
Chapter 2. Complex numbers

If we want to solve a differential equation
y′ = ay + cos bt

we obtain the formula

y = Cat + eat

∫ t

e−as cos bs ds .

Integrals like ∫ t

e−as cos bs ds

are a bit tricky, as I shall recall a bit later on. There is one technique to apply to integrals like this, and even more
complicated ones, which uses complex numbers. Since complex numbers will turn out to be extremely important
in this course, we shall look at them now.

1. Complex numbers and geometry

A complex number is one of the form x + iy where i =
√ − 1. They are required in order to solve all quadratic

equations.

We can picture complex numbers z = x + iy by plotting them in the (x, y) plane. Essentially, then, the complex
number z becomes a 2D vector from the origin to (x, y).

z = 1 + i

The real numbers lie along the x-axis. The number i and all pure imaginary numbers lie along the y-axis. If
z = x + iy then x is called its real component and y is called its imaginary component.

If z1 = x1 + iy1 and z2 = x2 + iy2 then z1 + z2 = (x1 +x2)+ i(y1 + y2). In other words, the addition of complex
numbers is just vector addition.
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z1

z2

z1 + z2

The conjugate z of a complex number z is what we get when we reflect it in the x axis.

x + iy = x − iy .

z

z

If z = x + iy and z = x − iy then
z + z = 2x

x =
z + z

2

=
1
2

z +
1
2

z

z − z = 2iy

y =
z − z

2i
.

=
1
2i

z − 1
2i

z .

The product of z and z has geometrical significance:

zz = ‖z‖2 = (x + iy)(x − iy) = x2 + y2 = R2
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if R is the length of the 2D vector z. The radius R =
√

x2 + y2 is called the magnitude or amplitude or absolute
value of z. Sometimes (in other texts) it is written as |z|.
If w = a + ib, z = c + id then

wz = (a + ib)(c + id) = (ac − bd) + i(ad + bc) .

If z = x + iy then
1
z

=
1

x + iy
=

x − iy

x − iy

1
x + iy

=
x − iy

x2 + y2
.

For example, we see that
a + ib

c + id
=

(c − id)(a + ib)
c2 + d2

=
(ac + bd) + i(bc − ad)

c2 + d2

which shows how to divide complex numbers and retain the x + iy form. Here is a numerical example:

i

1 + 2i
=

1 − 2i

1 − 2i

i

1 + 2i
=

2 + i

5
.

Exercise 1.1. Find 1/(1 + i), 1/(3 + 2i).

Exercise 1.2. Write down in for n = −4 to n = 8. For n = 101.

In order to understand well the multiplication of complex numbers we have to look at polar coordinates. If the
polar coordinates of z = x + iy are (R, θ) then

x = R cos θ

y = R sin θ

z = x + iy

= R cos θ + iR sin θ

= R(cos θ + i sin θ)

The angle θ is called the argument or phase of z. The numbers z with R = ‖z‖ = 1, for example, are those of the
form

z = cos θ + i sin θ .

If
z1 = R1(cos θ1 + i sin θ1), z2 = R2(cos θ2 + i sin θ2)

then
z1z2 = R1R2(cos θ1 + i sin θ1)(cos θ2 + i sin θ2)

= R1R2

(
(cos θ1 cos θ2 − sin θ1 sin θ2) + i(sin θ1 cos θ2 + cos θ1 sin θ2)

)
= R1R2

(
cos(θ1 + θ2) + i sin(θ1 + θ2)

)
because of the rules for calculating the trigonometrical functions for sums of angles.
• The magnitude of the product of two complex numbers is the product of their magnitudes. The argument of

the product of two complex numbers is the sum of their arguments.

Multiplication of a complex number by a real positive number R just scales it by the factor R. As a consequence
of the rule above, multiplication by a number cos θ + i sin θ amounts to rotation by θ. In particular, multiplication
by i means rotation by 90◦.

If w = z−1 then wz = 1. This means that the magnitude of 1/z is 1/R, while the argument of 1/z is the negative
of the argument of z.

