
Mathematics 307|October 11, 1995

A vector calculator

In my section of this course I expect you to use a calculator program that runs on just about any computer,
including PC's but perhaps not Macs. It will do all sorts of standard operations with numbers, but it will also
implement certain vector and matrix operations. The base calculator is part of the public domain progarm
ghostscript, which is an implementation of PostScript, and I have added a certain number of routines to
it to make it easy to do the vector and matrix computations. There is one drawback to using ghostscript,
namely that it deals with real numbers of only very limited precision, about 6 digits. Therefore it is not a
very practical calculator. I wouldn't contemplate doing serious calculations with it. But the limited precision
will turn out to be an advantage for teaching purposes; it will force us to think about how limited precision
will a�ect what we are doing.

PostScript is a widely used programming language, although most computer users never see it|it is the
language in which computers communicate with laser printers, at least the ones at the high end. It is
capable of producing graphics and text of extremely high quality, although in this course most of you will
probably never see that capability. Nonetheless, it is a fairly cleverly designed language capable of just about
everything other programming languages are. It was designed, you might be amused to know, by a graduate
student in mathematics at the University of Utah who quit graduate school to found Adobe.

You can program in complicated ways in PostScript, but for most purposes in this course the necessity will
not arise. I have tried to write for you most of the complicated routines you will need. The advantage of
using a computer in this course is that you will be able to deal with matrices of a size that would otherwise
overwhelm you, and begin to look at real-life problems rather than the toy ones you would otherwise be
restricted to. I should mention, however, that PostScript is by no means an orthodox programming language
for our purposes, since it is not only of limited precision but also somewhat slow. Production programs are
usually written in C or Fortran, and run faster by a factor of at least several hundred.

How to use it

PostScript has one feature that will bother you at �rst. Expressions are calculated in what will seem a
backwards manner. If I want to calculate 4 + 3 for example I type

4 3 +

and will get the answer 7. In this it is like the calculators sold by Hewlett-Packard, as opposed to most of
the rest. This way of handling expressions is called Reverse Polish Notation or RPN for short. There are
several reasons why it is used in HP calculators, and also several but probably di�erent reasons why it is
used in PostScript, and yet other reasons why we are using it.

HP uses it because it uses fewer keystrokes than the usual method, and seems far more convenient once you
get used to it. PostScript uses it because expressions can be calculated much more e�ciently than with any
other scheme of program interpretation. We are using it because it is far simpler for me to con�gure for
vector algebra, and for you to use, than anything else available.

There are a number of technical things you will need to know to use the calculator e�ciently. (1) It is a
stack-based calculator. What this means is that whatever you type into the computer gets pushed into an
array of stu� as though you were stacking trays in a cafeteria, and stu� that you last put on is the most
accessible. (2) Operations will generally a�ect the things at the top of the stack only. Thus in the course of
the calculation above the stack looks like thus:



Vector calculator 2

4
4 3
7

In other words, data is entered on top of the stack, which grows as you do this, but the operation + replaces
the top two elements by their sum. Operations will generally remove their arguments and replace them by

the result. (3) Results will not appear unless you request them to. The actual appearance of your screen in
the course of this calculation is this:

GS>4 3 add

GS<1>

The <1> here means that there is a single thing on the stack, but isn't telling you what it is. Using the
macros I give you, you can then type print to see what is there:

GS<1>print

7

GS<1>

so the e�ect of print is to show you what is there without a�ecting it. If you type print when nothing is
actually there you will get a string of very intimidating stu�:

GS>print

Error: /stackunderflow in dup

Operand stack:

Execution stack:

%interp_exit --nostringval-- --nostringval-- --nostringval-- %loop_continue --

nostringval-- --nostringval-- false --nostringval-- --nostringval-- --nostringval--

--nostringval--

Dictionary stack:

511/547 0/20 27/200

Current file position is 5

GS>

which you should learn to ignore.

PostScript has most of the usual calculator functions to do arithmetic. For example, to �nd the length of
the vector (3; 4) you can go

GS>3 3 mul 4 4 mul add sqrt

GS<1>print

5.0

GS<1>

and to �nds its angle

GS>4 3 atan

GS<1>print

53.1301

GS<1>

Note that PostScript works with degrees!

To give you an idea of how the stack works, here is a picture of the stack as the �rst calculation proceeds:



Vector calculator 3

3
3 3
9
9 4
9 4 4
9 16
25
5

Commands you will use

The �rst category is made up of arithmetic operations and functions built into PostScript. I write the
stack left to right, bottom to top.

(�) add replaces a b by a+ b.

(�) sub replaces a b by a� b.

(�) mul replaces a b by ab.

(�) div replaces a b by a=b. If b = 0 you will get a long error message.

