Mathematics 307—December 6, 1995

Determinants, areas, and volumes

If v and v are any two 2D vectors, they span a parallelogram. The geometric meaning of determinants is
related to the area of this parallelogram.

To understand the relationship exactly, we must first understand what an orientation of the paralellogram
is. An orientation is determined by the order in which the vectors u and v are specified. In the picture
above, the parallelogram is oriented positively because the smallest angle necessary to rotate u towards v
is positive. If it is negative the orientation is negative. If u and v lie on the same line, the parallelogram’s
orientation is undefined.

Proposition. The area of the oriented parallelogram determined by u and v is equal to the determinant of
the 2 x 2 matrix
My, =[u v]

whose columns are the coordinates of the vectors v and v.

In particular, the determinant vanishes precisely when u and v lie in the same line, or equivalently when u
and v are scalar multiples of each other.

The proof of the Proposition is essentially geometrical. We will start with the original pair v and v and
transform them by a succession of elementary operations in which we can understand exactly how bothe the
area and the determinant is modified. We begin with

Proposition. If A and B are two 2 x 2 matrices then det(AB) = det(A) det(B).
This is a messy but straightforward calculation.

Step (1) We shear the vector u along v so as to turn the parallelogram into a rectangle.
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The area remains the same, since a shear does not change the height of the parallelogram spanned by u and
v. The vector u is changed to upew = u + cv for some constant ¢, and vpey isn’t changed. So we change M, ,
to

[uter v]=[u v][i ﬂ

Because of the multiplication rule for determinants, the determinant doesn’t change either.

We can find ¢ explicitly:
uew

(u+cv)ev =0, ec=

vev

Step (2) We scale u and v to make them of unit length.

\

Areas get multiplied by the product of the two scaling factors a and b, which happen to be the inverse of
the lengths of u and v. But the new matrix is

lau bo]=[u v][g 2]

so the determinant also gets multiplied by ab.

Step (3) We can scale u by —1 if necessary to get the orientation positive.

u

The area changes sign, and the matrix gets multiplied on the right by

o

These last two steps can by combined into a single scaling.



Determinants and areas 3

Step (4) We rotate u and v so v lies along the z-axis.

We don’t change the area and the matrix gets multiplied by a rotation matrix

cosff —sind
sin cos fl
so the determinant doesn’t change either.

Step (4) At the end of this process, v and v span a unit square, and v lies along the z-axis. Tyhere are two
possibilities: either w = (0,1) or v = (0,—1). Here both the oriented area and the determinant are both
either &1, and in any event they agree.

Step (5) So we have changed the pair u, v into a pair where the area and the determinant agree, and we
have done this in such a way that the area and the determinant chnage equally as we proceed. Therefore
the area and the determinant were equal to begin with.

There is one simplification we might have made. We could have avoided the possibility of a negative
orientation at the end if we had allowed a negative scale factor of u in Step (2). What the description above
shows 1f we start with any matrix M we can find a vertical shear N, a diagonal matrix A, and a rotation
matrix K such that M NAK = I. Multiplying by inverses we get

M=K 1A 1N~

The inverse of a rotation is a rotation, etc. Therefore we have incidentally proved along the way:

Proposition. If M is any matrix then we can write
M = KAN

where N is the matrix of a vertical shear, A diagonal, K a rotation.

There is one problem we have overlooked. The procedure above works only if the vectors we start with are
linearly independent. Otherwise we find ourselves trying to divide by 0. In case they are dependent, the
Proposition remains valid, but a bit of fiddling is necessary in the argument to allow for vectors which are
0 after the initial shear.

What happens in 3D
The whole process works also in 3D, once we understand how to perform the original shear. So we are given
u, v, w and we want to find a shear that takes these into three mutually perpendicular vectors uy, vy, wy.

We can do this in stages: (1) first of all u stays the same:

Upe = U
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(2) Shear v by a multiple of u, to get Vi perpendicular to u,.
Ve = U — Cly,

where cu, is the perpendicular projection of v, onto the line through wu,:

Ve Uy
c= ——
Uy ® Uy

(3) Shear w, along the plane containing u, and v,:
Wy = W — AUy — bUs

and now au, + bv, 1s the perpendicular projection of w onto this plane so

W e Uy
a = s b:
Us ® Ux Vg ® Uy

W e vy

Thgis process works in any number of dimensions to change a given set of n linearly independent vectors to
a set of mutually perpendicular ones. If we start with u; for ¢ = 1 to n we get wu, ; where

Ux 1 = UL
_ U2 ® Uy 1
Ugg = Up — ———— Uy 1
Usx 1 ® Ux 1
_ U3 ® Usx 1 U3 ® Ux 2
Ug3 = U3 — ———— Uy ] — ———— Uy 2
Usx 1 ® Ux 1 Usx 2 ® Uy 2
u —u un'“*,l u un'u*,Z u un’“*,n—l u
*n — Un — — — —  Wx 1 — —  —  Ux2— - — —— WUx n—1
' Usx 1 ® Ux 1 ' Ux 28U 2 U p—1® Usn—1

This process is called Gram-Schmid orthogonalization. Again, it only works completely when the original
vectors u; are linearly independent.



