Mathematics 308—Fall 1996
Coordinate systems

The aim of this chapter is to understand how PostScript deals with coordinate systems. The user does his
drawing in user coordinates and PostScript renders them in page coordinates. It is important to understand the
transformation from one to the other. This part of PostScript is essentially mathematical, and rather elegant.

1. Summary of how to draw in PostScript

When you start a path, you put the command newpat h into your program. Then you set a current point with
the movet o command and put in a number of commands adding pieces to the path you want to draw, such as
lines or arcs of circles. Finally, you actually place the path on the current page with one of the three commands
stroke,fill orclinp.

There are several different parameters involved in how the path is drawn. The most important are colour (for us,
usually just a shade of grey), the line details, the clipping path and the transformation from the user coordinates to
page coordinates.

We already know about most of these. A few extra remarks:

Colour. You always start off with colour black, which is 0 in a scale from 0 to 1. If you are a Canadian nationalist
you can put a line

/ setgrey setgray def

and spell things the way you like. If you want to put the current shade on the stack you write
currentgray

so that if the current colour is either black or white the sequence

1 currentgray sub setgray

toggles it to the opposite shade.

Clipping. The clipping path sets a path outside which nothing is actually drawn. It gives you a kind of window
through which you will see your drawings. It is built like any other path, but replaces st rokeorfil | bycli p.
These are the only commands by which paths become part of your picture.

Line details. There are a number of other things you can specify—the width of lines, dash pattern, the way paths
are closed up, the way corners are rounded, etc.

Coordinates. In order to render pictures by programming commands, PostScript has to use a coordinate system of
some kind. Of course at some point it has to keep track of the actual physical dimensions on the page. These are
referred to in page coordinates. But it would be a great nuisance if you yourself had to do all the computations in
these coordinates, as you would have had to in early printer control languages. Instead, PostScript has as part of
its environment a set of data which relate user coordinates to page coordinates. This way, you will rarely know
exactly what points on the page are involved in your drawing because PostScript will handle the calculations for
you internally.

When you start up, you will in fact be using page coordinates. One unit of drawing is equal to 1/72 of an inch
on the page. This is for historical reasons—this unit is almost the same as a printer’s point, the unit used since
early in the history of printing to specify the size of letters on a printed page. Also, the origin of your coordinate
system gets mapped onto the lower left of the page, and the x and y axes are perpendicular, going along the sides
of the page.
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You can change these by using a number of commands, of varying complexity. The simplest are (1) scal e, which
changes the units in the  and y axes; (2) t r ansl| at e, which moves the origin; and (3) r ot at e, which rotates
the axes. You can combine these in any order to get more complicated changes, and you can also change the way
in which your paths are rendered at a lower level.

Some mathematics is necessary in order to understand how this works. We must first look at how a number of
geometrical features are specified in terms of coordinates.

2. Shears

A shear is a transformation of a 2.D figure that has this effect:

It is a bit hard to describe in plain language. Its effect can perhaps be best realized by thinking of the rectangle as
a side view of a deck of thick cards:

In other words it slides the components of a figure past each other, and it slides things further if they are higher.
From this picture it should be at least intuitively clear that

e Shears preserve area.

Roughly speaking this is because sliding a very thin piece of a figure doesn’t change its shape. The actual proof
that a shear doesn’t change area is also very simple:

The idea is that we lop off a triangle from one end and shift it around to the other in order to make a parallelogram
into a rectangle. The reason this works is because we can shift that triangle without distorting it. This reasoning
also shows that area = base x height. Of course we have to appeal to some more fundamental result to justify
this argument. A rigourous proof can be put together by discussing angles cut off by parallel lines. Ultimately it
derives from Euclid’s parallel postulate, but I won’t discuss this further.

There are different directions of shearing possible. The one above is called a shear along the z axis. And there
are degrees of shear possible. We can specify a shear along the z axis completely with a single number which
tells us how much the unit square is transformed. Its base remains fixed, and the top moves parallel to the =
axis. The corner (0,1) is moved to some point (a,1). Where is the point (z,y) moved to? The y coordinate
remains the same, and the horizontal distance moved (1) depends only the y coordinate; (2) is proportional to the
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y coordinate. Therefore (z,y) is shifted by (ay, 0) and gets moved to (¢ + ay, y). The effect can also be expressed

by matrix multiplication:
x| 1 af |z
y 0 1] [y] "~

e Shearing along the x axis is a linear transformation whose matrix is of the form

o 1]

Therefore

3. Matrices and linear transformations

I recall that a linear transformation is a transformation of points in the plane which takes a point (z, y) to a point
(z.,y.) whose coordinates are homogeneous linear functions of  and y. This means that

T, = ax + by
Y = cz +dy

for suitable coefficients a, b, ¢, d. Equivalently

Let

Another way of getting the matrix from the transformation is to keep in mind that
e If T is a linear transformation and A the matrix associated to it then the columns of A are the vectors which
T assigns to e; and es.

