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Determinants, areas, and volumes

If u and v are any two 2D vectors, they span a parallelogram. The geometric meaning of determinants is
related to the area of this parallelogram.
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To understand the relationship exactly, we must �rst understand what an orientation of the paralellogram
is. An orientation is determined by the order in which the vectors u and v are speci�ed. In the picture
above, the parallelogram is oriented positively because the smallest angle necessary to rotate u towards v
is positive. If it is negative the orientation is negative. If u and v lie on the same line, the parallelogram's
orientation is unde�ned.

Proposition. The area of the oriented parallelogram determined by u and v is equal to the determinant of

the 2� 2 matrix

Mu;v = [u v ]

whose columns are the coordinates of the vectors u and v.

In particular, the determinant vanishes precisely when u and v lie in the same line, or equivalently when u

and v are scalar multiples of each other.

The proof of the Proposition is essentially geometrical. We will start with the original pair u and v and
transform them by a succession of elementary operations in which we can understand exactly how bothe the
area and the determinant is modi�ed. We begin with

Proposition. If A and B are two 2� 2 matrices then det(AB) = det(A) det(B).

This is a messy but straightforward calculation.

Step (1) We shear the vector u along v so as to turn the parallelogram into a rectangle.
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The area remains the same, since a shear does not change the height of the parallelogram spanned by u and
v. The vector u is changed to unew = u+ cv for some constant c, and vnew isn't changed. So we change Mu;v

to

[u+ cv v ] = [u v ]

�
1 0
c 1

�

Because of the multiplication rule for determinants, the determinant doesn't change either.

We can �nd c explicitly:

(u+ cv) � v = 0; c =
u � v

v � v
:

Step (2) We scale u and v to make them of unit length.

v

u

Areas get multiplied by the product of the two scaling factors a and b, which happen to be the inverse of
the lengths of u and v. But the new matrix is

[ au bv ] = [u v ]

�
a 0
0 b

�

so the determinant also gets multiplied by ab.

Step (3) We can scale u by �1 if necessary to get the orientation positive.

v
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The area changes sign, and the matrix gets multiplied on the right by

�
�1 0
0 1

�

These last two steps can by combined into a single scaling.
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Step (4) We rotate u and v so v lies along the x-axis.

v

u

We don't change the area and the matrix gets multiplied by a rotation matrix

�
cos � � sin �
sin � cos �

�

so the determinant doesn't change either.

Step (4) At the end of this process, u and v span a unit square, and v lies along the x-axis. Tyhere are two
possibilities: either u = (0; 1) or v = (0;�1). Here both the oriented area and the determinant are both
either �1, and in any event they agree.

Step (5) So we have changed the pair u, v into a pair where the area and the determinant agree, and we
have done this in such a way that the area and the determinant chnage equally as we proceed. Therefore
the area and the determinant were equal to begin with.

There is one simpli�cation we might have made. We could have avoided the possibility of a negative
orientation at the end if we had allowed a negative scale factor of u in Step (2). What the description above
shows if we start with any matrix M we can �nd a vertical shear N , a diagonal matrix A, and a rotation
matrix K such that MNAK = I. Multiplying by inverses we get

M = K�1A�1N�1 :

The inverse of a rotation is a rotation, etc. Therefore we have incidentally proved along the way:

Proposition. If M is any matrix then we can write

M = KAN

where N is the matrix of a vertical shear, A diagonal, K a rotation.

There is one problem we have overlooked. The procedure above works only if the vectors we start with are
linearly independent. Otherwise we �nd ourselves trying to divide by 0. In case they are dependent, the
Proposition remains valid, but a bit of �ddling is necessary in the argument to allow for vectors which are
0 after the initial shear.

What happens in 3D

The whole process works also in 3D, once we understand how to perform the original shear. So we are given
u, v, w and we want to �nd a shear that takes these into three mutually perpendicular vectors u�, v�, w�.
We can do this in stages: (1) �rst of all u stays the same:

u� = u



Determinants and areas 4

(2) Shear v by a multiple of u� to get V� perpendicular to u�.

v� = v � cu�

where cu� is the perpendicular projection of v� onto the line through u�:

c =
v �u�

u� �u�

(3) Shear w� along the plane containing u� and v�:

w� = w � au� � bv�

and now au� + bv� is the perpendicular projection of w onto this plane so

a =
w �u�

u� �u�
; b =

w � v�

v� � v�

Thgis process works in any number of dimensions to change a given set of n linearly independent vectors to
a set of mutually perpendicular ones. If we start with ui for i = 1 to n we get u�;i where

u�;1 = u1

u�;2 = u2 �
u2 �u�;1

u�;1 �u�;1
u�;1

u�;3 = u3 �
u3 �u�;1

u�;1 �u�;1
u�;1 �

u3 �u�;2

u�;2 �u�;2
u�;2

: : :

u�;n = un �
un �u�;1

u�;1 �u�;1
u�;1 �

un �u�;2

u�;2 �u�;2
u�;2 � � � � �

un �u�;n�1

u�;n�1 �u�;n�1
u�;n�1

This process is called Gram-Schmid orthogonalization. Again, it only works completely when the original
vectors ui are linearly independent.