GS>4 0 div

Error: /undefinedresult in --div--

Operand stack:

4 0

Execution stack:

%interp_exit --nostringval-- --nostringval-- --nostringval-- %loop_continue --

nostringval-- --nostringval-- false --nostringval-- --nostringval-- --nostringval--

Dictionary stack:

511/547 0/20 25/200

Current file position is 7

GS<2>pstack

0 4

GS<2>

As you can see, after this error the original data 4 0 are left on the stack. (The command pstack shows you
everything on the stack, whereas print just shows you what's on top. Note that it lists the stack from top
on down.)

(�) abs replaces a by jaj.
(�) neg replaces a by �a.
(�) sqrt replaces a by

p
a; error if a < 0.

(�) sin replaces a by sin a, interpreting a in degrees (after all, the founder of Adobe didn't get his Ph. D.).

(�) cos replaces a by cos a, interpreting a in degrees.

(�) atan replaces a b by the angle (in degrees) that the vector (b; a) makes with respect to the positive x-axis.
Note the reversed ordering.

(�) exp replaces a b by ab. Keep in mind that e = 2:718281828 to more than enough accuracy.

(�) ln replaces a by loge a.



Vector calculator 4

The next group of commands display and rearrange the stack.

(�) == shows you what's on top of the stack but destroys it at the same time.

(�) dup makes an extra copy of the stack top: a becomes a a. Thus print is equivalent to dup ==.

(�) pstack exhibits the whole stack without changing it.

GS>1 2 3 pstack

3

2

1

GS<3>

(�) exch exchanges the top two items: a b becomes b a.

(�) n m roll rolls around the top n items by a shift up of m:

GS>1 2 3 pstack

3

2

1

GS<3>3 1 roll

GS<3>pstack

2

1

3

GS<3>

(�) clear takes away everything on the stack.

GS<3>clear

GS>

The next group has to do with arrays. An array is written in square brackets, for example [1 2 3]. Its
elements are numbered from 0 up. Items are retrieved from an array and placed into one by get and put.

(�) get replaces [1 2 3] 1 by 2.

(�) [1 2 3] 1 4 put puts [1 4 3] on the stack.

PostScript uses variables, although it may seem awkward at �rst. Assignments are made with the command
def.

(�) /X 3 def

means that X is a variable and sets it to 3. The term /X here means that we are referring to X as a variable
rather than to its current value. Variables can be almost anything. In particular routines in PostScript

are de�ned by def. The operation I call print is de�ned by the line

/print {dup ==} def

You can read from �les:

(homework) run

will run the �le homework as a PostScript program. Using �les rather than on-line typing will usually be
more e�cient, especially if errors are made.

In addition to the commands above, which are built into PostScript, I have added a few. They are stored
in the �le calc.inc so that in order to use them your calculations must �rst do



Vector calculator 5

(calc.inc) run

A vector in my scheme is an array of numbers. A matrix is an array of vectors, interpreted as its rows.

(�) vectoradd replaces two vectors by their sum.

(�) vectorsub replaces two vectors u v by their di�erence u� v.

(�) dotproduct replaces two vectors by their dot product (a number).

(�) matrixadd replaces two vectors by their sum.

(�) transpose replaces a matrix by its transpose.

(�) vectorscale replaces v c by the scalar product cv.

(�) matrixmul replaces two matrices by their product.

(�) matrixscale replaces m c by the matrix cm.

(�) elementswap removes u i j from the stack, swapping ui and uj. It swaps the rows of matrices as well.

(�) rowscale removes m i c from the stack, replacing the i-th row mi of m by cmi.

(�) rowsubscale removes m i j c from the stack, replacing mj by mj � cmi.

(�) identity replaces n by the n� n identity matrix.

(�) tworotation replaces � by the matrix

[[cos � � sin �] [sin � cos �]]

(�) twodet replaces the 2� 2 matrix m by its determinant.

(�) threedet replaces the 3� 3 matrix m by its determinant.

(�) twoinverse replaces the 2� 2 matrix m by its inverse.

(�) threeinverse replaces the 3� 3 matrix m by its inverse.

(�) gauss replaces a matrix by three other matrices by means of a version of Gaussian elimination. Exactly
what happens is complicated and will be explained in class.

In many of these routines, sizes have to agree, and if they don't a lot of junk will come spilling out onto your
screen:

GS>[1 2] [3 4 5] vectoradd

GS<1>clear

is OK but this is trouble:

GS>[3 4 5] [1 2] vectoradd

Error: /rangecheck in --get--

Operand stack:

-marktype- 4 6 5 [1 2] 2

Execution stack:

%interp_exit --nostringval-- --nostringval-- --nostringval-- %loop_continue --

nostringval-- --nostringval-- false --nostringval-- --nostringval-- --nostringval-- 0

--nostringval-- %repeat_continue --nostringval-- --nostringval-- --nostringval--

Dictionary stack:

511/547 0/20 25/200 4/4



Vector calculator 6

Current file position is 23

GS<6>

Error handling in various versions of PostScript behave rather di�erently, and none are very informative.
Best to clear the stack and start over when errors appear, although in time you will get to know some kinds
of simple errors well.

