Mathematics 308—Fall 1996
Basic PostScript

PostScript is a programming language which is stack-based and interpreted. It is primarily used for graphics
and text-processing, but in fact it is a general programming language, somewhat reminiscent of the one used to
program HP calculators, It can be used as a simple calculator without trying to draw anything at all. There are
several interpreters available for it. Some are included in various program packages from Adobe, the company
that introduced PostScript. These run on all platforms and look beautiful, but they cost money. There is also
one in the public domain called ghostscript, which is available on a variety of machines, including PC’s running
MSWindows and recent Macs. Once installed, ghostscript is called by typing gs.

1. Reverse Polish notation

Calculations in PostScript take place according to the conventions of reverse Polish notation or RPN, which means
that

e In PostScript operators are applied to the numbers just preceding them.

For example, the simple expression 3+ 4 becomes in RPN 3 4 +. This notation has the advantage that it eliminates
the need for parentheses. Here are some more simple examples:

Expression RPN form

3+ 12 312 +

3-12 3 12 -

3% 12 3 12 %

3/12 312/
(84+5)*7 85 + T %

7T+ (84 5) 785 + x

3+ 7% (5+8) 3758 + * +

One curious fact is that all forms of calculation probably take place implicitly in this fashion, and that RPN
therefore has some claim to being more natural than the algebra we use more commonly. For example, when we
see a complicated expression like (3 4+ 7 (5 + 8)) we presumably first scan it from left to right until we have seen
how the grouping by parentheses takes place, and then do the calculation, here perhaps in a kind of backwards
pass. In effect, we probably construct in our heads something like the RPN version of the expression before we
evaluate it. At any rate, computers generally do exactly this when they evaluate arithmetic expressions. The
advantage of using RPN directly is that there expressions can be evaluated on a strict left-to-right scan, with no
looking ahead necessary to understand grouping—the calculations are local, involving only neighbouring terms.

2. The stack

The stack is where the data in an RPN expression is held until all calculations are done. It is an array whose
length grows and shrinks as calculations proceed. It grows at the end called the top. For example, in evaluating



Basic PostScript 2

the expression 3 + 7 * (5 + 8) here is a trace of how the stack looks:

3

37
375
3758
3758+
3713
3713«
391
391+
94

e All calculations take place on the stack, and on the whole calculations affect only the numbers at the top.

A number is put on the stack by entering it. Two or more numbers must be separated by spaces (including
carriage returns). An operation is performed by entering its name, and this will usually immediately replace the
numbers affected by the result of the operation. At any point in a PostScript calculation we can see what is on
the stack by entering the command st ack, which displays everything on the stack from top to bottom, and does
not change any of the items there.

For example, suppose you want to calculate the length of the vector (9, 7), which is

VI*94+TxT.

The following is a record of a ghostscript session that does this, with some extra stuff showing how things are
proceeding.

GS>9 9 nul
GS<1>st ack
81

GS<1>7 7 mul
GS<2>st ack
49

81
GS<2>add
GS<1>st ack
130
GS<1>sqrt
GS<1>st ack
11. 4018
GS<1>

The program ghostscript has a prompt for input that looks like this:
GS<2>

which means that there are two items on the stack. In PostScript, operations + etc. are words add etc. In
this example, we first put two copies of the number 9 on the stack and multiply them together; the copies of 9
disappear and the number 81 then sits on the stack. We then do the same for the number 7, and then both 49
and 81 are on the stack. We then add the two numbers on top of the stack by entering the command add, which
replaces the top two numbers by their sum. By entering sqrt we replace this in turn by the square root of the
number on the top of the stack.

It is not necessary to display results as we go. Here is a more succinct run that does the same thing.



Basic PostScript

GS>9 9 mul 7 7 mul
GS<1>

add sqgrt

3. Beginning the PostScript dictionary

As the course proceeds, we shall build up a dictionary of PostScript commands. Here are some of the ones we
have used so far, and a few more.

