(t) + c2(s)z2(t)

for some coefficients c1(s) and c2(s) and the integral is

C1z1(t) + C2z2(t) = z1(t)
∫ t1

t0

c1(s)c(s) ds + z2(t)
∫ t1

t0

c2(s)c(s) ds .

Exercise 3.1. Find the general solution of y′′ + 3y′ + 2y = ect.

4. The structure of the formula

The formula as I have stated it gives the solution for the equation

y′′ + a(t)y′ + b(t)y = f(t)

with initial conditions
y(t0) = y0

y′(t0) = v0



Inhomogeneous equations 3

It says that

y = y0 · y0,t0(t) + v0 · y1,t0(t) +
∫ t

t0

y1,s(t)f(s) ds

The first component of the formula is
y0 · y0,t0(t) + v0 · y1,t0(t)

is a linear combination of the fundamental solutions y0,t0(t) and y1,t0(t) of the homogeneous equation, and is
consequently itself a solution to the homogeneous equation. Of course its derivative is

y0 · y′
0,t0(t) + v0 · y′

1,t0(t)

If you set t = t0 you will see, by definition of the fundamental solutions, that its value at t0 is y0 and the value of
its derivative is v0.

• The first term in the basic formula can be characterized as the unique solution y of the homogeneous equation
with y(t0) = y0 and y′(t0) = v0.

The formula
y = y0 · y0,t0(t) + v0 · y1,t0(t)

for it is certainly correct, but you should be aware that there may be more efficient ways to find it.

The second component of the basic formula is

∫ t

t0

y1,s(t)f(s) ds .

This is the most important and interesting of the two components. It depends linearly on f(t), and in particular
vanishes if the equation is homogeneous.

• The second component of the basic formula is the solution y of the inhomogeneous equation with y(t0) = 0,
y′(t0) = 0.

I remind you that, in case the coefficients a(t) and b(t) are constants, in order to find y1,s we use the translation
principle to write

y1,s(t) = y1,0(t − s)

If we want to know the general solution of the inhomogeneous equation, without initial conditions specified, we
may replace the first component by the general solution of the homogeneous equation and the second component
by an indefinite integral ∫ t

y1,s(t)f(s) ds .

The point here is that

• We can find the general solution to the inhomogeneous equation by adding the general solution of the
homogeneous equation to any one solution of the inhomogeneous we can find.

Sometimes there is a solution of the inhomogeneous equation much simpler than the rest.

5. When the right hand side is a simple exponential function

The basic formula for solving inhomogeneous linear equations in terms of the solutions of the associated homo-
geneous equation has the virtue of working under just about all circumstances, but it is usually more complicated
to use than necessary.

In most circumstances you will meet in practice there is a way to solve an inhomogeneous equation which is
simpler than using the basic formula. I will explain this by an example.
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Suppose we want to find the general solution of the equation

y′′ + 3y′ + 2y = ect

where c is an unspecified constant.

The general solution to the homogeneous equation is

y = Ae−t + Be−2t

with
y′ = −Ae−t − 2Be−2t

To find y1,0 we solve
A + B = 0

−A − 2B = 1

to find
A = 1, B = −1

and
y1,0(t) = e−t − e−2t

y1,s(t) = e−(t−s) − e−2(t−s)

= e−tes − e−2te2s

Therefore the second component of the basic formula (with indefinite integrals) is

∫ t

y1,s(t)f(t) ds =
∫ t [

e−tes − e−2te2s
]
ecs ds

= e−t

∫ t

e(c+1)s ds − e−2t

∫ t

e(c+2)s ds

= e−t

[
e(c+1)s

(c + 1)

]
− e−2t

[
e(c+2)t

(c + 2)

]

=
ect

(c + 1)
− ect

(c + 2)

=
ect

(c2 + 3c + 2)

This procedure doesn’t work if c + 1 = 0 or c + 2 = 0.

These calculations suggest what happens in general.

