
Chapter 10. Summary—time invariant physical systems of second order

Second order equations, even those with constant coefficients, are both complicated and important. A review
will be helpful. A small number of new ideas will be added here, too.

1. All those different frequencies

There are several frequencies associated to second order differential equations in which the friction term is
relatively light. The first is the response frequency ω0 of the free system with no friction at all. The second is the
quasi-frequency ωqf which controls the rate of vibration of the decaying response to the associated homogeneous
equation. The third is the resonant frequency, the frequency for which input causes the maximum amplitude of
response.

If the equation is
my′′ + cy′ + ky = F (t)

where y is the displacement from equilibrium; m is mass; c is a damping coefficient, so that the friction term is
proportional to velocity; k is a constant such that the force restoring the system to equilibrium is ky, then the
formulas for these frequencies are

ω0 =
√

k/m

ωqf =
√

4km − c2/2m

=
√

k/m − c2/4km

= ω0

√
1 − γ2/4

ωres =
√

4km − c2/2m

=
√

k/m − c2/2km

= ω0

√
1 − γ2/2

where γ = c/
√

km is the normalized friction. These formulas only make sense when the quantities under the
square root signs are non-negative, which means that c is relatively small. In particular, the quasi-frequency
makes no sense (there is no vibration for the solutions of the homogeneous equation) when c2 > 4km but
resonance disappears in the larger range c2 > 2km. When they all make sense, we have the relationship

ωres ≤ ωqf ≤ ω0 .

The three are the same only when there is no friction.

Second order differential equations like
my′′ + cy′ + ky = F (t)

with constant coefficients are probably the most important topic in the course.

2. Model physical systems

In most practical examples m, c, and k are all positive, but an important limiting case is when c = 0 as well. I
shall assume in the rest of this note that m > 0, k > 0, c ≥ 0.

The simplest physical models for this equation are (1) a weight of mass hanging on a spring obeying Hooke’s
law, and (2) an electric circuit consisting of a simple loop, with a resistor, capacitor, inductor, and voltage source
all in a series. In the first case m is the mass of the weight, k the constant of proportionality in Hooke’s law, c a
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friction coefficient, and F (t) an external force driving the system up and down vertically. In the second example
the constants are usually relabelled so the equation becomes either

LQ′′ + RQ′ +
Q

C
= E(t)

or

LI ′′ + RI ′ +
I

C
= E′(t)

where L is inductance, R resistance, C capacitance, E(t) the voltage input, Q charge across the capacitor, and I
the current in the circuit.

A system where c = 0 is one where energy conserved. The rate of energy loss in general in the system is
proportional to c(y′)2.

The equation is linear, which means that the left hand side L(y) = my′′ + cy′ + ky is a linear function of y.
Linearity means that if y1 is a solution of the equation

y′′ + cy′ + my = F1(t)

and y2 of the equation
y′′ + cy′ + ky = F2(t)

then the linear combination c1y1 + c2y2 is a solution of

my′′ + cy′ + ky = c1F1(t) + c2F2(t) .

There is a formula for the solution of such an equation with an arbitrary input function F (t), but the formula is
not so useful. In practice there are a small number of cases which are important.

3. The homogeneous case

Here F (t) = 0. In this case the physical system being modelled is said to be free, and the equation

my′′ + cy′ + ky = 0

is called homogeneous. In this case we find all solutions by taking linear combinations of two particularly simple
ones. There are three different cases, depending on the behaviour of the roots of the characteristic polynomial

mλ2 + cλ + k = 0 .

The three cases are:

(1) The roots are λ1 and λ2, two distinct real numbers. The basic solutions are

eλ1t, eλ2t .

Both roots are negative, and these solutions decay exponentially fast as t → ∞. For almost all solutions both
constants will be non-zero, and the rate of decay will be that of the term with the root of smallest absolute
magnitude.

(2) The roots are two conjugate complex numbers a± bi. There are exponential solutions e(a±bi)t which give rise
by Euler’s formula to the basic solutions

eat cos bt, eat sin bt .

Both are functions which oscillate and decay all at the same time. The frequency b of the oscillation is called the
quasi-frequency of the equation.
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(3) There is only one root λ. The basic solutions are

eλt, teλt .

Both solutions decay exponentially, the second slightly less rapidly than the first.