9%

newpat h

X y noveto
x y lineto
X y rnoveto
X yrlineto

stroke
fill

clip

cl osepath

r g b setrgbcol or
g setgray

w setlinew dth
0/1/2 setlinejoin
0/ 1/ 2 setlinecap

sx sy scal e
X y translate
theta rotate

y add
y sub
y mul
y div
neg

X atan
sqrt
sin
cos

X exp
In
abs

X X< X X X< X X X X X

def

-
x

showpage

must appear as the first two characters of every PostScript program

starts a path

moves the current point to (z,y)

draws a line to (z,y)

shifts the current point by (z,y)

draws a line with relative coordinates (z,y)

draws the current path

fills the current path (which must be closed)

restricts the area in which drawing occurs to inside the current path
closes up the path

sets the current colour in RGB format

sets the current level of gray: 0 is black, 1 is white
sets the current line width. Default is 1 unit.

sets style of joining lines

sets style of capping lines

multiplies the current z and y scales by sz and sy
translates the origin
rotates the current drawing map by 6

puts z + y on the stack

puts z — y on the stack

puts zy on the stack

puts z/y on the stack

puts —z on the stack

puts the polar angle of (z, y) (in degrees)
puts y/z on the stack

puts sin z on the stack (z in degrees)
puts cos x on the stack (z in degrees)
puts y* on the stack

puts In z on the stack

puts |z| on the stack

defines x to be whatever is on the stack in place of . . . .

changes page and causes the current page to be printed

4. Remarks about running GhostScript

GhostScript, the PostScript interpreter we shall use in this course, is started by typing



Basic PostScript 4

gs
and when you do that you will get a sequence that looks like this:

Initializing... done.
Ghostscript 2.6.1 (5/28/93)
Copyright (C) 1990-1993 Al addi n Enterprises, Menl o Park, CA
Al'l rights reserved.
Ghostscript cones with NO WARRANTY: see the file COPYING for details.
GS>

and a window will pop up on the screen. The program is now waiting for you to type in PostScript commands.
You can type them in one by one, and they will be interpreted one by one. Or you can read in a file with a
command like

(test.ps) run
which causes gs to load your file and run it.
By the way, to avoid confusion later on, itis a very good idea to name all your PostScript files with . ps extensions.

If things go wrong in gs you will get a lot of garbage on the screen. It is not easy to understand this garbage!
Usually you will have made a simple error in typing, in which case near the beginning of the garbage you will
probably get a message about something being undef i ned. this is perhaps the most common error. One thing to
be careful about is distinguishing capital from small letters. Another common error is st ackunder f | owwhich
means that you have forgotton to put something on the stack before a command. For example if you have the
sequence

4 add
you will get stack underflow because gs is expecting two numbers to add, not one. Here is a sample:

Error: /stackunderflowin exch
Oper and st ack:

/s
Executi on stack:

% nterp_exit --nostringval-- --nostringval-- --nostringval-- 9% oop_continue -
-nostringval -- --nostringval-- false --nostringval-- --nostringval-- --nostringval-R
- false --nostringval-- --nostringval-- --nostringval--

Di ctionary stack:

511/ 547 0/20 15/200
Current file positionis 138
GS<1>

Here exch was expecting two arguments on the stack but only got one. You will usually want to start over after
error garbage on file input by typing cl ear, which empties the stack. You will probably want to run gs with
both an editor window and the gs window visible at the same time.

The last prompt illustrates something useful about gs—the prompt GS<1> tells you the depth of the stack.
Sometimes this is very useful. For example we have this sequence:

GS>2
GS<1>3
GS<2>add
GS<1>=

5

GS>5
GS<1>dup =
5



Basic PostScript 5

GS<1>

which illustrates this and also shows you one of the simplest debugging tools you have: typing = will show you
what is on top of the stack—but it will remove it as well. If you type dup = you will make a copy on top which
you can throw away.

You can look at the whole stack without changing it by st ack.

GS>1
GS<1>2
GS<2>3
GS<3>4
GS<4>st ack
4

3

2

1

GS<4>

There is a variation on = which is ==. It behaves a bit differently on complicated objects.

GS<4>{ add sub mul }
GS<5>dup =
--nostringval - -
GS<5>dup ==

{add sub nmul }
GS<5>

In effect, running gs interactively you have a way to try out drawing on the screen interactively. You can save
stuff you type in such a fashion, say to to a file, by selecting from the xt er mwindow and then pressing the middle
mouse in an editor window. Of course this will give you a little extra junk to get rid of in your editor window.

