
Chapter 6. How large areas and volumes change in a flow

The question we now want to address is this: Let R be any region in the plane where a vector field v is given. In
contrast to the previous problem, R doesn’t have to be small. What is the rate of change of the area of R in the
flow (at time t = 0)?

1. The integral formula

The area of R is the double integral ∫
R

dA

which is the limit of sums ∑
∆A

where the finite regions ∆A get smaller and smaller.

After a time interval ∆t each area ∆A changes in the flow to (1 + div(v)∆t)∆A.
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Thus the entire area of R changes, to a close approximation, to

∫
R

(1 + div(v)∆t) dA .

The difference between the new area and the old is, up to first order in ∆t,

difference = ∆t

∫
R

div(v)dA .

Therefore, the rate of change of area at t = 0 is the limit ratio of the difference to ∆t, which is

∫
R

div(v)dA .

In other words, the answer to our question is this:

• The rate of change of the area of a 2D region R in the flow at t = 0 is the double integral

∫
R

div(v)dA .

The same argument works in 3D to give a rate of change of volume.

• The rate of change of the area of a 3D region R in the flow at t = 0 is the triple integral

∫
R

div(v)dV .

Exercise 1.1. Let R be the square in 2D with corners at (±1,±1). If v is the flow v(x, y) = [ax, by], what is the
rate of change of the area of R in the flow at t = 0?

Exercise 1.2. In the previous problem, find an exact formula for the area of the transformation of R at time t.

Exercise 1.3. If R is the same square, but

v(x, y) = [ax + cy, bx + dy]

find (a) the rate of change of the area of R at t = 0; (b) an exact formula for the area of the transformation of R at
time t. (Hint: find a simple differential equation for the area at time t.)

Exercise 1.4. If R is the cube with corners (±1,±1,±1) and

v(x, y, z) = [a1,1x + a1,2y + a1,3z, a2,1x + a2,2y + a2,3z, a3,1x + a3,2y + a3,3z]

find an exact formula for the volume of the transformation of R at time t. (Hint: find a simple differential equation
for the volume at time t, using the divergence of v.)

2. The boundary formula

There is another way to calculate the change of area. Let C be the boundary of R. Then C changes in the flow,
and the total change of area of the region can be measured just by examining how C moves. Where C moves in,
area decreases, and where C moves out, it increases.
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In order to find out how the area changes, we just have to track what happens to the boundary.

To be precise, what we have to do is find out how pieces of the boundary are swept out in the flow. A segment
of length ∆s along C is essentially just translated in the flow, by roughly the vector vP ∆t if P is a point in the
middle of the segment. It therefore sweeps out roughly a parallelogram whose sides are the segment and the
vector vP ∆t.

The area it sweeps out is the product of base by height. The base is ∆s, and the height is the component of vP ∆t
perpendicular to the curve. We can even keep track of in and out motion if we make the height negative on the
inward side. But this (signed) perpendicular component is the dot product of vP ∆t with the unit normal unit
normal vector n to the curve at P .

∆s

v(P
)∆

t

n
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The total area swept out by the whole curve, and the change in area of the region, is therefore

∆t

∫
C

v(x, y) • n ds

and the rate of area change is ∫
C

v(x, y) • n ds

where we integrate in the counter-clockwise direction to get the signs right.

The two formulas we get for the rate of area change must agree. Therefore we get Gauss’ Theorem:
∫

R

div(v) dA =
∫

C

v • n ds .

In dimension one, a vector field is just a scalar function [f(x)]. The divergence is [f ′(x)]. The endpoints a and b
are moving in the flow at velocities f(a) and f(b). The rate at which the length is changing therefore f(b)− f(a).
The formula above becomes ∫ b

a

f ′(x) dx = f(b) − f(a) .

and Gauss’ Theorem is a kind of generalization of this.

3. Flux in 3D

In 3D Gauss’ Theorem becomes:

• If R is a 3D region and S its boundary surface, then
∫

R

div(v)(x, y, z) dx dy dz =
∫

S

v • n dA

The volume of R is changing because stuff is flowing through its boundary, and the integral is called the flux
integral of v over S.

In both 2D and 3D Gauss’ Theorem is largely a theoretical tool, since none of the integrals can be calculated easily
except in special cases. Here is a simple example. Suppose v(x, y) is the vector field [x, y] where r =

√
x2 + y2.

Let R be the inside of the unit circle around the origin. Then v points straight out at each point on the boundary
of R. Thus v • n is just the constant 1, and we have

∫
C

v • n ds = 2π .

Exercise 3.1. Suppose v is the 2D vector field [x, y]/rn. What is the flux integral of v over the circle of radius R
centred at the origin?

