
Mathematics 266 — Spring 1999 — Part II

Chapter 5. Power series expansions

This chapter will explain how to extend Cauchy’s integral formulas to allow for more complicated singularities.

1. Isolated singularities and Laurent series

Suppose that f(z) is a complex differentiable function defined all around some point z0, but not necessarily at z0

itself. A typical example would be a negative power 1/(z− z0)n with n > 0. Then two things can happen: either
f(z) is in fact complex differentiable at z0, or something goes wrong at z0 and f(z) is said to have an isolated
singularity at z0. In either case, we can consider the restriction of f(z) to a circle |z − z0| = r for small values of
r. As long as r is small enough, f(z) will be defined and well behaved on that circle. If we parametrize the circle
by z(t) = z0 + reit then f has period 2π in t and we can expand f(z) in its complex Fourier series

f(reit) =
∞∑
−∞

cr,neint

where the coefficients cr,n will depend on r and are given explicitly, according to the general theory of Fourier
series, by the formula

cr,n =
1
2π

∫ 2π

0

f(reit)e−int dt .

In fact, we can express the coefficients cr,n in terms of a complex integral

cr,n =
rn

2πi

∫
Cr

f(z)
(z − z0)n+1

dz .

This is because if we parametrize the circle as z = z0 + reit so that dz = ireitdt we express the complex integral
as ∫

Cr

f(z)
(z − z0)n+1

dz =
∫ 2π

0

f(reit)
ireit

rn+1ei(n+1)t
dt

=
∫ 2π

0

f(reit)
i

rneint
dt

=
2πi cr,n

rn
.

By Cauchy’s First Integral Formula the complex integral

cn =
1

2πi

∫
Cr

f(z)
(z − z0)n+1

dz

does not depend on r! So we can now write the Fourier series as

f(z) =
∞∑
−∞

cr,neint

=
∞∑
−∞

cnrneint

=
∞∑
−∞

cnzn .
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This is called the Laurent series of f(z) at z0. If f(z) has no singularities then this series has only non-negative
terms and becomes the Taylor series

f(z) = c0 + c1(z − z0) + c2(z − z0)2 + · · ·

If the Laurent series has only a finite number of negative powers, then f(z) is said to have a finite pole at z0. If
The only negative power is 1/(z − z0), then the pole is called simple. If f has a pole of order N at z0 then

f(z) =
F (z)

(z − z0)N

with F (z0) 6= 0.

Exercise 1.1. Describe all numbers z such that ez = 1; ez = −1; ez = i.

Exercise 1.2. (a) Find all the places where
cos z = 0 .

Give solid reasons for your answer. (b) Tell the order of each zero. (c) Find the first three terms of the Taylor
series at those points. (d) Find the first three terms of the Laurent series of tan z at all of its singularities. (e) Tell
what the residues at those places are, too.

2. The Third Integral Formula

The main application of Laurent series is to calculate integrals of functions around singularities. Formally this is
very simple. We know that for n 6= −1

∫ z2

z1

(z − z0)n dz =
[
(z − z0)n+1

n + 1

]z2

z1

where z1 and z2 are points other than z0. In particular if C is a closed curve not passing through z0 then

∫
C

(z − z0)n dz = 0

even if n is negative, as long as it is not −1. Therefore we can also calculate

∫
C

f(z) dz =
∫

C

∞∑
−∞

cnzn dz =
∞∑
−∞

cn

∫
C

zn dz = c−1

∫
C

1
z − z0

dz = 2πic−1

if C winds around z0 once counter-clockwise. In other words, if C is a curve containing only the single isolated
singularity z0 of f , then the integral ∫

C

f(z) dz

depends only on the single coefficient c−1 in the Laurent series of f at z0. This coefficient is called the residue of
f(z) at z0.

More generally, if C contains isolated singularities z1, z2, . . . and C winds around them each once counterclock-
wise, then ∫

C

f(z) dz

is equal to 2πi times the sum of the residues at the singular points zn.
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3. Calculating the residue

Let’s look at a relatively simple example. Say

f(z) =
1

(z2 − 1)2

and C is the curve going from −2i around a semi-circle to 2i, then straight down to −2i. The only singularity
inside C is z = 1, so we have to calculate the residue of f(z) at 1. The calculation we do here will be fairly typical.

Step 1. We first write
1

(z2 − 1)2
=

1
(z + 1)2

1
(z − 1)2

=
F (z)

(z − 1)2

much as we would have to apply Cauchy’s Second Formula.

Step 2. We write down the first few terms of the Taylor series at z0 of the ‘good factor’ F (z). I recall that the
Taylor series of a function F (z) at z0 is

F (z) =
∞∑
0

cn(z − z0)n

where the coefficients can be evaluated in terms of the derivatives of F (z) at z0:

cn =
F (n)(z0)

n!

and in particular
c0 = F (z0), c1 = F ′(z0), c2 = F ′′(z0)/2 .

In our case we calculate
F (z) =

1
(z + 1)2

F (1) =
1
4

F ′(z) =
−2

(z + 1)3

F ′(1) =
−2
8

= − 1
4

F ′′(z) =
6

(z + 1)4

F ′′(1) =
6
16

=
3
8

so the series starts out

F (z) =
1
4
− (z − z0)

4
+

3(z − z0)2

16
+ · · ·

and the Laurent series for f starts out

f(z) =
1

4(z − z0)2
− 1

4(z − z0)
+

3
16

+ · · ·

which makes the residue −1/4. So the integral is

−2πi/4 = −πi/2 .
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Exercise 3.1. Write
a0 + a1x

b0 + b1x

as a power series in x, assuming b0 6= 0. (Hint: Write first the series for 1/(b0 + b1x), peeking at the remarks on
geometric series later on in this chapter. Then multiply.

Exercise 3.2. Write the first two terms of the power series of

a0 + a1x + a2x
2

b0 + b1x + b2x2

assuming b0 6= 0.

Exercise 3.3. If

f(z) =
P (z)
Q(z)

with P (z0) 6= 0 and Q(z0) = 0 but Q′(z0) 6= 0 then f has a simple pole and the residue is P (z0)/Q′(z0), as we
saw in the last chapter.

If P (z0) 6= 0 and Q(z0) = Q′(z0) = 0 but Q′′(z0) 6= 0 f has a pole of order 2. Find a formula for the residue at
z0 in terms of

P (z0), P ′(z0), Q′′(z0), Q′′′(z0) .

(Hint: Write Q(z) = (z − z0)2R(z0) and use the previous Exercise.)

Exercise 3.4. Find ∫ ∞

−∞

e−iax

(x2 + 1)2
dx

for all real numbers a.

Exercise 3.5. Find ∫
C

1
(z2 − 1)2

dz

where C is the circle of radius 2, oriented clockwise.

Exercise 3.6. Find ∫
C

1
(z2 − 1)3

dz

where C is the circle of radius 2, oriented clockwise.

Exercise 3.7. Do the last two problems by expressing the function as a power series in 1/z, and integrating term
by term.

4. Convergence

You learned in secondary school that the geometric series

1 + z + z2 + z3 + · · ·
converges to

1
1 − z

if |z| < 1. The same is true even if z is allowed to be complex! We can then write

1
z − z0

=
1
z

1
1 − (z0/z)

=
1
z

(1 + (z0/z) + (z0/z)2 + · · · =
1
z

+
z0

z2
+

z2
0

z3
+ · · ·

To be continued . . .


