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Angular motion and matrices

Three dimensional geometry is somewhat complicated, and 3D motion|even of rigid structures|is even
more complicated. Matrices help sort out the complications.

Angular velocity

Suppose that a point is rotating around an axis with a certain radial speed. The angular velocity ! of the
point is by convention turned into a vector according to the convention that the direction of the vector is
along the axis, oriented according to the right hand rule, and its length is the radial speed of the point. We
shall perhaps understand why this is convenient a bit later; it is not an obviously useful idea. It makes at
least some sense, however, because of this fact: If the point is located at position (x; y; z) and

r = x i+ y j + z k

then the actual velocity of the point is
v = ! � r :

Exercise. If a particle with position vector i � j + 2 k is rotating clockwise around the axis x = y = z
(clockwise as seen looking from this vector towards the origin) with a speed of 1r per second, what is its
linear velocity?

A priori all we know about the motion of a rigid body is that it doesn't change the shape or orientation of
the body, which means that it is essentially described by a special orthogonal matrix. To be a little more
precise, if we choose a very small unit of time �t then the transformation moving the body in that interval
will be a linear transformation not very di�erent from the identity transformation, and it will be special
orthogonal. We know, however, that any special orthogonal matrix is a rotation, and this means, if we take
the limit as �t ! 0, means that in fact at any given instant the body is rotating around an axis, which is
called its instantaneous axis. This axis will generally change, however, as time proceeds.

Exercise. Suppose that
T = I + 
�t+ terms of order �t2

is an orthogonal transformation for all t. What condition must 
 satisfy? (Hint. Write out tT T ).

Moments

If v is a vector applied at a position (x; y; z) and

r = x i+ y j + z k

Then the moment of v with respect to the origin is the cross product

r � v :

If the particle has mass m is moving with velocity v, then its (linear) momentum is the vector mv, and its
angular momentum with respect to the origin is the moment of its momentum, or in other words

r �mv = mr � (! � r)
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if ! is its angular velocity. This is the same as

m(r � r)! �m(! � r)r = m(r � r)
h
! �

! � r

r � r
r
i

which is the same as mkrk2 times the projection of ! onto the plane perpendicular to r. It is also
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The matrix

I(m; r) = m
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is called the moment of inertia matrix of the particle with mass m at position r.

Angular momentum is di�cult to understand. Let's consider some possible experiments in order to get a
better feel for it.

Fix two weights of mass m1 and m2 at the end of a light but strong rod. Assume in fact that the rod itself
weighs nothing, and that the masses are concentrated at the ends. Fix the rod on an axle, at an angle of
', at some distance along the rod, and at the centre of the axle. Rotate the axle with angular velocity !,
which therefore points along the axle.

The centre of gravity of the rod will be at location (`1; `2) on the rod, where `1 + `2 is the total length of
the rod, and

m1`1 = m2`2 :

If the rod is pinned down at an arbitrary point there may be forces tending to pull the whole axle out, but
if it is pinned to the axle at its centre of gravity, then the vector sum of all centrifugal forces will be 0, and
there will not be any overall pull on the system. This is not the same as saying these forces have no e�ect.

L

ω

Unless the rod is placed perpendicularly to the axle, or right along it, centrifugal force will push the ends
of the rod away from the axle. This will cause one end of the axle to be pulled out in one way, and the
other in the opposite direction. This e�ect is called torque. We shall see in a later section that torque is
related to angular momentum as force is related to the usual momentum. We shall see that the presence of
torque means that the angular momentum must be changing. Since the angular velocity is not changing in
this system, this indicates that the relationship bewteen angular velocity and angular momentum is more
complicated than that between the usual velocity and the usual momentum.

Angular momentum is a vector. Its length is not changing, but we shall see that it is rotating with the rod
to which the masses are attached.
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The angular momentum of the system is the sum of the angular momenta of its di�erent constituents. A
mass m at position r contributes a term equal to the quantity mkrk2 multiplied by the projection of !
perpendicular to r. If we have several objects in a structure, of mass mi and location ri, the total angular
momentum is therefore hX

I(mi; ri)
i
! :

The matrix sum
I =

hX
I(mi; ri)

i

is called the moment of inertia matrix of the structure. It is replaced by a matrix whose coe�cients are
integrals Z

(x2 + y2) dm; etc:

if the body is continuous.

The relationship between angular velocity and angular momentum is

L = I! :

The real point here is that the angular momentum does not necessarily point in the same direction as the
axis of revolution.