Exercise 3.2. Suppose v is the 3D vector field [x, y, z]/rn in 3D. What is the flux integral of v over the sphere of
radius R centred at the origin?

4. The first of Maxwell’s equations

Suppose we locate a point charge of magnitude µ at the origin. At any other point in space, according to
Coulomb’s Law, the electric field is inversely proportional to the square of the distance from the charge, and
proportional to the charge. In other words

E =
κµ[x, y, z]

r3
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for some constant κ depending on the choice of units.

Exercise 4.1. Calculate the divergence of E at a point where r 6= 0.

Let S be a sphere of radius R. Then on S the field vector E and n both point straight out. Therefore E • n is equal
to |E|, and the integral of flux is just the product of 4πR2 and κµ/R2, which is equal to 4πκµ, and in particular
is independent of the radius. How can we explain this simple fact? You can calculate that the divergence of E
vanishes everywhere except at the origin. Let R be the region between two spheres of radii R0 and R1. IOn the
inside sphere, the normal vector out of R points inwards, and on the outside it points outwards from the origin.
Therefore the integral over the boundary of R is the difference

∫
r=R1

E • n dA −
∫

r=R1

E • n dA =
∫

R

div(v) dV = 0

which means precisely that the two fluxes are the same.

In fact, the same calculation can give us two rather broad generalizations.
• If S is any single surface enclosing the charged particle, then the flux of E through S is 4πκµ.
• If S is any surface not enclosing the particle, then the flux through S is 0.

We can make up almost any electric field by assembling very very small charges. The field resulting from this
collection of charges will be the sum of all the fields from the different bits. If S is any single surface containing
all the charge, then the flux through S will be the sum of all the fluxes from the bits, so that the total flux will still
be 4πκµ if µ is the total charge. If S contians some but not all of the charge, then the result is more interesting.
The flux through S contributed by the charges outside S will be 0, and the total flux through S will be 4πκµS if
µS is the charge contained inside S.

Suppose we take S to be a very small surface around a single point P . The flux through S will be 4πκµS on the
one hand, and on the other, by Gauss’ Theorem, it will be equal to to the integral of the divergence of E over
the inside of S. This will be essentially the same as the product of volume volS and the divergence of E at P .
Therefore 4πκµS = div(E)volS or div(E) = 4πκ(µS/volS) or

• Maxwell’s first equation:
div(E) = 4πκρ

where ρ is the charge density at P .

There is no analogue of electric charge for a magnetic field—i.e. there is no such thing as an isolated positive
magnetic pole. Maxwell’s fourth equation formalizes this as
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• If B is the magnetic field, then
div(B) = 0

everywhere.

5. Technical remarks on the flux integrals

As has been remarked, it is not easy nor usually necessary to calculate explicit flux integrals, in either 2D or 3D.
Nonetheless it is a good idea to have a recipe for doing so—just in case.

In 2D: We are give the region R in the plane, with boundary C, and a vector field v(x, y). The boundary curve C
might be made up of several pieces. For each one, find a parametrization—i.e. a map t 7→ (x(t), y(t)) covering
the curve as t goes from t0 to t1. Then at any point the vector field v is v(x(t), y(t)). The tangent vector is
(x′(t), y′(t)), and the normal vector n is the rotation of this by −90◦, if we are traversing the curve so the outside
is to the right, and divided by its length

√
dx2 + dy2. This is [y′(t),−x′(t)]. the distance ds along the curve is√

dx2 + dy2. The two square roots cancel out (thank goodness).

The flux of v through C is then ∫ t1

t0

v(x(t), y(t)) • [y′(t),−x′(t)] dt .

Exercise 5.1. If v = [−y,−x] and R is the region of points at distance less than 1 from the point (1, 1), what is
the flux through the boundary of R?

In 3D: Here (s, t) 7→ (x(s, t), y(s, t), z(s, t)) will be a parametrization of S. The vectors

vs = [∂x/∂s, ∂y/∂s, ∂z/∂s]
vt = [∂x/∂t, ∂y/∂t, ∂z/∂t]

will be velocity vectors of the parametrization, pointing along the lines t = const and s = const, respectively.
If the orientation of s and t is correct then the normal vector will be the normalization of vs × vt. Again the
square-roots involved in this normalization and the formula for area cancel out, and the flux is

∫
S

v(x, y, z) • (vs × vt) ds dt .

This assumes that we have chosen s and t in accord with the right hand rule (which makes the cross product
point out).

Exercise 5.2. Let S be the doughnut of radius 1 around a circle of radius 2 centred at the origin in the plane
z = 0. Find a parametrization for that circle. Find a parametrization for S. Find a formula for vs and vt, and if
v = [x, y, z] find a formula for the flux of v through S.