You exit from ghostscript by typing qui t or the keys control - C,

5. The types of data in PostScript

The basic types in PostScript that you will usually work with are integers are real numbers. Integers range from
—32768 to 32767 in size. Thta’s not a very large range. Real numbers are in floating point format, and handle
up to about 7 digits of accuracy. Overflow is not uncommon, and rounding errors can be a nuisance. Normally
integers are converted to real numbers if necessary. There is a difference between an integer and a rounded real
number. For example, in loops you must use integers to count repeats. To convert from real number to integer
you use a conversion cvi . Thus

8.7 round cvi
leaves the integer 8 on the stack.

Later we shall also see arrays, procedures, and strings. Actually we have already seen one string—in the sequence
(test.ps) runthefile name (test. ps) isa string.

6. Subroutines in PostScript

We can draw a square with the sequence



Basic PostScript 6

newpat h

0 0 noveto
aO0lineto
aalineto
0O alineto
00 lineto
cl osepath
st roke

but if we want to draw several squares this involves a lot of typing. It is more efficient and flexible if we have a
subroutine to do the drawing, so that in the middle of a long program we can just type

square
and have a square drawn in the program.

A procedure in PostScript is any sequence of commands inside curly brackets { and } . Procedures can be treated
just like any other objects in PostScript so that the effect of the sequence

/ square {
newpat h

0 0 noveto
aOlineto
aalineto
Oalineto
OO0 lineto
cl osepath
st roke

} def

is to let the single word squar e be assigned to the procedure inside the curly brackets. The effect of using the
word squar e in a program is thereafter to replace it by the long sequence inside the brackets.

e Procedures in PostScript amount to defining a single word to stand for a complicated sequence of commands.

As in other programming languages, you can pass arguments to procedures, but through the very simple method
of putting them on the stack before you call the procedure. Thus we can rewrite the procedure above to make it
more flexible.

/ square {
/a exch def
newpat h

0 0 noveto
aO0lineto
aalineto
0 alineto
00 lineto
cl osepath
stroke

} def

has the effect of drawing a square whose side is the number placed on the stack just before the word squar e.
Thus with this definition the sequence

3 square

will draw a square of side 3 units. The line/ a exch def will probably seem a bit peculiar, but is very simple
to understand if you keep in mind that a procedure just substitutes the commands inside {, } for the procedure
name. Thus the command 3 squar e will transform to



Basic PostScript 7

3 /a exch def
What is the effect? What we want is
/a 3 def

but we can’t do that directly because this assignment takes place inside the procedure. However, the total effect
of 3 /a exch is to put the sequence / a 3 on the stack, since exch just exchanges the top two elements on the
stack. Then the def makes the assignment we want.

The routine above is still somewhat awkward because there may already be a variable / a in your program,
and you probably wouldn’t want to change its value. What you want is what is called a local variable for your
procedure. This is a bit awkward in PostScript, but perfectly possible. 1 won’t explain all the details of why it
works, but what you do is add a few lines to the procedure establishing a local dictionary of variable names, like
this:

/ square {

1 dict begin
/a exch def
newpat h

0 0 noveto
aOlineto
aalineto
Oalineto
00 lineto
cl osepath
st roke

end

} def

The extra lines you add are

1 dict begin

end

atthe beginning and end of your procedure. The variable a referred to here will be one used only in this procedure.
The number 1 refers to the fact that you are only going to use one local variable. If you want to use more, say

so. It does little harm to be over-generous, so that 5 di ct would be OK. This would be useful if you think you
might want to add more variables later.

Here is a procedure with two arguments:

/rectangl e {
2 dict begin
/' h exch def
/' w exch def
newpat h

0 0 noveto
wO lineto
wh lineto

O hlineto
OO0 lineto
cl osepath
st roke

end

} def



Basic PostScript 8

It assumes that you call it with two items on the stack, the width and the height in that order. When called, it
removes the height and assigns its value to a local variable, then does the same for width. Then it draws the
rectangle. Thus 2 3 rect angl e draws a rectangle of width 2 units and height 3 units.

A few fine points. The procedures above are perfectly correct, but they is probably not the most useful one you
might want to write. For example, if you want to fill a square instead of stroking it you would have to write
another procedure to do that, too. Instead:

e In PostScript it is usually a good idea to use procedures to add paths to ones you have already constructed,
instead of drawing and stroking or filling the path all in one procedure.