More routines will come along as the course goes on, such as crossproduct, inverse, solve, and some stu�
for �nding eigenvalues and eigenvectors.

Exercise. Try to write down a sequence of steps that replace a 3D vector by its length.

Exercise. Calculate the length of the 10 dimensional vector [1 2 3 4 5 6 7 8 9 10].

Example. If

A =

�
1 �2
2 1

�
; MF =

�
1 0
0 �1

�

then we calculate and exhibit AMFA
�1 by the sequence

/A [[1 -2][2 1]] def

/MF [[1 0][0 -1]] def

A

MF matrixmul

A twoinverse

matrixmul

print

Exercise. Calculate AMFA
�1 when

A =

2
4 1 1 1
1 �1 1
1 0 �2

3
5 ; MF =

2
40 0 0
0 1 0
0 0 1

3
5

Subroutines

I have said that you will not have to do any complicated programming with this calculator, but nonetheless
I imagine you will want to write your own subroutines to make calculations more e�cient. Subroutines in
PoscTscript are essentially just a way of replacing a long and often repeated sequence of steps by a word
or two. We have seen an example above:

/print { dup == } def

means that whenever you type print the computer will immediately replace it by the two commands dup
== in succession|in other words, print becomes a single word for a two-word sequence. To see something
a bit more complicated and more useful, let's write a routine to use in calculating cross-products|that is to
say, it will replace two 3D vectors on the stack by their cross product.

So we expect to start out with a template



Vector calculator 7

/crossprod { } def

and start to �ll in between the brackets { }. There are a few tricky items to handle, but you can just copy
them without understanding everything about why you are doing them.

First of all, since operations nearly always remove their arguments from the stack, if you want to reuse data
you must save it. So we begin our routine by naming the two vectors, say as U and V . It may happen that
somewhere else in your calculations you already have vectors named U and V which you don't want to lose
track of, so you want some local variables U and V . You make local variables in PostScript by using a
temporary dictionary. This is done by two lines at the beginning and end of the routine:

/crossprod {

2 dict begin

end

} def

which means that you are using a temporary dictionary which will hold two items.

We then want to assign the variables U and V to be the vectors which are sitting on the stack when the
routine begins. Thus at the beginning of the routine the stcak looks like this

[1 2 3][1 1 1]

We want to say something like /V [1 1 1] def but of course using what's at the top of the stack. This is
done in two lines like this

/crossprod {

2 dict begin

/V exch def

/U exch def

end

} def

The only tricky thing is that we have to use exch to get the assignments in the right format, and note that
since we place U and then V on the stack we de�ne them in apparent reverse order. At the end of these
de�nitions the two vectors have been removed from the stack.

Now we start to build up the cross product. It is going to be a vector so we surround the numbers we put
on by brackets [].

/crossprod {

2 dict begin

/V exch def

/U exch def

[

]

end

} def

Now we calculate the numbers themselves. Recall that the arrays U and V are (u0; u1; u2) and (v0; v1; v2)
since the numbering in arrays starts at 0. The �rst entry in the cross product is therefore u1v2 �u2v1 so we
write



Vector calculator 8

/crossprod {

2 dict begin

/V exch def

/U exch def

[

U 1 get

V 2 get

mul

U 2 get

V 1 get

mul

sub

]

end

} def

and to get all the entries, remembering to reverse sign in the middle:

/crossprod {

2 dict begin

/V exch def

/U exch def

[

U 1 get

V 2 get

mul

U 2 get

V 1 get

mul

sub

U 0 get

V 2 get

mul

U 2 get

V 0 get

mul

sub

neg

U 0 get

V 1 get

U 1 get

V 0 get

mul

]

end

} def

Finally, we can add some comments to make our routine easier to read|not by the machine, but by us!
Comments are begun by a %.



Vector calculator 9

% this routine replaces two 3D vectors on the stack by their cross product

/crossprod {

% use a local dictionary of two variables

2 dict begin

% call U and V the two vectors we are working with

/V exch def

/U exch def

% the first bracket in the answer

[

% the first entry

U 1 get

V 2 get

mul

U 2 get

V 1 get

mul

sub

% the second entry

U 0 get

V 2 get

mul

U 2 get

V 0 get

mul

sub

% not forgetting sign reversal

neg

% the third entry

U 0 get

V 1 get

mul

U 1 get

V 0 get

mul

sub

% final bracket

]

end

% what is now on the stack is [W0 W1 W2]

% which is the cross product U x V

} def

Exercise. Add this de�nition to your copy of the �le calc.inc. Use it to calculate the cross product of

(1; 1; 1) and (1;�1; 0).