This is a simple calculation. Geometrically, this says that we can reconstruct the matrix of T' if we know what T’
doestothe unitsquare0 < 2 <1,0<y < 1.

4. Length

The most important mathematical result we need is that which says that in a coordinate system where z and y
are measured uniformly and in which the z and y axes are perpendicular to each other, the distance from the
origin to (z,y) is /22 + y2. This is just Pythagoras’ Theorem. In order to reinforce how important it is, and
because readers may enjoy working their way through proofs of it, | shall include a discussion of why it is true.
Of course, there are lots of different proofs of this result which been discovered in the more than 3000 years since
the formula was discovered. We shall see two here and a few more in the exercises.

We begin with the statement:
e For aright triangle with short sides a and b and long side ¢ we have & = a? + b2,

Proof by dissection

How satisfying a proof seems is to a large extent a matter of taste. The proofwhich | explain firstis the one | prefer
to all others. It interprets the assertion geometrically in the most direct way possible. We can make Pythagoras’
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assertion into a geometrical statement by constructing squares on the sides of the original triangle. The area of
the large square is then to be the sum of the areas of the smaller squares.

We can make this assertion more precise. Draw a straight line from the corner of the triangle where the right
angle occurs across the large square to its opposite side, where it meets that side at a right angle:

This line divides the large square into two rectangles, and a very explicit version of Pythagoras’ Theorem is that
the area of each of these is equal to the area of one of the squares. In other words, Pythagoras’ Theorem is proven
by dissecting the square of area ¢? into two smaller pieces of area a® and b2.

Thisclaimis proven by applying a succession of transformations to a smaller square to turn itinto its corresponding
rectangle, while preserving its area. In practice we’ll go backwards. First we shear the rectangle one way:
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We know that area is preserved. To understand this step better, we can follow it from a different angle:

Then we shear the figure again, rotating the whole picture once more to let us visualize it better:;
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We have sheared the rectangle into a figure which is definitely a rectangle, and which in fact appears to be a copy
of the small square. That it is one can be seen by using a rotation:

Of course the same sequence of transformations can be carried out for the other small square.
An algebraic proof

Consider the figure on the left below:
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The area of the whole figure is (a + b)?, which by algebra is equal to a* + b* + 2ab. But it is also

b
cz+4-%:cz+2ab.

Therefore ¢2 = a? + b2. This proof is apparently the oldest known.

This can also be rewritten as a dissection proof. We shift things around a bit, and then lay one of the diagrams
over the other. Start with the figures above and continue below.

5. Rotations

Suppose we rotate the point in the plane with coordinates (z, y) through an angle of 8. What are the coordinates
of the point we then get? The answer is

(zcos® —ysinh,zsinh + ycosh) .

This is a formula used repeatedly, in various guises and in many different circumstances throughout these notes.
I will offer three proofs of it.

The direct argument

First I will prove it directly from a geometrical argument.
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(z,9)

The first step is to drop a perpendicular from the rotated point onto the radius vector of (z,y).

rsinf

rcosf

What are the coordinates of the bottom of the perpendicular? Because we have rotated through an angle of  and
rotation preserves distances from the origin, the distance from the origin to the bottom of the perpendicular is

r cos 6, where r = /22 + y2? is the length of the original vector (z,y). The length of the perpendicular itself is

rsind.
% (z cos 8,y cos ) %/I

Since the triangle on the left is obtained from the one on the right by a simple scaling operation they are similar.
The ratio of the long sides is r cos 8 : , so the coordinates of the bottom of the perpendicular are (z cos 8,y cos ).

We now add a triangle to the picture;
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zsin

ysin@ (z cosf,ycosh)

It also is similar to the one of the triangles in the previous figure (the angle at its lower right is obtained by a
simple rotation from one of the angles in the smaller of those two), and since its long side is r sin 8 its bottom has
length z sin # and the left side length y sin 4.