Suppose we ask the question: Under what circumstances will Land ! point in the same direction? This will
happen when L = c! for some constant c, which amounts to the equation

I! = c! :

This is just the equation satis�ed by an eigenvector with eigenvalue !, since it can be rewritten as

(I � cI)! = 0 :

In other words, the direction where angular momentum and angular velocity point in the same direction
are the eigenvector directions of the moment of inertia matrix I. These are called the principal axes of the
structure.

For explicit calculation:

I =

2
4 Ix;x Ix;y Ix;z
Iy;x Iy;y Iy;z
Iz;x Iz;y Iz;z

3
5

where
Ix;x =

X
mi(y

2

i + z2i )

Iy;y =
X

mi(x
2

i + z2i )

Iz;z =
X

mi(x
2

i + y2i )

Ix;y = Iy;x = �
X

mixiyi

Ix;z = Iz;x = �
X

mixizi

Iy;z = Iz;y = �
X

miyizi

The matrix I is symmetric. Its eigenvalues are always real, and in fact non-negative. The physics suggests
also the following fact: the principal axes of a system are always perpendicular to each other if the eigenvalues
are distinct, and may be always chosen to be mutually perpendicular. The matrix I depends on which
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coordinate system we calculate in. The simplest is that where the coordinate axes are the principal axes. In
that case the matrix I is diagonal.

The eigenvalue of I corresponding to a principal axis u is the moment of inertia around the axis u.

If we have a structure with principal normalized axes ui and eigenvalues �i, we can calculate the angular
momentum of the system in terms of angular velocity in the following fashion: resolve ! into components
!iui with respect to the principal axes, so that

! = !1u1 + !2u2 + !3u3 :

Then
L = �1!1u1 + �2!2u2 + �3!3u3 :

This is as close as we can come to understanding intuitively how angular momentum and angular velocity
are related. Note at any rate that the angular momentum moves with the structure, even if the axis of
revolution doesn't change.

Exercise. (a) Find the centre of gravity of a tennis racket. Assume it is constructed by adding a circle of
radius 10 cm to a thin handle of length 20 cm, and that the linear density is 1 gm=cm around the circle,
2 gm=cm in the handle. This calculation will use the sum of two integrals, one over each component.

(b) Find its moment of inertia matrix I with respect to its centre of gravity|its principal axes (clear) and
eigenvalues.

Exercise. Do the same for a system made up of three objects: (i) mass 3, location � i; (ii) mass 1, location
i+ j; (iii) mass 2, location i� j.

Free rotational motion

Torque is the moment of force
� = r� F :

Newton's Law F = ma can be expressed also as

F =
dmv

dt
:

and for three dimensional systems it can be supplemented by the equation

� =
dL

dt

which follows from it. We won't have to calculate torques explicitly, but the consequence we need is that
torque vanishes if and only if angular momentum is constant. If we throw a tennis racket into the air,
for example, force of gravity exerts no torque (neglecting the tiny torque exerted by the tiny change in
gravitational force with height). The centre of gravity of the racket follows a parabolic arc, and the racket
spins if it is started out spinning. But if the original spin is not along one of the principal axes, the axis of
revolution changes precisely because the angular momentum does not.
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Summary

A rigid structure moving in three dimensions has at any moment two minds of motion|translational and
rotational. The translational motion is controlled by the vector sum of forces acting on it, and the rotational
motion is controlled by the total torque � of the forces. The translational e�ect of forces is through Newton's
Law

F = ma = m
dv

dt
=

dmv

dt

which is relatively simple to understand, basically because it may be considered to act on the centre of mass
of the structure. The e�ect of the torque is to move the structure in a more complicated way. Torque acts
directly on the angular momentum L, and this is the reason angular momentum is an important concept.
Explicitly

� =
dL

dt
:

Angular momentum is not a simple concept to understand geometrically, however. The concept which is
relatively simple to understand is angular velocity !, and the angular momentum and the angular velocity
are related through the moment of inertia matrix

L = I! :

This relationship is simplest to understand if coordinates are chosen inside the structure in terms of the
principal axes, which are the directions of the eigenvectors of the structure.

Knowing what the angular velocity is at any moment will allow you to describe completely the rotational
component of a structure's motion. The transition from knowing velocity to �nding position amounts to
solving a certain di�erential equation; it amounts to integrating the angular velocity, but in a slightly tricky
way. What really complicates things is the somewhat circular fact that the torque on a structure is usually
a function of its position! This, however, is similar to the simpler theory of moving point particles in
complicated force �elds.