Exercise 1.3. Find the amplitude and arguments of 3 + 2i, 1/(3 + 2i).
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Exercise 1.4. By writing (cos θ + i sin θ)3 in two ways, find a formula for cos 3θ in terms of cos θ and sin θ. (Hint:
First expand (a + b)3.)

Exercise 1.5. (a) Find and plot in the (x, y) plane all the roots of z3 = 1. (b) Of z4 = 1. (c) Of z8 = 1. (d) Of
z4 = 2.

Exercise 1.6. Plot roughly the path traversed by

z2 − 3z + 2

as z moves around the circle ‖z‖ = 1.

Exercise 1.7. Plot roughly the path traversed by the complex numbers

1
1 + z − z2

as z goes from −i∞ to i∞ along the imaginary axis. (Hint: do 0 to i∞ first.)

2. The complex exponential function

The exponential function ex and the trigonometric functions cosx and sin x are related to each other. The
relationship involves complex numbers. It simplifies many of the calculations involved in solving differential
equations.

The exact relationship is called Euler’s equation:

eix = cosx + i sin x .

In other words, cosx is the real part of the complex exponential function eix, and sinx is its imaginary part. The
complex exponential obeys all the usual rules that the real one does.

Euler’s equation can be proven by using Taylor’s series. If we recall that

ez = 1 + z +
z2

2!
+

z3

3!
+ · · ·

and we set z = ix then we get since i2 = −1, i3 = −i, i4 = 1, etc.

eix = 1 + ix +
i2x2

2!
+

i3x3

3!
+

i4x4

4!
+ · · ·

=
[
1 − x2

2!
+

x4

4!
+ · · ·

]
+ i

[
x − x3

3!
+

x5

5!
− · · ·

]

= cosx + i sinx .

From this we see that
• If c = a + ib is any complex number then

ecx = eax+ibx = eaxeibx = eax cos bx + ieax sin bx,

or equivalently
• The function eax cos bx is the real part of eax+ibx and eax sin bx is its imaginary part.

Euler’s equation ‘explains’ the trigonometrical sum formulas, since they turn out just be a different way of
expressing the identity ei(θ1+θ2) = eiθ1 eiθ2 .
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Exercise 2.1. Find eπi; e−πi; eπi/2.

3. Integrals

Let’s look again at exponentials of the form
∫

eax cos bx dx,

∫
eax cos bx dx, .

First recall what you may have learned earlier. For example, let

I1 =
∫

ex cosxdx, I2 =
∫

ex sin xdx

Then integration by parts with u = ex, v = sin x gives us

I1 =
∫

ex cosxdx = ex sin x −
∫

ex sin xdx = ex sin x − I2

and with u = ex, v = − cosx

I2 =
∫

ex sinxdx = −ex cosx +
∫

ex cosxdx = −ex cosx + I1

from which we can solve the pair of linear equations

I1 + I2 = ex sinx

I1 − I2 = ex cosx .

This is rather complicated and error-prone.

Now let’s use complex exponentials to find the general formula more directly. Recall that for any constant c

∫
ecx dx =

ecx

c
.

This works even if c is complex! So we write the integrals
∫

eax cos bx dx,

∫
eax sin bx dx

as the real and imaginary parts of the complex integral
∫

e(a+ib)x dx =
∫

ecx dx (c = a + ib)

=
ecx

c

=
e(a+ib)x

a + ib

=
(a − ib)e(a+ib)x

a2 + b2

=
eax

a2 + b2
(a − ib)(cos bx + i sin bx)

=
eax

a2 + b2

(
(a cos bx + b sin bx) + i(a sin bx − b cos bx)

)
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Equating real and imaginary components, we get

∫
eax cos bx dx = eax a cos bx + b sin bx

a2 + b2∫
eax sin bx dx = eax a sin bx − b cos bx

a2 + b2
.

Exercise 3.1. Find ∫
et cos t dt

Exercise 3.2. Find the integral ∫
tect dt

by parts. Find the integral ∫
t cos t dt

by applying this for a suitable complex number c.