But this tells us immediately that the z-coordinate of the rotated point is z cos 8 — y sin 4, and its y-coordinate is
ycosf + xsind.

If we take (z, y) to be the point (cos ¢, sin ¢) we get by rotating (1,0) through an angle of ¢, then on the one hand
we get the vector (cos(y + 8),sin(y + #)) that we would get by rotating (1,0) through an angle of ¢ + #, and on
the other the formula we have just proven gives a different expression. Therefore
(cos(p + 0),sin(p + 0)) = (cosp cos® — sinpsin b, cos psind + sin ¢ cos f)
In fact, the rotation formula is equivalent to the pair of trigonometrical formulas
cos(p + ) = cospcosb — sin psin
sin(p + 6) = sinp cos § + cos p sin b
Using linearity

Rotation is a linear transformation, which in geometrical terms means that if we rotate a parallelogram we obtain
a parallelogram. In algebraic terms it means that

R(u+v) = R(u) + R(v)

if w and v are vectors.
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Since the vector with its head at (z,y) is the vector sum of (z,0) and (0, y), linearity implies that the rotation of
(x,y) is the vector sum of the rotations of (x,0) and (0, y).

R(z,0) =( zcosf,zsinbh)
R(0,y) = (—ysinf,y cos )
R(z,y) = (zcosf — ysinh,zsinf + ycosf)

Once we realize that rotation is linear, we can read off its effect from its matrix. We can calculate its matrix from
its effect on the unit square. This can be easily seen in this picture:

Euler’s formula

This one involves on the face of it no geometry at all.
Values of the exponential function can be calculated by the formula

2 Z3 24 n

4 4
Z:1 JR— —_— e . e
=ittt

The series can be used to check how multiplication and exponents are realted:
’11]2 w3 Z2 23
e t? = (1+w+7+F+---) (l—i—z—}—?—i—g—l—---)
(w? + Z;UZ + 2?%) n (w® + 3w?z ;— 3wz? + 23) 4

=14+ (w+2z)+
:ew+z

This series makes sense even if z is a complex number, and we therefore useit to define ¢ in this case. If we set
z = 1z where 7 = /—1 then we get

e 14 z? iw3+:c4+ +i":c"+
el = jr— — 24 4,
2 6 24 n!
since
2=-1, #=i-i2=—i, i*t=1,

and therefore o
1 nisdivisible by 4

o 1 n=4m+1
T ) -1 n=4m+2
- n=4m+3
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The series for e** can be rewritten as

.’Ez Z’4 .’E3 . .’135
= (14 _... il — 4 2 ...
( > T )“(“’ 6 120 )
The series for the real and imaginary parts are the Taylor series for cos z and sin z. We therefore get
e'® = cosz +isinz

The addition formula remains valid for complex numbers, so

e+ = cos(z + y) + i sin(z + y)
= (cosz + tsinz)(cosy + isiny)

= (coszcosy —sinzsiny) + i(sinz cosy + cosz siny)
and we see again the trigonometrical formulas for the sum of angles.

6. Angles

The cosine sum formula has as an immediate consequence the cosine rule for triangles, which is a generalization
of Pythagoras’ Theorem.

C2

Let the side opposite the origin have length ¢. By ‘dropping’ a perpendicular from the origin onto this side we
decompose it into two pieces of length, say, ¢; and ¢,. Thus

2= (er + c2)2 = c% + cg + 2cic9

On the other hand the original angle 6 is decomposed into two parts 6;, 5. We know that
cosf = cos By cosfy — sin b, sin s

Finally, let y be the length of the perpendicular. By Pythagoras’ Theorem applied to each of the small triangles

and trigonometry

2 _ 2 2
ci=a" —y

c% =b2 —y?
c1 = asinf;
y = acosf
cy = asinfs

Yy = acosby
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so that
¢® = (a® — y?) + (b* — y*) + 2absin b, sin b,

a? 4+ b? — 2ab cos by cos Py + 2absin by sin b
=a? +b%* — 2abcosb

The cosine rule in turn relates angles to dot products.

e For vectorsu and v
uev = ||ul|||v|| cosb

where 8 is the angle between v and v.

