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Practical mathods of �nding eigenvalues and eigenvectors

Recall that if T is a linear transformation, an eigenvector of T is a non-zero vector v such that T takes v into
a multiple of itself. The scalar multiple which occurs here is the associate eigenvalue. The only method for
�nding eigenvectors and eigenvalues which we know so far is this: if � is an eigenvalue for the eigenvector v
and A is a matrix for T then the system of equations

Av = �v; (A � �I)v = 0

has a non-trivial solution v, which means that the matrix A � �I must be singular, or equivalently

det(A� �I) = 0

Therefore the eigenvalues of T are the roots of the characteristic polynomial, and the eigenvectors are the
non-zero solutions of the system above.

This method works �ne for 2 � 2 matrices, but fails to be practical for ones of larger size, in the face of
inevitable roundo� errors. There are several reasons for this, but the most obvious one is that it will usually
be impossible to �nd a characteristic root exactly, so that the matrix A � �I will not usually be in fact
singular. There is as far as I know no reasonable way to get around this di�culty. There turn out to be
other reasons not to use this simple metod to �nd eigenvalues and eigenvectors: (�) a small amount of
roundo� error in the characteristic polynomial can lead to huge errors in �nding its roots; (�) this method
is completely impractical when the matrix is huge, as it often will be in real applications.

The upshot is that no good computer programs for �nding eigenvalues and eigenvectors proceed in this
fashion. There are a variety of practical methods implemented in current software. They are as robust and
e�cient as possible, but not easy to understand. After all, they have been developed over a period of at
least 40 years.

In this course I shall only attempt to explain some simple techniques. Better ones have much in common
with them, so the ones explained here are more instructive than they might appear. Their limitations, in
fact, only arise with matrices of much larger size than the ones we shall look at.

The power method

Let A be the matrix

A =

�
1 1
1 2

�

Its eigenvalues are � = 3=2 � p5=2, approximately 2:618, 0:382. Let v1 � (0:526; 0:851) be its �rst (nor-
malized) eigenvector, v2 � (�0:851; 0:526) its second. We know that A scales by a factor of �1 > 1 in the
direction of �v1, by a factor of �2 < 1 in the complementary direction. The point of the power method
is that if one applies A repeatedly to almost any initial vector, then as the number of repetitions goes up

the direction of the vector one gets will tend more and more towards the direction of an eigenvector whose

eigenvalue is largest in magnitude.

Here is a picture of what happens when we start with (0; 1).
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The picture suggests how to approximate the eigenvector v1. We start with a vector v0 chosen randomly,
apply A and normalize over and over again until we seem to be getting the same vector again on each
iteration | that is to say, until the process has converged to the number of decimal places we are working
with.

(1) Set v�;n = Avn�1. (2) Set vn = v�;n=kv�;nk.
In the example above, for example, we get

v v� = Av
[0:000000 1:000000] [1:00000 2:00000]
[0:447214 0:894427] [1:34164 2:23607]
[0:514496 0:857493] [1:37199 2:22948]
[0:524097 0:851658] [1:37576 2:22741]
[0:525493 0:850798] [1:37629 2:22709]
[0:525696 0:850672] [1:37637 2:22704]
[0:525726 0:850654] [1:37638 2:22703]
[0:525730 0:850651] [1:37638 2:22703]
[0:525731 0:850651] [1:37638 2:22703]
[0:525731 0:850651]

The only problem with doing this is that it is conceivable that we shallstart with a vector in the plane
perpendicular to v1. But in practice, because of rounding erriors, even this causes no problems. Besides, no
matter what happens we have to get some eigenvector in the end.

This method is something you'd never carry out by hand, but it works very well with even the simplest
programmable calculator. Once we have the eigenvector we want, we �nd its eigenvalue by applying A once
more and calculating the ratio of Au to u.

How fast this process converges depends on the ratio between the two largest eigenvalues | the larger this
ratio, the more rapid the convergence. In other words, the process has trouble separating eigenvectors for
eigenvalues which are very close. This is typical of all such processes, and re
ects a real di�culty which
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occurs when an eigenvalue has multiplicity greater than one. The convergence is at any rate linear: the

amount of work we have to do is roughly proportional to the number of accurate decimal places we want.

Once we have one eigenvector, how do we �nd others? In two dimensions the answer is very simple: the other
eigenvector is perpendicular to the one we have already. In higher dimensions we perform a more complicated
calculation called de
ation: we look at the linear transformation we get by considering the original one acting
on vectors perpendicular to the one we have found. They form a vector space of dimension one less than
the original. Then we continue on with decreasing dimensions. This process is conceptually simple, but
complicated by technical details. I will probably come back to this point later.

Jacobi's method

In contrast to the power method, Jacobi's method has no (apparent) geometric basis. But it is fairly e�ective,
and has generally faster convergence than the �rst method. Convergence is in fact quadratic which means
that we double at each stage the number of accurate decimals.