4. Simple periodic input

Here F (t) is a linear combination of cosωt and sin ωt, and may be expressed as F0 cos(ωt − α), where F0 is the
magnitude of the input, ω its frequency, and α its phase. Explicitly, if

F (t) = A cosωt + B sin ωt

Then
F0 =

√
A2 + B2

cosα = A/F0

sin α = B/F0

Any solution to the differential equation is the sum of two parts. The first is a solution of the homogeneous
equation. As t → ∞ it decays exponentially as long as c > 0, and is then called the transient component. The
time it takes to decay by a certain factor is called its relaxation time. The second part is of the same form as the
input, except that its magnitude and phase are different. Explicitly it is

F0

R
cos(ωt − α − θ)

where
R =

√
(k − mω2)2 + c2ω2

cos θ =
k − mω2

R

sin θ =
cω

R
.

This component of the solution is called the steady state component.

The general solution of the equation will involve two constants included in the transient component, usually
determined by initial conditions. The effects of the initial conditions die out with time, and all solutions will be
essentially the steady state solution.

In other words, the relation between the input F (t) and the steady state solution—the output—is that the output
is obtained from the input by an amplification and a shift in phase.

These formulas become somewhat simpler if we think of the input F (t) as the real part of complex input F0e
iωt.

Then the steady state component is

F0e
iωt

m(iω)2 + c(iω) + k
=

F0e
iωt

(k − mω2) + icω
.

In these terms R is the magnitude and θ the phase of the complex number in the denominator.

In most situations it is important to know how the amplification factor 1/R varies with ω. If c is small enough
then there is a value of ω for which this amplification factor is relatively large. It is called the resonant frequency.
If c is large, however, the amplification factor will be greatest at ω = 0 and no resonance phenomenon occurs.
If resonance does occur, then it is significant only when the resonant frequency lies close to ω0 =

√
k/m, the

resonant frequency of a system where c = 0, and in fact friction is almost negligible.
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So: small friction means (1) slowly oscillating exponentially decaying transient solutions and (2) a large ampli-
fication factor for input frequencies near the resonant frequency, while large friction means (1) rapidly decaying
transient solutions and (2) very small steady state solution.

5. The exceptional case

The formula above makes sense unless the denominator

(k − mω2) + icω

is equal to 0. This can happen only if
ω =

√
k/m, c = 0

Here the physical model is one without friction, where the input is in synchronization with the frequency of the
free system, and the magnitude of the output grows without limit. There is no steady state solution, since it is no
longer true that initial effects die out. But as t → ∞ all solutions to

my′′ + ky = cosωt

look like
t sinωt

2mω

as t → ∞, since the solution to the homogeneous equation at least remains bounded, and might be considered a
relative transient.

Of course in realistic examples c is never exactly 0, and solutions never go to ∞, but this is a reasonable
approximation for systems with very low friction and small initial time segments. It is also the case you want to
avoid in engineering applications, since it will lead to disaster.

6. Step function input

The final important case is when F (t) is equal to periodic input cut off outside a fixed interval of time. Fir example
we could have

F (t) =
{

eiωt 0 ≤ t < T
0 otherwise

Think of this as modelling a weight which is given a blow, or an electric circuit where the outside source is
switched on and off. The best way to solve this is to solve the equation separately in each of the ranges (−∞, 0],
[0, T ], [T,∞), and then match initial conditions at the boundary points t = 0, t = T .

7. An extended example

Let’s solve
y′′ + 2y′ + 2y = cos 3t, y(0) = y′(0) = 0 .

The roots of the characteristic equation are −1 ± i. The transient solutions are of the form

ae−t cos t + be−t sin t .

The steady state solution is the real part of

e3it

(3i)2 + 2(3i) + 2
=

e3it

−7 + 6i
=

−7 − 6i

−7 − 6i

cos 3t + i sin 3t

−7 + 6i
=

−7 cos 3t + 6 sin 3t

85
.

We have
R =

√
49 + 36 =

√
85



Summary—time invariant physical systems of second order 5

and θ equal to the angle of the vector in this picture:

which is to say about 2.433r = 139◦.

Therefore the solution and its derivative are

y = ae−t cos t + be−t sin t +
−7 cos 3t + 6 sin 3t

85

y′ = −ae−t cos t − ae−t sin t − be−t sin t + be−t cos t +
21 sin 3t + 18 cos 3t

85

We have
y(0) = a − 7

85

y′(0) = −a + b +
18
85

.

so we get

a =
7
85

, b = −11
85

.

If the input is eiωt the denominator of the steady state solution is

(2 − ω2) + 2iω

The square of its magnitude is
(2 − ω2)2 + 4ω2 = sayX(ω)

and to find the maximum point we set

X ′(ω) = 2(−2ω)(2 − ω2) + 8ω = 0 .

We get ω = 0 as the only place where this occurs. There is therefore no resonant frequency.

Exercise 7.1. For which values of c is there no resonant frequency for the equation

y′′ + cy′ + 2y = 0?