If w and v are vectors, then they form two sides of a triangle. On the one hand, the square of the length of the

third side is
&

lu—v]* = [lu— vl [Ju— vl = [[ul* + [[o]|* — 2usv

and on the other, by the cosine rule, it is
[[ull* + [[o[|* = 2lul| [lv]| cos ®

so by comparison
wew = ul] o] cos

In particular:

e The dot product of two vectors is 0 precisely when they are perpendicular to each other.

7. Orthogonal matrices

An orthogonal matrix is one whose columns are of unit length and perpendicular to each other. Equivalently, K
is orthogonal if
‘KK=I=K'K

or in am equivalent formulation:
e s A matrix K is orthogonal when its inverse K~ isequal to its transpose 'K

Because rows of ‘K are the columns of K, and the entry z; ; in 'K K is therefore the dot product of the i-th
column with the j-th column.

The picture or a calculation shows that rotation matrices are orthogonal. Calculation shows it has determinant 1.

The converse is also true.

e A matrix is a rotation matrix if and only if it is an orthogonal matrix with positive determinant.
Suppose K to be an orthogonal matrix. This means that
‘KK =1
which means no more and no less than that the columns of K have unit length and are perpendicular to each
other. If vy is the first column, we can write it as (cos 8, sin 8) for some 6, which is possible for any vector of unit

length. The second column v, must be v; rotated £90°. But the condition on the determinant implies that the
sign must be positive.

8. Eigenvalues and eigenvalues

We need to recall some simple facts about solving 2 x 2 systems of equations.
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If Ais a2 x 2 matrix its transpose adjoint !A* is defined by the prescription

_ a1 a1.2 tAx _ a2 —a1,.2
A_[ ) 21, AT = ) ) .

a21 az2 —az,1 ai

A simple calculation shows that

tak _ det(A) 0
AT = [ 0 det(A)
so that if det(A) = 0a1,1a2,2 — @1,2a2,1 75 0 then
A_1 — 1 tA* — a2,2/det —(11’2/ det
det(A) —ay,1/ det azz/det|

In this case if we are given an equation Au = 0 we can multiply on both sides by A~ togetu = A~10 = 0.

If det(A) = 0 then both of the columns of A* are vectors u such that
Au=10

If A is not itself the 0 matrix at least one of these columns is not the 0 vector, and otherwise 4 annihilaites all
column vectors.

e If Aisa2 x 2 matrix then exactly one of these possibilities occurs:
(1) the matrix A is invertible, det(A) # 0, and the only vector annihilated by A is the 0 vector itself;
(2) the matrix A is singular, det(A) = 0, and there exists a non-zero vector u such that Au = 0.

An eigenvector of a linear transformation 7' is a vector v # 0 taken into a multiple of itself by T
Tv = M\v

for some scalar A. The scalar is called the associated eigenvalue. If M is the matrix of T’ then to find an eigenvector

|: :| A |: :| ’ ! |: :| '

(M =) =0

S

Since by definition an eigenvector is not 0, we must therefore have

This can be rewritten as

where I is the identity matrix

det(M — AI) =0.

If ;
u=[2 4]
then \ ;
M"‘I:[a_c d—)\]

and A must be a root of the characteristic polynomial

A —(a+d)A+ (ad —be) =0.
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The system of equations to determine the coordinates of an eigenvector is then

(a—Nz+by=0
ce+(d-ANy=0.

Since the coefficient matrix is singular, one of these equations is a multiple of the other, and we need to consider
only one of them. Most of the time we can set

z=b, y=(A—a).
Often we want eigenvectors of length 1, in which case we divide z and y by r = /22 + y2.

M:“ ;]

Example. Let

Its characteristic polynomial is
A2 —33+1=0

so its eigenvalues are 3/2 ++/5/2 = Ay, Az; numerically \; = 2.618034, X, = 0.381966. To find the eigenvectors

for A we solve
11 z| A\ T
1 2| |y| y

1-XNz+y=0.

and get the eigenvector equation

Explicitly, the eigenvector for A; is
0.525731
0.850651

If M is a matrix and vy, vo are eigenvectors for M with eigenvalues Ay, A2 then
M’Ul :)\1’01, M’Uz :/\2’02 .
If we make up a matrix V whose columns are the v; then

0

A
MV =M[v; v2]=[Mvy Muvy]=[Av1 Av2]=[v1 112][01 Ay

] _ VD
and
M=VDV~!t.

In this course, with perhaps a few exceptions, the matrix M will be symmetric. If

a b
u-s
then its eigenvalues are
a+c (a —¢)? + 4b2

+
2 2

and are both real. To avoid problems with rounding we calculate one root A by this formula, the one where the
sign of the square root is the same as the sign of a + ¢, and calculate the other as det /.