Given a symmetric matrixA, our ultimate goal is to �nd an orthogonal matrixX such thatXAX�1 = XA tX
is diagonal. It will be convenient if we have a name for the matrix XAX�1: it is called the conjugation

of A by X. If we have such a matrix, then we know that the eigenvectors of A are the columns of X�1;
since X is orthogonal, its inverse is its tarnspose, so the eigenvectors are the rows of X. The basic idea of
Jacobi's method (which was invented by the German mathematician Jacobi around 1830, in order to �nd by
hand the eigenvalues of a certain 7� 7 matrix occurring in the theory of planetary orbits) is to conjugate A
successively by very simple orthogonal matrices in order to make it closer and closer to a diagonal matrix.

The procedure depends completely on the simplest case, when A is 2 � 2. Here we can do everything
explicitly, using the quadratic formula for �nding eigenvalues, and a single linear equation in two unknowns
to �nd eigenvectors. In order to make it a bit easier to carry out the full Jacobi process, I recall what is
involved here, in a form best suited to Jacobi's method.

Suppose we are given a symmetric 2� 2 matrix

A =

�
a b
b c

�

We know that we can �nd

X =

�
cos � � sin �
sin � cos �

�

such that

X AX�1 =

�
�1 0
0 �2

�

There are several ways to �nd the matrix X, or equivalently c = cos � and s = sin �, but it pays to do it in a
slightly complicated way, in order to minimize roundo� errors, which can build up easily here since so many
calculations are carried out.

The rows of X are eigenvectors v of of A with kvk = 1, and since X is a rotation we know X if we know just
one of its rows. But there are still some choices to be made, since there are exactly four eigenvectors v of A
with kvk = 1.
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As the diagram illustrates, there will be exactly one eigenvector in the (shaded) region jyj � x, x > 0 unless
the eigenvectors lie on the lines y = �x. In Jacobi's method, it is this eigenvector, generally unique, which
we want to pick out. We shall next see some formulas for it.

We know that the �i are the roots of the characteristic polynomial

�2 � (a+ c)�+ (ac� b2) = 0

� =
a+ c

2
�
p
(a+ c)2 � 4(ac� b2)

2
=

a+ c

2
�
p
(a� c)2 + 4b2

2
=

a+ c

2
�
s�

a� c

2

�2
+ b

2

The eigenvector equation is
(a � �)x+ by = 0

so that an eigenvector is
x = b

y = �� a

=
c� a

2
�
s�

c� a

2

�2
+ b

2

which we can scale (dividing by b) to

x = 1

y = �� a

=
c� a

2b
�
s�

c� a

2b

�2
+ 1

= � �
p
�2 + 1; � =

c� a

2b

This makes sense only if b 6= 0, but in case b = 0 the original matrix is diagonal so there is no work to be
done. We have x > 0 here, and we have only to choose the sign of the square root to get jyj � 1. The best
formula for this involves a simple algebraic trick. The numbers

� �
p
�2 + 1
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are the roots of the equation
t2 � 2�t� 1 = 0

The two roots t1 and t2 of this equation satisfy

t1t2 = �1

Therefore if ti is a root, so is 1=ti. This means that

� �
p
�2 + 1 =

�1
� �

p
�2 + 1

But in this form it is easy to see how to choose the sign so as to get a number of magnitude at most 1. It
depends on the sign of �, since if � > 0 then � +

p
�2 + 1 � 1, while if � < 0 then it is � �

p
�2 + 1 that we

want. This can be summarized in the formula

y =
�sign(�)

j�j+
p
�2 + 1

where

sign(�) =
�

j�j
if � 6= 0, and if � = 0 can be taken to be either �1. Note that if � = 0 then y = �1, and this ambiguity
matches with the cases where the eigenvectors lie on lines y = �x. So we know how to get the eigenvectors
we want, and we must �nally normalize to get eigenvectors of length 1. Recalling that it is the rows of X
which are to be the eigenvectors, all in all we perform the sequence of calculations

� =
c� a

2b

t =
sign(�)

j�j+p1 + �2

c =
1p

1 + t2

s = ct

X =

�
c �s
s c

�

where t = �y in the discussion above. Recall again that if b = 0 then there is nothing to do! This recipe
will always give us c and s for the smallest possible angle �, which is a good idea since if we don't have to
rotate by a large angle we shouldn't. The variable t represents tan �, and these formulas, which are essentially
equivalent to the standard ones, work because of various trigonometric identities. The eigenvalues themselves
can �nally be obtained according to the recipe

� = a � bt

� = c + bt

so the calculations in the 2� 2 case are all easily laid out in terms of t.

