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Matrices and quadratic functions II

The main points of the earlier discuss about quadratic curves

ax2 + bxy + cy2 = 1

were (1) the best way to draw it is to perform an orthogonal change of coordinates so that in the new
coordinates (x�; y�) it becomes

�x2
�
+ �y2

�
= 1

which is simple to draw; (2) in order to �nd the proper change of coordinates and the constants �, � we must
�nd the eigenvectors and eigenvalues of a certain symmetric matrix associated to the quadratic function.
The particular matrix that came up in that discussion had something to do with gradients. In this section
we shall see these points covered more formally, using a slightly di�erent idea in order to relate quadratic
functions to symmetric matrices. Furthermore, we shall see that something similar can be done in any
number of dimensions.

The quadratic function ax2 + bxy + cy2 is called homogeneous because all terms are of degree two. Other
quadratic functions might include some linear terms or constant terms, for example x2 + y, but I won't
consider those here. If we are given the (homogeneous) quadratic function Q(x; y) = ax2 + bxy + cy2 then
we associate to it the matrix

AQ =

�
a b=2
b=2 c

�
:

In other words, we lay the coe�cients of x2 and y2 along the diagonal and spread the coe�cient of xy into
two halves, each in one of the o�-diagonal locations. This choice is motivated by these two considerations:
(1) the matrix we get is symmetric; (2) the relation betwen the quadratic function and the matrix is that

Q(x; y) = ax2 + bxy + cy2 = [x y ]

�
a b=2
b=2 c

� �
x
y

�

as you can check for yourself by multiplying it out. In vector notation

Q(v) = tv AQ v

where v is a column vector.

It is extremely important to realize that this process gives essentially a new interpretation of matrices, at least
the symmetric ones. Another important thing to realize is that this way of constructing a matrix depends
on the coordinate system being used. The function Q(x; y) is something with an existence independent of
a choice of coordinates; it just asigns a number to each point of the plane, and if the point has (x; y) as its
coordiantes in the conventional coordinate system the value of this number is ax2+ bxy+ cy2. If we change
coordinates we shall get a new expression. If, for example we make a change of coordinates to (x�; y�) here
x� = 2x, y� = y=2 then the expression for Q in the new coordinates is

�x�
2

�2
+
�x�
2

�
(2y�) + (2y�)

2
=

x2
�

4
+ x�y� + 4y2

�
:

There is a fairly simple formula for changing coordinates in terms of matrix multiplication.

Proposition. If AE is the symmetric matrix associated to Q in the E-coordinate system and F is another

basis, then

AF = tF AE F :
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Compare this with the formula for changing coordinates for linear transformations:

AF = F�1AE F

The two formulas give the same result when it happens that tF = F�1, or in other words precisely when F
is an orthogonal matrix, or when we are making an orthogonal chnage of coordinates.

Since A is a symmetric matrix, we know that if we let F be a matrix whose columns are normalized
eigenvectors, then F will be an orthogonal matrix and F�1AEF will be diagonal, with entries equal to the
eigenvalues �, �. If we make this coordinate change, therefore, the new matrix will be

�x2
�
+ �y2

�

In making this coordinate change all formulas for distances remain the same, so we can read o� the exact
shape of the curve Q = 1 from the information we now have.

In particular: (1) if � and � are both positive, then the curve is an ellipse. Its axes lie along the lines of
eigenvectors, and the lengths of its semi-axes are 1=

p
�, 1=

p
�. (2) If one is negative and the other positive,

then we have an hyperbola. How it lies depends on which is positive. For example, the curve x2 � y2 = 1
looks like this:

The same ideas work in any number of dimensions.A homogeneous quadratic function looks like this:

Q(x1; x2; : : : ; xn) = q1;1x
2

1
+ q1;2x1x2 + � � �+ qn;nx

2

n

and corresponds to the matrix

AQ =

2
4 q1;1 q1:2=2 : : :
q1;2=2 q2;2 : : :
: : :

3
5

The way this works depends on which coordinate system we are using. The exact relationship between
coordinates, quadratic functions, and symmetric matrices is thus

Q(x) = txE AQ;E xE

If we change coordinates we have

xE = FxF
txE AQ;E xE = txF

tF AQ;E FxF

AQ;F = tF AQ;E F

To write Q in diagonal form we let F have a normalixed orthogonal set of eigenvectors as its columns.
But is important to realize that we can also use non-orthogonal changes of coordinates, and still get some
interesting information.

In 3D the equation Q(x) = 1 generally describes a surface. We have the following classi�cation:
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Sign distribution example surface type
+ ++ x2 + y2 + z2 = 1 ellipsoid
+ +� x2 + y2 � z2 = 1 one-sheeted hyperboloid
+ ++ x2 � y2 � z2 = 1 two-sheeted hyperboloid

I'm afraid they are a bit too complicated for me to illustrate here. Next year, perhaps.

Gauss elimination and symmetric matrices

The point is that if we have a positive de�nite matrix A we can apply Gaussian elimination to it to get

A = LD tL

where D has all positive entries, so we can take a square root and write

A = L�
tL�

where now L does not necessarily have 1's down the diagonal.

This can be used to solve the generalized eigenvalue problem

Kv = �Mv

where M is positive de�nite, by factoring M in this way and bringing the factors to the left.