9. Scaling



Coordinate systems 15

A scale change along the z and y axes is a transformation which multiplies all z coordinates by one factor and all
y coordinates by another. Since it takes (z,y) to (az,by). it has a matrix of the form

K

There are other scale changes. The most general possible ones are those which change scale along some pair of
orthogonal axes.

How can we find the matrix of a general scale change T'? Let v and v be orthogonal vectors of unit length and
positive orientation along the axes of the scale change. Then

U,y U2,y

R = [’Ul ’02] = |:U1’w ’UZ,;D:|

is a rotation matrix, say for angle 6. Suppose T scales along the line through v by a and along that through v,
by b. To find what the matrix of T is we must find what it does to the vectors e; and e5? Then by definition of

coordinates we have
vy = (cos@)e; + (sinf) ey

vy = —(sinB) ey + (cosf) ey

or
e1 = (cos@) vy — (sinf) vy

ez = (sinf) vy + (cosf) vy

Therefore
Te; = a(cosf) vy — b(sinb) vy

Tez = a(sinf) vy + b(cosf) vy
We now substitute for v; and v, in terms of e; and e2. The final result is very simple:

e If T is a scale change whose axes are the columns of the rotation matrix R with scale factors a and b then the
matrix of T is

Mp = RAR™!
where
a 0
Y
The matrix My is symmetric since
Mr=RAR!
=RA'R
‘Mr = R'A'R
=RA'R
=My .

Conversely, if M is a symmetric matrix it has real eigenvalues and we can find orthogonal eigenvectors. The linear
transformation associated to M will be a scale change along the axes determined by its eigenvectors. Therefore
the matrices of scale changing transformations coincide exactly with the symmetric matrices.

Some of them will scale by positive factors. The ones we shall meet will generally arise in the same way.

o If M is any matrix then the matrix M M is symmetric and has non-negative eigenvalues.
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The proof hinges on a fundamental equation involving dot products and matrix transposes. If v and v are column
vectors of dimension 2 then their dot product can be expressed also as a matrix product:

_ _ Ui | _ ¢
uev = uyvy +uvy = [ur  uz| v | = 0V
2

If w is an eigenvector of ‘M M with eigenvalue ¢ then M Mu = cu. But then
‘M Mueu=cueu = clul?
on the one hand and
MueMu = ||Mu||2

on the other. But if
| Mul]® = ¢ Jul|?

then since « cannot be 0, ¢ must be non-negative.

10. Factoring linear transformations

The key result in this section is this:

o Any linear transformation can be written as a composition By SR, ! where R, and R, are rotations and S is
a scale change along the x and y axes.

I shall prove this by finding the matrices of all these transformations explicitly. It is a somewhat messy computa-
tion.

It depends on being able to find eigenvalues. There is one case which is straightforward, and that is where M is
symmetric. In that case
M = RSR™

where S is a diagonal matrix with entries are the eigenvalues of M and the columns of R are its eigenvectors.
The matrix R can be chosen to be a rotation matrix, in which case B! is also one.

Let M be an arbitrary invertible matrix. If we could write
M = R,SR;!
where the R; are rotations, then i = S so
‘M M = R,S'R; R\ SR, " .
Recall that((AB) = 'B'A. Since 'Ry Ry = I, we also have
‘M M = RyS’R," .

This means that the columns of R, are the eigenvectors of *M M and that the entries of $? are the squares of its
eigenvalues.

This suggests how to start with M and find the R; and S. Let M be an arbitrary matrix. If we write
t _Ja el fa b] _[a®+b* ac+bd
MM_[b d] [c d]_[ac—l—bd A+ &2

we see that the matrix tM M is symmetric. We know already that it has non-negative eigenvalues. Therefore we
can write
‘MM = RyDR;"!
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where the columns of R, are the eigenvectors of tM M. We know that the eigenvalues of M, the diagonal entries
of D, are non-negative, so we can write D = S§% with § diagonal. There is a choice of sign—if det M < 0, choose
one sign along the diagonal of A negative. This ensures det S = det M. We now want

M = R,SR,!

so we set
R, = MR,S™'.

| claim that R; is a rotation matrix.