Thus it would probably be more useful in the long run if you were to define a procedure

/ square {

1 dict begin
/a exch def
0 0 noveto
aOlineto
aalineto
0 alineto
00 lineto
end

} def

so that

newpat h
3 square
st roke

would draw a square and

newpat h

3 square
fill

would fill it.

This illustrates one feature of all good programs in any language. While we are on this topic, | might as well lay
out all the basic properties of good programs.

e Correctness
That is to say, the program must do what it is supposed to do.
¢ Readability

At least if someone else is going to read it. And even if not, you yourself will find it surprisingly hard to read
your own programs later on if you are not careful. Readability means as a minimum adequate comments, good
line spacing, and suitable indentation.

e Flexibility
You may very well want to extend or modify your program after the first version is written.
e Efficiency

This is not usually a big problem in this course, but occasionally it is something to think about, particularly later
on when we want fast drawing to do animation.

e Originality



Basic PostScript 9

Of course for most of this course this will not be an issue. But for your projects originality (and imagination) will
count a lot.

7. Loops

There are several ways to do loops in PostScript.

Recall that a procedure in PostScript is any sequence of commands and data inside curly brackets { and } , as we
saw in defining procedures.

The simplest loop has the form
n{ ... } repeat
which simply repeats the procedure inside the brackets n times.

Here is an example. Suppose we have a routine f i | | squar e which fills a square at the origin with side s (using
the current grey colouring), where s is to be put on the stack before calling fi | | squar e. Thus

10 fillsquare
draws a square of side 10, with lower left and upper right corners (0, 0) and (10, 10).
Then the sequence

gsave
5 {

currentgray 0. 15 add setgray
0.5 fillsquare

0.25 0.25 transl ate

} repeat

grestore

fills 5 unit squares; shifts them up as it goes; lightens the colour; and finally restores the coordinates to what they
were before the translations were made.

This picture also illustrates another feature of the way PostScript draws: it is like painting—it covers over what
lies underneath. So that, as | have already mentioned in earlier notes, if we want to draw a grey square and then
outline it is important to do the filling first and then the outlining or we get the peculiar effect on the left instead
of what we probably want on the right. This is true even if the current colour is white—there is no translucent
paint in PostScript.




Basic PostScript 10

Finally the following sequence draws a square whose first side is from (0,0) to (3,1). The state of the stack is
noted on the right in comments. This is a useful practice if you have trouble keeping in mind what is on the stack.

newpat h

0 0 noveto

31 %Xy

4 { %x y (different each repeat)
2 copy %Xy Xy
rlineto %Xy
neg exch %-y X

} repeat

pop % -y

pop %

cl osepath

stroke

We have here the new commands r | i net o, pop, and copy. The first is a relative version of | i net o, adding its
components to the current point to draw the line. The second just removes the top item from the stack without
doing anything else. The third has this effect on the stack:

X1 x2 x3 ... xXxnncopy =>x1x2x3 ... xnx1x2x3... Xn

In other words, it just provides duplicate copies of the top n items on the stack.

Exercise 7.1. Write a procedure in PostScript that has two parameters r and 8 and returns the (z, y) coordinates.
Exercise 7.2. Write procedures in PostScript that evaluate cos and sin for angles expressed in radians.

Exercise 7.3. Write a PostScript program to draw the Pythagorean figure of three squares, with variable sides a,
b, and c.

Exercise 7.4. PostScript has a function at an but no acos or asi n. Write your own.

Exercise 7.5. Write a PostScript procedure that has parameters z, y, R, N and constructs a path around a polygon
centred at (z,y) of radius R and N sides (with one vertex due east).

Exercise 7.6. Write a PostScript procedure with parameters a, b, ¢ and leaves the two roots of the polynomial
az? +bz+c=0

on the stack if they are real.

Exercise 7.7. Write a PostScript procedure which fills a clipped page with a grid of lines & apart, and gray-ness
equal to g. The numbers g and h are its parameters. Use it to draw such a grid with o = 0.1 inch, g = 0.5. The
clipped boundary of the page should be 0.25 inches. The = and y-axes should be black, and the origin at the
centre of the page.

Exercise 7.8. Write a PostScript program which (1) draws a framed page with boundary 0.5 inches in width all
around the page; (2) clips drawing to that region; (3) includes a procedure which has arguments the parameters
of a line Az + By = C and a point (z9,yo) and draws (a) the line inside the drawing region and (b) a dotted
perpendicular segment from the point to the line.