• If c is not a root of the characteristic equation

c2 + ac + b = 0

then for the inhomogeneous linear differential equation with constant coefficients

y′′ + ay′ + y = ect

the function

y =
ect

c2 + ac + b

is a solution.
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This works in circumstances more varied than you might think.

Example. To solve
y′′ + 3y′ + 2y = cos t

we recall that cos t is the real part of eit. Therefore we first solve

y′′ + 3y′ + 2y = eit

We get

y =
eit

i2 + 3i + 2

=
eit

1 + 3i

=
1 − 3i

1 − 3i

eit

1 + 3i

=
(1 − 3i)(cos t + i sin t)

10

=
(cos t + 3 sin t) + i(−3 cos t + sin t)

10
whose real part, the solution we are looking for, is

cos t + 3 sin t

10
.

We now know how to solve any equation
y′′ + ay′ + by = ect

when c is not a root of the characteristic polynomial. There are various rules for what happens when c is a root of
the characteristic equation, but probably the most straightforward thing to do in this exceptional circumstance is
go back to the basic formula.

There is one case which is worth while handling explicitly, however. Suppose we are solving

y′′ + ω2
0y = cosωt .

The solutions to the associated homogeneous equation are

e±iω0t

or
cosω0t, sin ω0t .

If ω 6= ω0 we apply the technique explained earlier in this section with right hand side eiωt to get the general
solution

c1 cosω0t + c2 sinω0t +
cosωt

−ω2 + ω2
0

.

When ω = ω0 we have to apply the basic formula. The second fundamental solution to the homogeneous
equation is

sinω0t

ω0
.



Inhomogeneous equations 6

We therefore get

y =
1
ω

∫ t

sin ω(t − s) cosωs ds

=
sin ωt

ω

∫ t

cos2 ωs ds − cosωt

ω

∫ t

sin ωs cosωs ds

=
sin ωt

ω

∫ t 1 + cos 2s

2
ds − cosωt

ω

∫ t sin 2s

2
ds

=
t sinωt

2ω
+

sinωt sin 2ωt

4ω2
− cosωt cos 2ωt

4ω2

=
t sinωt

2ω
− cos(2t − t)ω

4ω2

=
t sinωt

2ω
− cosωt

4ω2
.

Recall here that
cos(x + y) = cosx cos y − sin x sin y

cos 2x = 2 cos2 x − 1
sin 2x = 2 sinx cosx .

Also note that the second term cosωt/4ω2 in the expression above is a solution to the homogeneous linear
equation, and can be absorbed into the other component. We discover in the end that the solution to the equation

y′′ + ω2y = cosωt

(the special case when c = iω is a characteristic root) is equal to

c1 cosωt + c2 sinωt +
t sin ωt

2ω

Exercise 5.1. Suppose λ2 +aλ+ b = (λ− c)(λ−d) where d 6= c. Find the general solution of y′′ +ay′+ by = ect.

Exercise 5.2. Suppose λ2 + aλ + by = (λ − c)2. Find the general solution of y′′ + ay′ + by = ect.

6. Impulse response and inhomogeneous equations

Suppose the pendulum sits at rest until t = 0, when it is hit sharply with a hammer, say in the direction of positive
displacement (from the left, in the picture below).

mg cos �

mg

mg sin �

`

�

m
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What determines how the pendulum moves? The details are messy, of course. When the hammer head hits the
bob, the left hand side of the bob squishes in a bit, reacting elastically against the head of the hammer but also
transmitting the effect of the blow throughout the bob, eventually to the rod of the pendulum, and then up the
rod. But in a short time things stabilize and the pendulum begins to swing back and forth in a simple fashion.
After this happens, the force F (t) is equal to 0 and the system obeys the homogeneous equation

my′′ + cy′ + ky = 0 .

The period when interesting things are going on will last a fraction of a second. The subsequent motion will
depend only on the state of the pendulum at the end of that brief period. So we must answer the question: At
the end of that short period, where is the pendulum, and how fast is it moving? To determine the motion from
that point on, we just solve the homogeneous equation with appropriate initial conditions.