We apply the earlier result. The determinant of R, is positive because determinants multiply and
det Ry = det Sdet R ' det M = det S det M
and because of the choice of signs of S. Furthermore

R{'R, ='RR, =S 'R;''MMR, SS'R;'R, S?R;'R, S=1I.

Note that all these steps can be carried out explicitly, if painfully.

e[z}

Summary. Let

(1) Calculate
a’? +b> ac+bd

i _
MM = ac+bd 2 +d?

A B
]:[B C], D = det(*M M) = AC — B*.

(2) Let A be one of the eigenvalues

V(4 24D

}\:A+C+ (A+0) '
2 2

(3) Let

z=DB, y=A—-A4, r=+z2+y? u:[m/r]

y/r
so that « is a normalized eigenvector of tM M, and let
_|-y/r
o=
be v rotated by 90°.
(4) Let

Ro=[u o], sz[‘/X 0 ]

0 det(M)/VX

Then calculate
R, =MR,S'.

We have M = R; SR; .

Example. Suppose we are given the matrix

01
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Then
‘ |11
MM_[12 .

Its characteristic polynomial is
A _32+1=0

so its eigenvalues are 3/2 + \/5/2 = A1, Ag; numerically A; = 2.618034, A2 = 0.381966. The eigenvector for X is

0.525731
0.850651
which makes
R, — 0.525731 —0.850651
27 10.850651 0.525731
and
g = 1.618034 0.000000
~ 1 0.000000 0.618034
Finally

B — MRS — [0.850651 —0.525731]
1 — 2 -

0.525731  0.850651

A consequence of this factorization:

e A linear transformation changes areas by a factor equal to its determinant. It preserves orientations if and
only if its determinant is positive.

This is because any linear transformation can be factored as above, and determinants and volume change factors
multiply under composition.

11. Affine transformations

Suppose given two planes, each with rectangular coordinates. If A isa 2 x 2 matrix and (7,7, ) a vector in the

y y Ty

is called an affine transformation. In short, an affine transformation is a linear transformation followed by a vector

translation.
a b
=t 3)

x u| _|ax+by Ta
[?J - M - [cde] " [Ty

e If A is an invertible matrix, then this transformation is invertible.

Explicitly, if

then this map takes

_ |ax+by+ T,
Tlext+dy+Ty|

This is because we can solve
u=ar+by+ 7,

v=cr+dy+T,

or
ar +by=u—T1,

cx+dy=v -1,
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for (z,y) if we are given (u,v). In terms of matrices if

then

so that the inverse is also an affine transformation.
e An affine transformation takes lines to lines.

Zo p zg +tp
t t =
” [yo] i M [yo +t4]
that is to say going through (e, ¥ ) in the direction (p, ¢). Then T goes through
[l
Yo Ty
A [p ] .
q

Affine transformations can be characterized in completely geometric terms as maps from one plane to another
which take lines to lines. But this is a subtle fact. | explain it an appendix to this section.

Let £ be a parametrized line of the form

in the direction

12. The transformation matrix in PostScript

Implicit in PostScript drawing are two coordinates, user coordinates and page coordinates. When the programmer
draws a line from one point to the other he specifies their coordinates in the user system, and then PostScript
renders them into positions on the page. The transformation it applies to go from user coordinates to page
coordinates has, in general, no other property than that it takes straight lines to striaght lines. It can be an
arbitrary affine transformation.

It is represented in PostScript by an array of six elements
[abcdtxty]

representing the matrix A and translation vector 7. Itis called the Current Transform Matrix or CTM for short. The
conventions of interpreting these coefficients are a little different from what we are used to, however, because

e In PostScript all vectors are row vectors and matrices are applied on the right.

This is acommon problem in computer graphics, where the community seems about evenly divied between row
and column interpretation of vectors. Thus the effect of the CTM on coordinates (z,y) is to change them to

ER M RIS

This is something to be careful about, but shouldn’t cause serios difficulties. In PostScript it is justifiable because
after all it does calculations backwards anyway.
The CTM is modified by the commands r ot at e,t ransl at e,and scal e as well as others.

(o) The effect of the sequence
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sX sy transl ate

istochangethe CTMto[a b ¢ d tx+sx ty+sy].

(o) The effect of

sX sy scale

is to change the CTM by multiplying its linear component A (the 2 x 2 matrix) by a diagonal matrix:

i 2]

0 sy

(¢) The effectof rot at e is
A»—>|: cosf smﬁ]A

—sinf cos@

To understand this, keep in mind that the matrix of a rotation by 8 is

—sinf cosf

[ cosf sinH]

If this is different from what you are used to it is because here matrices act on the right.

