Mathematics 308—Fall 1996
Happier PostScript programming hints—free advice at half-time

This year people aren’t having as much trouble as in previous years. | would like to think this is because | am
getting more experienced at heading off trouble, but it is more likely a random occurrence. Neverheless the
following remarks may be useful.

o So far repeats and procedures have caused some trouble. They are a bit tricky. So the best thing to do first in
an assignment is get a picture—any picture even distantly related to the assignment—up on the screen. Forget
about repeats and procedures in the first attempts. Then you have something to gauge your progress against.
You might also save separately those versions which do give you pictures so you don’t go "round in circles.

e Even at this stage, however, it will help you to have variable names for certain constants like the pagewidth or
size of margin. Give them readable names like pagewi dt h or mar gi n. The purpose of using variables rather
than raw numbers like 11. 15 etc. is to reduce your mental effort, and readable names help a lot. define these
global variables right at the beginning of your program, and don’t change them again. Another good example of
a global variable would be 7 = 3.1415926536.

¢ Do not at first put separate problems together. This slows everything up, and confuse things badly. Put each
picture in a separate file at first. Then when each one is working on its own, you can put them all together. The
best way to do this is with the UNIX command cat . Thus

cat probl.ps prob2.ps > hw ps

typed within an xt er mwindow will copy pr ob1. ps and pr ob2. ps in that order into the file hw. ps. If that file
already exists, use >! instead of >, so it will be overwritten. Then you will have to do a little ‘light editing’ in
hw. ps (removing initial setup, etc; adding showpages perhaps) to make it ready to hand in. Above all, try out
gs on the final file before sending it along to me to be sure it all fits together. Remember that two lines

72 72 scal e
72 72 scal e

are cumulative and will scale to 72 x 72! gsave and gr est or e are ways around this.

e Using xt er mand gs is messy unless you remember my advice to begin by launching two copies of xt er mby
typing
xterm-sb -sl 500 &

in your login window when you first start up. | remind you that you can adjust font sizes in your terminal
windows with ct | - shi ft, | believe.

Use one terminal window to run gs in and the other to do Other Useful Stuff like cat orl| s or mai | . Perhaps |
haven’t mentioned the - s| 500 before—it remembers the last 500 lines so you can scroll back to them. The & is
very important!

o If you feel confident, just jump in and start drawing. But when things go wrong, keep in mind that the process
is hypnotic. Take time out for a cup of coffee or whatever and sketch your PostScript in a notebook before you go
back to programming. Take advantage of the fact that YUM-YUM’s is right next door! (Too bad it closes so early.)

o Use variables only when it seems really useful. And as | mentioned above, give them good names.

¢ To find out what x is equal to at some point in your program insert code

Happier PostScript programming hints—free advice at half-time 2

()(:) == X ==

This looks cryptic, but what it says is to display the string “x = then the current value of x. For serious stuff
insert pst ack.

¢ Do not confuse the name of a variable / b with its value b. Early in the course, the only time so far in this course
that you should use the name / b is when you assign a value to it. But now with nmkpat h you are going to use the
names of functions to draw.

o Make lots of comments. More than I do! In PostScript you should do this to keep track of what’s on the stack.

o Keep your stack clean. A number of the homeworks finish up with tons of unused garbage sitting there,
indicated by prompts like GS<397>. Be sure that at the end of procedures the stack has on it just what you want
it to and no more extra junk. Especially true of f or , where you have to pop the loop variable if you don’t use it.

o | repeat again that drawing in PostScript is like drawing by hand. newpat h amounts to picking up a pencil.
novet o amounts to moving it. | i net o amounts to drawing a straight line from the current location of the pencil
to the next one. But the thing you have drawn is not visible until the end, when you apply

stroke
fill
clip

Keep in mind that the last two are different from the first in that the path you draw must be continuous and
closed, or stuff will ‘leak out’.

e How the path is actually drawn depends on the graphics state only at the moment you finish it. The graphics
state takes into account (e) the current transformation; (e) the current colour; (e) current dash pattern; (e) current
linewidth; and a few things you won’t have to know about. If you want to draw paths which are different in
any of these aspects then you must finish one path before taking up another. Like putting down your current
pencil and picking up another one. In particular it does not make much sense to change any of these things in
the middle of drawing a path, between the first newpat h and the last st r oke. It only confuses things. Make all
changes of this kind before you put down a newpath.

e Putting gsave and gr est or e around a path construction will wipe out the path you build. So if you want to
draw it, do not put these commands between newpat h and the path, or between the path and st r oke.

o Keep the lines which actually draw your paths as uncluttered as you can. It is hard enough to draw stuff, trying
to keep track of where your pencil point is, so to speak, without worrying about how variables are changing;
and unnecessary if those variables do not have to chnage while you are drawing. Path drawing is the cock-pit of
PostScript programming. Take your shoes off when you enter the drawing room.

¢ You have seen essentially all of the PostScript you will need.

e Programming is always potential chaos, since computers are so fast and yet so stupid. Anything you can do to
make your programs simpler to understand and easier to read is always a good idea. Especially in this course
where, if you are careful, like any good artist you will be able to use old sketches in new work.

¢ You can move stuff from your home machines to the system in the lab by using the ancient IBM clone in the
corner. To transfer nyf i | e from your disk to your home directory, put the disk in the piece of junk and then:

cd \tnp
copy b:nyfile .
ftp ganba

log into ganba with your id and password, and then

Happier PostScript programming hints—free advice at half-time 3

put nyfile

To retrieve the stuff from the lab, do things in the opposite order, and use get instead of put .
cd tnp

ftp ganba

(1 ogin)

get nyfile

copy nyfile b:

o David Maxwell (bless his heart) has put up a large help system for PostScript on the undergraduate lab network.
A link to it can be found on the undergraduate lab home page

http://ganba. nat h. ubc. ca/l ocal doc
This is in addition to online copies of my notes available on the course home page
http://ww. mat h. ubc. ca/ “cass/ cour ses

This help system is in ht m format, and is available on a single floppy disk for use on a PC at home, to be read
with the help of any net browser.

o | repeat again more strongly one thing | have said a number of times. In this course and when solving any
kind of difficult problem, it is always a good idea to break the problem up into small chunks and solve them
individually. In this course this means essentially specific thing: Use separate, isolated procedures as often as
possible, procedures which should do something relatively simple, and which can be debugged simply. You
should do this just about whenever you have to do a job which is simple and clearly defined. In a later assignment
involving drawing on spheres, for example, it will be a good idea to have procedures to calculate arc cos(z) for
a number between —1 and 1, to calculate the angle between two vectors, and replace an array of spherical
coordinates (p, ¢, 6) by an array of equivalent rectangular coordinates (z,y, z).

¢ What | am saying is good advice for all problem solving: Isolate difficulties! Break a large problem into bite-sized
pieces instead of trying to swallow it whole. Assemble smaller items to buid a large object ...

e The idea of isolation applies in other ways. Different parts of your programs should do different things.
For example, | saw yesterday where a student with otherwise almost impeccable style had included inside a
procedure a showpage operation. This is almost certainly a mistake—suppose that this procedure were to be
required several times on one page? Separate function as much as possible to your programs flexible.

e Summary of how to use nkpat h

The array listed first contains a list of things necessary to specify your path from a whole family of paths. Next
comes the name of the fundction which parametrizes your path. This function has a well defined interface: it
assumes two things on the stack when it is called, the array [. . .] passed tonkpat h and the parameter t which
varies along the path. (Keep in mind: there are two uses of the word ‘parameter’ here: one for the things which
determine which path in a family you are drawing, and one for the thing which varies to specify the path.)