Let’s answer the second question first: how fast is the bob moving when the hammer stops contact? Of course
this depends on how the force acts. Here, for example, is a plausible graph of F (t):

What we shall see is that the effect of the force depends in a very simple way on this graph, at least if the time
interval ∆t is small. Of course the effect of the force is mainly to determine the position and velocity at the
end of the initial period. • The claim is certainly true as far as position is concerned. The effect on position is a
second-order effect, which is to say it is proportional to the square of the length of the time interval in which things
are going on. This is just what happens when you let an object drop from your hand—the distance travelled from
your hand is proportional to t2. The force causes acceleration, which causes the velocity to build up noticeably,
but it takes a relatively long time for this increase in velocity to affect position. If the time interval is small then
the position of the bob won’t have changed appreciably. • As far as velocity is concerned, we can use Newton’s
law F = ma, which can be reformulated approximately as

F = m ∆v/∆t, F∆t = m ∆v

for small intervals ∆t. Several smaller intervals will add their effects together, which means that roughly speaking
the change in momentum mv is the integral of F (t) dt, which is the area under the graph of F (t). We are assuming
that the effects of the force of gravity are small over the small interval, compared to the force F . This is not badly
inaccurate.

So the effect of the hammer blow on position is practically negligible and that on velocity depends primarily on
the area under its graph. It is in fact proportional to this area, and the constant of proportionality is the mass m.
The integral of Fdt is called impulse or action. It measures the transfer of momentum. An ideal hammer would
transfer the momentum instantaneously, and we can measure even such ideal hammers according to the amount
of momentum transferred. The ideal hammer of unit size can be thought of as the limit of ones acting over a very
small but still finite interval, each with unit area under the graph of F (t). We can now ask a simpler equation
than the original one: What is the effect of a unit ideal hammer? It changes the momentum of the pendulum
from 0 to 1 in an instant, and does not in that instant affect position. After that instant, the pendulum motion
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follows the homogeneous differential equation. So up to t = 0 the graph of position is dead horizontal, and at
t = 0 it starts to rise suddenly with a slope equal to 1/m. In other words, for t > 0 the position is given by the
solution y(t) of the homogeneous equation with y(0) = 0, y ′(0) = 1/m. This is what I have called, in the case
where m = 1, the second fundamental solution y1,0(t) of the homogeneous equation. So we see that there is a
simple interpretation of this solution in terms of a transfer of unit momentum to a physical system at t = 0.

Here is the graph of the solution of the equation

y′′ + 0.4y′ + y = F (t), y(0) = 0, y′(0) = 0

where

F (t) =
{

5 if 0 ≤ t ≤ 1/5
0 otherwise .

I have chosen the friction coefficient low enough to allow some oscillation, and chosen ∆t = 1/5 large enough to
show what happens in that small interval. The light gray line is the actual function y1,0(t).

If force acts on the linear system over a long period of time, we can think of it as being broken up into a succession
of forces of short duration, displaced in time. What happens during the interval [s, s + ∆s] is added to the
accumulated effect. This new addition is equal to F (s)y1,s(t)∆s for t ≥ s. If the system is at rest and the force
does not act until t = 0, we get an approximation

y(t) .=
1
m

∑
0≤s≤t

y1,0(t − s)F (s)∆s

and in the limit

y(t) =
1
m

∫ t

0

y1,0(t − s)F (s) ds

for the solution of the inhomogeneous system with vanishing initial conditions. This tells us the physical
significance of this formula.

Exercise 6.1. Find an explicit formula for the solution of

y′′ + 2y′ + 2y = F (t), y(0) = 0, y′(0) = 1

for t ≥ 0, where

F (t) =
{

h for 0 ≤ t < 1/h
0 otherwise

Exercise 6.2. Find an explicit formula for the solution of the equation

y′′ + 0.4y′ + y = F (t), y(0) = 0, y′(0) = 0

where

F (t) =
{

5 if 0 ≤ t ≤ 1/5
0 otherwise .


