Mathematics 308—Fall 1996

Loops

I have talked about one way of doing loops in PostScript, but in these notes I shall explain all of them. There are
three: repeat, for,| oop. In order to show how they work, | shall demonstrate how each of them deals with
the problem of drawing 10 squares with one centimeter sides next to each other in a row. In each case the lines |
show will be sandwiched in between the lines

%
72 72 scale % i nches
1 2.54 div dup scale %centimetres

0.5 4 transl ate

/rectangl e {
} def

showpage
wherew h rect angl e builds a rectangle at the origin with width w and height h.

I should point out that in each case there are several ways to draw these squares, and that | have chosen the
particular lines | present in order to demonstrate how things can go rather than how they should go.

1. Repeat

This one is very simple.

10 {

} repeat

just causes the procedure in the curly brackets{ ... } to be repeated 10 times. Repeat loops are the simplest
ones, because they have fewer dangers and are not liable to misuse. But sometimes you may have to go to
extraordinary lengths to get them to do the job you want done. The variable used at the head of the loop has to
be an integer. Variables defined in the loop can be used outside it.

10 {

newpat h

11 rectangle
stroke

1 0translate
} repeat

2. For

These are the next easiest to use. They look like this:

Loops 2

01 10 {
} for
There is a hidden variable which starts with value 0, steps up 1 in each iteration of the loop, and runs through

the iteration when this variable is 10. Thus this loop runs 11 times in all. The main danger in this loop is that the
variable value at exit has to be reached by the loop variable. Thus

1210 {

} for

will loop forever, since the loop variable takes values 1, 3, 5, ... and never hits 10. The values used at the head
of the loop don’t have to be integers, but if they are not you will likely meet problems with rounding errors.
Therefore | counsel you always to use integers even if you don’t have to. There is another peculiarity of f or loops,

which is that in every loop the loop variable will be put on the stack just before the loop is entered. Therefore the
lines

115 {
} for

have a non-trivial effect: they put the numbers 1, 2, 3, 4, 5 on the stack in that order. You can do any of several
things with this value. The simplest is to get rid of it, by popping it.

115 {

pop

} for

will loop five times and on each iteration pop the loop variable value off the top of the stack.

More likely you want to save the loop variable value and use it somewhere else in the loop. This requires the
same trick with exch which you used to get values of variables when a procedure is called.

115/
/i exch def

} for

Here are some lines to draw the squares which illustrate how things go:
0109 {

/i exch def

gsave

i Otranslate

newpat h

11 rectangle

stroke

grestore
} for

3. Loop

This one is the most versatile, but requires more care than the others.

Loops 3

{
oo}
| oop
will perform the procedure in between forever, unless you arrange for it not to. You can do that by putting some
kind of test inside and calling exi t in whatever circumstances you want the loop to stop. This requires using
boolean variables in PostScript, which | shall explain in the next section.

/i 0 def
{
i 9 gt {
exit
}if
/i i 1 add def
newpat h
11 rectangle
stroke
1 0translate

} 1 oop

4. Conditionals
PostScript has a type of varaible with two values, t r ue and f al se. They are used in various tests, in conjunction
with the operatorsi f andi f el se.

Inthe program in the previous section, the operator gt (‘greaterthan’) putst r ue orf al se onthe stack depending
on the relative size of the two numbers at the top of the stack (and popping them both). Thus2 3 gt putsf al se
on the stack, while 3 2 gt putst r ue. These operators act just like arithmetic operations—they remove the stuff
they operate on, then place the result on top of the stack.

The command i f always works this way:
true/false { ... } if

performs the procedure if there is at r ue on the stack just before it, otherwise just continues on. The lines
i 9 gt {
exit
}oif
test to see whether z > 9 and if it is then the program leaves the loop.

The other conditional isi f el se, which performs one of two procedures depending on whetheratrueorf al se
is on the stack. Thus

Xy gt
{
(x greater thany) ==
}
{
(x not greater thany) ==
} ifelse

will display the string x gr eat er t han y on the screen if it is so, otherwise x not greater thanvy.