Any affine transformation can be represented as a linear transformation in three dimensions. We do this by
identifying the (z,y) plane with the plane z = 1 in three dimensions. The matrix

a b 0
d 0
Te Ty 1

takes this plane to itself, and has the same effect on x and y coordinates as the corresponding affine transformation
does. To see this, calculate
[ a b 0-|
[z y 1]lc d O

e 7 1]

This representation has the virtue that the composition of transformations corresponds to the multiplication of
matrices. There is a PostScript command which does exactly that for you.

() The sequence
[abcdtxty] concat

replaces the CTM by the matrix product

if we think of the CTM as a 3 x 3 matrix.

It is also possible to set the CTM directly instead of just modifying it, but this is such a terrible idea that | won’t
tell you how to do it.

In general, it is not a good idea to use concat as opposed to applying a succession of translations, scale changes,
and rotations. There is no loss of flexibility. Itis an easy consequence of the factorization of linear transformations
that one can also factor affine transformations:

e Any affine transformation can be represented as a composition of rotations, scale changes, and translations.
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Still, it is at least conceivable that you might want to apply a shear to your picture, in which case concat is what
you should use.

13. Ellipses

An ellipse is what you get when you scale a unit circle in perpendicular directions, along axes through its centre.
Accordng to this definition, a circle is to be considered as a special kind of ellipse.

The data specifying an ellipse comprise the original circle, or equivalently the centre of the circle, together with
the scaling factors and axes. Unless the ellipse is a circle, these data are uniquely determined by the ellipse. If
we start with the unit circle and scale it, rotate it, and then translate it, we can obtain any given ellipse. Since any
affine transformation can be obtained a composition of such operations, its effect on any circle will be to produce
an ellipse. This is not quite obvious—for example, if you shear the unit circle along the z-axis it is true that you
will get an ellipse, but the axes of this ellipse are not at all easy to calculate, and in fact it is not at all clear a priori
that the figure you get has any axis of symmetry much less two orthogonal ones.

For example since

1 1| ]0.850651 —0.525731| |1.618034 0 0.525731 0.850651
0 1| [0.525731  0.850651 0 0.618034 | | —0.850651 0.525731

it takes the unit circle to an ellipse with major half-diameter 1.618034, minor half-diameter 0.618034, and whose
major axis goes through (0.850651, 0.525731) and has an angle of about 32° with respect to the z-axis.

Incidentally, you draw circles in PostScript with the command ar c. The sequence

1 0 noveto
0 0 10 0 360 arc
stroke

draws a circle (an arc from 0° to 360°) of radius 10 with centre (0,0). The command ar ¢ has what at first sight
is a peculiar property—it adds the arc to any current path, so that in order to avoid an extra straight line in your
picture you may have to move to the initial point of the arc. We shall see later that this apparent peculiarity is
actually a natural way to implement curve drawing.

Exercise 13.1. The ellipse above was made with concat and then drawing a circle. Write a few lines in PostScript
which will draw the complete ellipse and its axes.

Exercise 13.2. In the proof of the angle-sum formula using Euler’s formula there wasn’t any apparent geometry.
This is impossible, and there must be some hidden somewhere. Where exactly?
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Exercise 13.3. If we are given two sets of three points each in the plane, and each set of three is non-collinear, then
there exists a unique affine transformation taking one to the other. Write down in your own words a sequence of
calculations that will find it.

Exercise 13.4. Find the unique affine transformation explicitly when the first three are (1,1), (-1,2), (1,3) and
the second three are (1, —1), (2,3), (2, —2). Express it in PostScript form (as an array of 6 elements, acting on the
right). Also write down the 3 x 3 matrix corresponding to it.

Exercise 13.5. The following three pictures accompany two proofs of the Pythagoras theorem. (The first is from
the proof of Proposition 47 in Euclid.)

Write proofs to match the pictures. Your proofs should not label points and lines unless absolutely necessary.
Instead, | want you to use colouring schemes and lots of drawings to explain what is going on.

There are three diagonal lines which seem to intersect towards the middle of the triangle on the left. Do they in
fact intersect, or is it only an artifact of the drawing? Reasons?

Exercise 13.6. Here is yet another picture for you to translate into a proof of Pythagoras’ Theorem. The first trick
is to find the triangle!