As for the full Jacobi procedure, I will illustrate how it goes by an example. Let

A =

2
4 1 1=2 1=3
1=2 1=3 1=4
1=3 1=4 1=5

3
5 �

2
4 1:000000 0:500000 0:333333
0:500000 0:333333 0:250000
0:333333 0:250000 0:200000

3
5
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In each stage of Jacobi's method we will make two opposite o�-diagonal terms of our symmetric equal to
zero, a�ecting the others as little as possible. The entries we choose to make zero will be the largest ones.
In our example, those are 0:500. So we focus only on the 2� 2 matrix containing those terms. It is

� =

�
1:000000 0:500000
0:500000 0:333333

�

We �nd a 2� 2 rotation matrix � such that �A��
�1 is diagonal, say by applying the above formulas. Here

� =
c� a

2b
= �0:666667

t =
sign(�)

j�j+p1 + �2

= �0:535184
c =

1p
1 + t2

= 0:881675

s = ct

= �0:471858

� =

�
c �s
s c

�

=

�
0:881675 0:471858

�0:471858 0:881675

�

����1 =

�
1:26759

0:0657414

�

How do we use this 2� 2 rotation? We embed it into a 3� 3 rotation.

X =

�
� 0
0 1

�
=

2
4 0:881675 0:471858
�0:471858 0:881675

1

3
5

and then calculate

XAX�1 =

2
4 1:26759 0:411856

0:065741 0:063132
0:411856 0:063132 0:200000

3
5

Note that this new matrix is symmetric, and that its o�-diagonal entries are on the average somewhat smaller
than those of A. We shall see in a moment that we can make this assertion more precise.

We do the same thing again to this new symmetric matrix, which I'll call A1, to distinguish it from A0. So
far, we can write

A1 = X0A0X
�1

0

We make the entry 0:411856 equal to 0 now. We do this by looking at the matrix

�
1:26759 0:411856
0:411856 0:200000

�
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sitting at the corners of A1. We �nd

�1 =

�
0:946502 0:322698

�0:322698 0:946502

�

X1 =

2
4 0:946502 0:322698

1
�0:322698 0:946502

3
5

X1A1X
�1

1 =

2
4 1:40801 0:0203728
0:0203728 0:0657414 0:0597552

0:0597552 0:0595827

3
5

This is even closer to being diagonal. In the next stage we make the entry 0:0597552 equal to 0. Here

�2 =

�
0:725074 0:688671

�0:688671 0:725074

�

X =

2
4 1 0:725074 0:688671

0:688671 0:725074

3
5

A3 =

2
4 1:40801 0:0147718 �0:0140302

0:0147718 0:122497
�0:0140302 0:0028276

3
5

In the next step

�3 =

�
0:999934 �0:0114887
0:0114887 0:999934

�

Note that this is very close to an identity matrix, or a rotation of 0�. Then

A4 =

2
4 1:40818 �0:0140292

0:122327 :000161188
�0:0140292 :000161188 0:0028276

3
5

etc. In the limit we get

A1 =

2
4 1:40832 0:122327

0:00268735

3
5

There are some observations which can make this business a bit faster, but until you have tried a few yourself
they won't make much sense.

(�) Suppose at some step we are about to make zero the entries ai;j = aj;i where i > j. Then we �rst make
up a 2� 2 matrix �

aj;j aj;i
ai;j ai;i

�

and diagonalize it by means of some 2� 2 matrix

� =

�
c �s
s c

�

which we then make into an n� n matrix by embedding � into the four places where rows and columns i, j
intersect. We then multiply X on the left of A and X�1 on the right. There is no serious objection to just
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multiplying these out in the straightforward way, but a great deal of work can be saved through the following
observations: (�) when we multiply on the left by X, only rows j and i are a�ected. To be precise, the
entries xj;`, xi;` are replaced by the coordinates of the two dimensional vector we get by rotating it, which is

�
c �s
s c

� �
xj;`
xi;`

�

Furthermore, we don't have to make this calculation for ` = i or ` = j, since we know how these entries will
wind up. For n = 3, for example, we have just a single two dimensional rotation to calculate. (|) When we
multiply on the right by X�1, we only a�ect the columns i and j. But here we know in advance what we are
going to get, because we know the �nal result is going to be symmetric. So instead of actually performing
these calculations, we can just copy across the diagonal the entries we have already calculated. For 3 � 3,
for example, suppose j = 1, i = 2. Then we just set

a1;1 = �1; a2;2 = �2; a1;2 = a2;1 = 0

Then we calculate �
a1;3
a2;3

�
:=

�
c �s
s c

� �
a1;3
a2;3

�

and �nally set
a3;1 = a1;3; a3;2 = a2;3

(�) How to get the matrix X? We have

X = : : :X3X2X1X0

Again, keep in mind that the eigenvectors of the original A are the rows of X, not its columns.

(�) Why does it work? At each stage consider the sum of the squares of the o�-diagonal entries

�n =
X
i<j

a2i;j

Then in going from one stage to the next we kill one of the o�-daigonal entries ain;jn . Then

�n+1 = �n � a2in;jn

Thus �n decreases by a known amount in each stage, and it turns out that this does the trick. Why is this
identity tue? Precisely because, as I mentioned a moment ago, multiplying by Xi amounts to rotating the
rows of A. This concerns only o�-diagonal entries, except at one place, where we just mae the o� diagonal
entry 0. But rotation preserves the sums of squares of these pairs, so the change in the total sum of squares
of o�-diagonal enttries is just to subtract the entries made 0.


