Mathematics 307—October 25, 1995

Gauss elimination and row reduction II

I have been a bit careless about the best way to perform Gauss elimination on a matrix M so as to factor it.
I recall the setup. At the beginning we are given and $m \times n$ matrix M, and at the end we will have an expression

$$
W M=L U
$$

where W is an $m \times m$ permutation matrix, and L and U look like this, say, in the 4×4 case:

$$
L=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
* & 1 & 0 & 0 \\
* & * & 1 & 0 \\
* & * & * & 1
\end{array}\right], \quad U=\left[\begin{array}{cccc}
\# & * & * & * \\
0 & \# & * & * \\
0 & 0 & \# & * \\
0 & 0 & 0 & \#
\end{array}\right]
$$

although more generally all we can say of U is that it is in row-echelon form. The process works this way: at step i we will have partially calculated versions W_{i}, L_{i}, U_{i} of these factors with the property that

$$
W_{i} M=L_{i} U_{i}, \quad \text { or } L_{i}^{-1} W_{i} M=U_{i}
$$

To start with $W_{0}=I, L_{0}=I, U_{0}=M$. At every step W_{i} will be a permutation matrix, and L_{i} and U_{i} will be on the way to their final form: at step i the matrix L_{i} will look like the final L except that in columns $i+1, i+2$, etc. will still be the same as the columns of the identity matrix, and the columns of U_{i} will be in echelon form only up through the i-th column.

At step i we swap rows of U_{i} if necessary by choosing the pivot row, according to one of several criteria (according to magnitude of the first non-zero entry, if dealing with matrices in other than exact arithmetic). This gives us a matrix $U_{*, i}$. We apply the same swap $\sigma=\sigma_{i+1}$ to the rows of W_{i} to get the new W_{i+1}, and to the non-diagonal entries of L_{i} to get a matrix I'll call $L_{*, i}=\sigma L_{i} \sigma^{-1}$. Then as explained last time, we now have the equation

$$
\sigma L_{i}^{-1} W_{i} M=\sigma U_{i}=U_{*, i}
$$

or

$$
W_{i+1} M=\sigma W_{i} M=\sigma L_{i} \sigma^{-1} \sigma U_{i}=L_{*, i} U_{*, i}
$$

We now have to apply some more elementary row operations to U_{i}^{*} to get certain column entries to be 0 . This means we multiply $U_{*, i}$ on the left by a certain matrix Λ_{i+1}^{-1}. Thus Λ_{i+1}^{-1} is what we get by applying the same row operations to the identity matrix, or in other words it has entry $-u_{*, i, c} / u_{*, r, c}$ as entry (i, c), with $i>r$. Equivalently, we get Λ_{i+1} by applying the inverse row operation, so its (i, c)-th entry for $i>r$ is $u_{*, i, c} / u_{*, r, c}$. Then

$$
\Lambda_{i+1}^{-1} L_{*, i}^{-1} W_{i+1} M=\Lambda_{i+1}^{-1} U_{*, i}=U_{i+1}
$$

We then set $L_{i+1}=L_{*, i} \Lambda_{i+1}$, so we have

$$
W_{i+1} M=L_{i+1} U_{i+1}
$$

and continue on, as long as there remain columns or rows to consider.
In the 4×4 case for example we have

$$
L=\Lambda_{1} \Lambda_{2} \Lambda_{1}
$$

where the Λ_{i} have the forms

$$
\Lambda_{1}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
* & 1 & 0 & 0 \\
* & 0 & 1 & 0 \\
* & 0 & 0 & 1
\end{array}\right], \quad \Lambda_{2}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & * & 1 & 0 \\
0 & * & 0 & 1
\end{array}\right], \quad \Lambda_{3}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & * & 1
\end{array}\right]
$$

Example. Take

$$
M=\left[\begin{array}{rrrr}
-1 & 2 & 1 & 0 \\
2 & 4 & -1 & 2 \\
1 & 2 & -2 & 3 \\
2 & 3 & 4 & -1
\end{array}\right]
$$

Then in succession

$$
\begin{gathered}
U=\left[\begin{array}{rrrr}
-1 & 2 & 1 & 0 \\
2 & 4 & -1 & 2 \\
1 & 2 & -2 & 3 \\
2 & 3 & 4 & -1
\end{array}\right], \quad L=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad W=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array} 0\right. \\
0 \\
0
\end{gathered} 0
$$

Why we choose the pivot carefully

Let's solve the system of equations

$$
\left[\begin{array}{rrr}
0.001 & 2.000 & 3.000 \\
-1.000 & 3.712 & 4.623 \\
-2.000 & 1.072 & 5.643
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

where we assume we are using a calculator which only stores 4 significant figures. If we are not fussy about pivots, we get in succession

$$
U=\left[\begin{array}{cccc}
0.001 & 2.000 & 3.000 & 1.000 \\
0.000 & 2004 . & 4.623+3000 .=3005 . & 3001 . \\
0.000 & 4001 . & 5.643+6000 .=6006 . & 6001 .
\end{array}\right], \quad\left[\begin{array}{cccc}
0.001 & 2.000 & 3.000 & 1.000 \\
0.000 & 2004 . & 3005 . & 3001 . \\
0.000 & 0.000 & 5.000 & 8.000
\end{array}\right]
$$

which tells us that $z=0.6250$, whereas if we pivot carefuly we get $z=0.3670$, which is correct to 4 figures.

