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Rotations in 3D

Specifying a rotation in 3D amounts to giving an axis and an angle of rotation. The axis must be given
an orientation in order to know the direction of the rotation. Conventionally, this speci�cation follows the
right hand rule, thumb pointed in the direction of the oriented axis, �ngers curled in the direction of positive
rotation. The simplest rotations are around one of the axes. For example, rotation around the z-axis �xes all
points on the z-axis and rotates points in the (x; y) plane according to a 2D rotation. Its matrix is therefore
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The �rst problem I'll attack here is: given the vector the vector u and the angle �, what is the matrix of the
rotation through angle � around the axis in the direction of u?

Suppose we choose a basis consisting of three vectors u1, u2, u3 chosen according to the following recipe: (1)
u3 is the vector u normalized: u3 = u=kuk, where kuk is the length of the vector u. (2) u1 is any vector of
length 1 in the plane perpendicular to u. (3) u2 = u3�u1. I will say in a moment how one can �nd u1, from
which u2 can be calculated. Then in the U -coordinate system the rotation looks just like rotation around
the z-axis, so MU is the matrix above. If we let U be the matrix whose columns are the coordinate vectors
of u1, u2, and u3, then the matrix we are looking for is

R(u; �) = UMUU
�1 = [u1 u2 u3 ]
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We have seen an example on the �rst homework.

A rotation preserves the lengths of all vectors, only changing their direction. It also preserves the angles
between any two vectors. Since the columns of R(u; �) are the images of the three vectors i = (1; 0; 0),
j = (0; 1; 0), k = (0; 0; 1) the matrix M of R(u�) has these properties:
(R1) Each column of M has length 1.
(R2) Any distinct pair of columns are mutually perpendicular.

Equivalently, a matrix is orthogonal when its inverse is its transpose, because the calculation of tXX involves
calculating all the various dot products of its columns.

Furthermore, a rotation preserves orientation in space (as opposed to a re
ection in a plane, which reverses
it). Whether a linear transformation preserves or changes orientation depends on its determinant. Any linear
transformation scales volumes by a factor equal to the absolute value of its determinant. Since a rotation
preserves orientation and does not change volumes, the matrix of a rotation also has this property:

(R3) The determinant of M is equal to 1.

A linear transformation is called orthogonal if it preserves the lengths of vectors and the angles between
them. It is called special orthogonal if it preserves orientation as well.

Proposition. A linear transformation is orthogonal precisely when its matrix with respect to the (x; y; z)
coordinate system has properties (R1){(R2). It is special orthogonal when it satis�es (R3) in addition.

What may not be so clear is why a linear transformation T is orthogonal if its matrix, say M , has these
properties. Suppose it does.
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Lemma. In these circumstances, if u and v are be any 3D vectors, then the dot product Tu �Tv is equal to
u � v.

The assumption on M is that this is true if u and v are any of the vectors i, j, k. Let u = (xu; yu; zu) and
v = (xv; yv; zv), so

u = xu i+ yu j+ zu k

v = xv i+ yv j+ zv k

T (u) = xuT ( i) + yuT ( j) + zuT ( k)

T (v) = xvT ( i) + yvT ( j) + zvT ( k)

Then
T (u) �T (v) = (xuT ( i) + yuT ( j) + zuT ( k))(xvT ( i) + yvT ( j) + zvT ( k))

= xuxvT ( i) �T ( i) + xuyvT ( i) �T ( j) + xuzvT ( i) �T ( k)

+ yuxvT ( j) �T ( i) + yuyvT ( j) �T ( j) + yuzvT ( j) �T ( k)

+ zuxvT ( k) �T ( i) + zuyvT ( k) �T ( j) + zuzvT ( k) �T ( k)

= xuxv + yuyv + zuzv

= u � v :

But now both lengths and angles are determined in terms of dot products, so if a linear transformation
preserves dot products it must preserve lengths and angles as well. Q.E.D.

Every rotation is an orthogonal linear transformation, and it is relatively simple to visualize how a rotation
acts on points in space. If we apply one rotation after another, possibly with di�erent axes, it is not so simple
to visualize the combined e�ect, although the combination certainly also preserves lengths and angles. It
may therefore be surprising to know that the combination is also a rotation. In fact:

Proposition. Every special orthogonal linear transformation is a rotation.

In other words, if M is a special orthogonal matrix then there exists an axis and an angle � such that the
linear transformation associated to M amounts to rotation of � around the axis. I shall explain exactly how
to �nd the axis and the angle.

The vectors on the axis are all �xed by a rotation. Therefore in order to �nd the axis we must see that there
is a line of vectors �xed by M , or in other words that 1 is an eigenvalue of M .

We know that every matrix has at least one real eigenvalue, and that it scales the corresponding eigenvectors
by that eigenvalue. We also know that there are two possibilities for M|either it has three real eigenvalues
or exactly one. If M preserves lengths, the only possible scale factor is �1. We argue by cases: (1) suppose
M has exactly one real eigenvalue. We know it is then similar to a matrix of the form
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where � is the single real eigenvalue. The determinant of this matrix is �, and since we are assuming M
special orthogonal, � = 1.

(2) Suppose M has three real eigenvalues equal to �1. If all three are �1, then the determinant of M is
equal to �1, again a contradiction.

Since M takes vectors on the axis to themselves, and it preserves angles, it takes vectors on the plane
perpendicular to the axis into other vectors on that plane. In other words, it acts a two-dimensional linear
transformation on that plane. So the original question about three dimensional linear transformations has
been replaced by one about two-dimensional ones.
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In other words, we now want to show that if T is a special orthogonal linear transformation in two dimensions,
it amounts to a rotation. This can be seen geometrically. Let e1 and e2 be two unit vectors in the plane,
perpendicular to each other. The transformation T must takes e1 into another unit vector since it preserves
lengths. So T rotates e1 by some angle, say �. It must take e2 into a unit vectors perpendicular to T (e1).
Since the determinant of T is 1, it preserves the orientation of the pair, so we must get T (e2) by rotating
T (e1) by 90�. In other words, T (e2) is obtained from e2 by rotating through � also.

Exercise. Find the axis and angle for the special orthogonal matrix
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