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The determinant

There are several ways to calculate the determinant, and it is not obvious that they all agree. For this
reason it is important to have a single de�nition of the determinant from one which one can deduce that the
di�erent ways to calculate it are valid.

Let 2
64
a1;1 a1;2 : : : a1;n
a2;1 a2;2 : : : a2;n
: : :
an;1 an;2 : : : an;n

3
75

be an n� n matrix. (The determinant is de�ned only for square matrices.) Then the determinant is de�ned
to be the sum of a certain number of terms, each with a � attached to it. Each one of these terms is the
product of n coe�cients from the matrix. How do we decide which coe�cients and how do we assign the
sign?

To get the terms, we choose one entry from each row, with the restriction that no two items come from the
same column.

For example, let's look at a 4 � 4 matrix. One way we might make these choices is by taking the �rst item
from the �rst row, the second from the second row, etc.

2
64
a1;1 a1;2 a1;3 a1;4
a2;1 a2;2 a2;3 a2;4
a3;1 a3;2 a3;3 a3;4
a4;1 a4;2 a4;3 a4;4

3
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which gives a1;1a2;2a3;3a4;4. But we might also choose, say, in this fashion

2
64
a1;1 a1;2 a1;3 a1;4
a2;1 a2;2 a2;3 a2;4
a3;1 a3;2 a3;3 a3;4
a4;1 a4;2 a4;3 a4;4

3
75

which gives a1;3a2;1a3;2a4;4. How many di�erent terms do we get in this way? We have n di�erent choices
possible from the �rst row, but having made that we have n � 1 choices from the second, then n � 2 from
the third etc. All these choices are independant of each other, so we get

n � (n � 1) � (n� 2) � � � � 2 � 1 = n!

all in all. That's a lot.

Any set of choices is determined by the sequence of columns we choose the items from. Thus in the �rst
example we get the sequence 1 2 3 4 and in the second 3 1 2 4. If i1 i2 i3 : : : in is this list then the corresponding
product is

a1;i1a2;i2 : : : an;in :

The only thing left to be decided is the sign to be attached to this in making up the determinant.

An inversion in a sequence i1 i2 i3 : : : in is a pair which are in the wrong order. The sign of the term
corresponding to the sequence is + if the number of inversions is even, otherwise �.

For example, in the sequence
1 2 3 4
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there are no inversions, so the sign is +. In the sequence

3 1 2 4

the inversions are
(3; 1) (3; 2)

so the sign is +. Therefore two of the terms in the sum making up the determinant are

a1;1a2;2a3;3a4;4 a1;3a2;1a3;2a4;4 :

There are 4! = 24 in all.

For 2� 2 we get the list

Sequence Inversions Sign Term
1 2 + a1;1a2;2
2 1 (2; 1) � �a2;1a2;1

and for 3� 3 we get the following list:

1 2 3 + a1;1a2;2a3;3
1 3 2 (3; 2) � �a1;1a2;3a3;2
2 1 3 (2; 1) �

2 3 1 (2; 1) (3; 1) +
3 1 2 (3; 1) (3; 2) +
3 2 1 (3; 1) (3; 2) (2; 1) �

Exercise. Fill in the last column of the previous table.

Exercise. Make a table of all 24 sequences of 4 numbers like the one above (but do not �ll in the last column).

Determinants and elementary row operations

We can use the de�nition given above to verify the facts mentioned earlier, and a few related ones.

(1) If we interchange any two rows (or columns) of a matrix, we change the sign of the its determinant.

Because the number of inversions changes from even to odd and vice-versa.

(2) If we multiply a row (or column) by a constant c we multiply its determinant by c.

Because each term in the determinant contains exactly one item from that row or column.

(3) If two rows or columns are the same, the determinant is 0.

Because there will be matching terms which cancel out.

(4) If we replace row (or column) entries ai;j in one row by bi;j + ci;j then the determinant is a sum of two
determinants, one with the bi;j and one with the ci;j.

Because each term in the determinant will have a term � � � (bi;j+ci;j) � � � which splits into a sum of two terms
� � �bi;j � � � and � � � ci;j � � �.

(5) If we add a multiple of one row (or column) to another, we don't change the determinant at all.

This follows from (2), (3), and (4).

(6) The determinant of a square matrix with all zeroes below (or above) its diagonal is the product of the
diagonal entries.

Because all but the diagonal term contains a 0.



The determinant 3

Determinants and volumes (again)

Any pair of vectors u, v in the plane, not lying along the same line, give rise to a parallelogram. This
parallelogram has an orientation � depending on whether u is rotated positively or negatively to get to the
direction of v.

For example, the pair

u =

�
�1
1

�
v =

�
2
1

�

gives this parallelogram

vu

which has orientation �. The oriented area of such a parallelogram is the product of its orientation and its
usual area.

If v1 and v2 do lie along the same line then they span a degenerate parallelogram which has volume 0.

Theorem. If u and v are a pair of vectors. then the oriented area of the corresponding oriented parallelogram
is the determinant of the matrix whose columns are u and v.

This is because we can use row reduction to calculate both the oriented volume and the determinant.

(1) If we swap the two columns we change the orientation and the sign of the determinant.

(2) If we multiply either of the vectors by a constant c we multiply both the determinant and the oriented
area by c (even if c < 0.

This operation just scales the parallelogram along one of its sides.

Example. In column reducing �
�1 2
1 1

�

we �rst multiply column one by �1. The matrix becomes�
1 2

�1 1

�

u is relaced by �u, and the �gure changes to

v

u
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(3) If we subtract a multiple of one column from another we do not change either the area or the determinant.

We just slide one side of the parallelogram parallel to itself, or shear the parallelogram (like sliding a deck
of cards).

Example continued. We next subtract twice the �rst column from the second. The matrix becomes�
1 0

�1 3

�

v is replaced by v � 2u, and the �gure becomes

v

u

We then multiply the second column by 1=3. The area gets multiplied by 1=3 also. The matrix becomes�
1 0

�1 1

�

v is replaced by v=3, and the �gure becomes

v

u
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Fnally we add the second column to the �rst. The area remains the same. The matrix becomes

�
1 0
0 1

�

u is replaced by u+ v, and the �gure becomes

v

u

Both the determinant and the area are equal to 1.

In other words, we have performed a sequence of operations on the matrix, and at each stage the area and
the determinant changed in the same way. At the end the two are equal. Therefore they were the same to
begin with.

The same thing happens in three dimensions: The determinant of a 3� 3 matrix is the oriented volume of
the parallelopiped spanned by its columns.

In three dimensions the orientation is determined by the right hand rule. That is to say, a triple u, v, w has
orientation + if they can be matched by this rule, and � if they can be matched by the left hand rule. The
e�ect of re
ection in a plane, for example, reverses orientation.

Practical calculation

The number n! grows very rapidly with n, and using the de�nition directly is an impractical way to calculate
determinants. The e�ect of row operations on determinants suggests abetter way. In e�ect, we use Gauss
elimination to write WM = LU , then get detM = detW�1 detL detU . The determinant of W is �1,
whereas that of L is 1, and the determinant of U is the product of its diagonal elements.


