Mathematics 308—Fall 1996
Motion in three dimensions

In this section we begin to think about how to draw objects in three dimensions. There are no built-in routines
for this purpose in PostScript, and we shall have to start from scratch. There are a number of somewhat technical,
but nonetheless interesting, things to be dealt with which do not occur in two dimensions.

The overall scheme we shall adopt is the following: we are given a three-dimensional object of some kind, such
as a cube or a sphere, possibly with something drawn on its surface. We shall imagine this object in what could
be called an ideal position, where it is initially placed. In order to draw it, one way of proceeding might be to
allow ourselves to move around to see it from various positions, and then imagine it as being drawn on a surface
between us and the object, the way a painter classically renders things. But instead of this, for various reasons, |
shall do something complementary: we shall imagine that we are situated at a fixed point in space—in fact at the
origin—and that it is the object which moves instead of us. As for the problem of rendering the 3D object in 2D,
we shall do this in two different ways, orthogonal projection and perspective.

We must therefore attack two main problems: (1) how to describe the possible ways in which an object can move
in three dimensions, and (2) how to render a three-dimensional object in two dimensions, which is in the end the
dimension of the surface we draw on. If we were to try to draw only linear objects the second problem would be
very simple, but in fact we shall eventually see how to use the routine mkpat h to draw 3D parametrized paths,
which leads to a technique which is at once more complicated and more rewarding.

In this part of the notes we attack the first of these problems. | begin by recalling some vector algebra.

1. Dot and cross products
In any number of dimensions we define the dot product of two vectors
u:(.’l?b.’l?z...,.’l?n), v:(ylay27"'7yn)

to be
uev =21Y1 +T2Y2 + - TpYn -

The relation between dot products and geometry is expressed by the cosine rule for triangles, which asserts that

if 8 is the angle between v and v then
uev

[lull o]l

cosf =

In particular « and v are perpendicular when uev = 0.

In 3D there is another kind of product. If

u = (1317-7827903)7 v = (y17y27y3)

then their cross product u x v is the vector

(9023/3 — Y2L3,L3Y1 — L1Y3, L1Y2 — wzyl) .

This formula can be remembered if we write the vectors v and v in a 2 x 3 matrix

Yr Y2 Y3

Ty T2 1‘3]
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and then for each column of this matrix calculate the determinant of the 2 x 2 matrix we get by crossing out in
turn each of the columns. The only tricky part is that with the middle coefficient we must reverse sign. Thus

( ra2 T3 1 I3 r1 T2 )
UXv= y— R s ) -
Y2 Ys Y1 Y3 Y1 Y2
Here
a b
. d‘ =ad — be.

The geometrical significance of the cross product is contained in these rules:
e The length of w = u x v is the area of the parallelogram spanned in space by u andv.

e It lies in the line perpendicular to the plane containing v and v and its direction is determined by the right
hand rule.

U Xv

The cross product « x v will vanish only when « and v are multiples of one another.

In these notes, the main use of dot products and cross products will be in calculating various projections and
related things.

(1) The first component of frameworks deals with projections. Suppose a to be any vector in space and u some
other vector in space. The projection of w along « is the vector w, we get by projecting « perpendicularly onto the
line through a.
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What is this projection? It must be a multiple of «. We can figure out what multiple by using trigonometry. We
know three facts: (a) The angle 6 between o and w is determined by the formula
ue o

cosf = ———— .
llee[] {|ul]

(b) The length of the vector uy is ||u|| cos 6, and this is to be interpreted algebraically in the sense that if 4 faces in

the direction opposite to « this is negative. (c) Its direction is either the same or opposite to a. The vector o/||«||
is a vector of unit length pointing in the same direction as a. Therefore

u ||| cos @ a [ ]| uoa a (u-a) a (u-a)a
0= —_— = _— = | —— = ——
[l llaef| flwl [l [|af|? asa

(2) Now let IT be the plane passing through the origin perpendicular to a, and let u, be the projection of u onto
II.
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The vector u has the orthogonal decomposition
U =uy+uL

and therefore we can calculate
U] =U— Ug .

(3) Finally, let u, be the vector in IT we get by rotating u, by 90° in II, using the right hand rule to determine what
direction of rotation is positive.

How do we calculate «.? We want it to be perpendicular to both o and « , so it ought to be related to the cross
product o x u_. A little thought should convince you that in fact the direction of u, will be the same as that of
a X u, so that u, will be a positive multiple of @ x u; . We want u, to have the same length as «, . Since a and
u_ are perpendicular to each other, the length of the cross product is equal to the product of the lengths of « and
v, and we must divide by ||«|| to get a vector of length ||, . Therefore, all in all

’ll,*:i XU, .
[l

Incidentally, in all of this discussion it is only the direction of « that plays a role. It is often useful to normalize a
right at the beginning of these calculations, that is to say replace « by a/||e||.

Exercise 1.1. Write PostScript programs to calculate dot products, cross products, ug, u | , .
2. Rigid transformations and rigid motions
Suppose (z,y, z) to be the coordinates of a point on the original object. Let (z.,yx«, z.) be the coordinates of the

point after the object is moved. We shall assume that the object is rigid, which means that the distance between
points doesn’t change when they are transformed. In other words, we are looking at a transformation taking
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P = (z,y,z) to P, = (24,¥, 2«), and it satisfies this condition: if P is moved (or transformed) to P. and @
to @, then the distance between P, and @, is the same as the distance between P and ). More generally, any
transformation of points with this property, in any number of dimensions, is called a rigid transformation.

There are a few very general properties of rigid transformations which are useful to know:

e A rigid transformation must take line segments into line segments, and lines into lines.

The segment P(Q is the shortest path from P to . What this means is that the points R on the segment between
P and @) can be characterized as the points for which

d(P,Q) = d(P,R) + d(R, Q)
whereas in contrast if R does not lie on the segment P() then

d(P,Q) < d(P,R)+ d(R,Q) .

T

A 4 29 @

Thus if we are given a set of three points P, , R with R on the segment between P and @, we have
d(P,Q)=d(P,R)+ d(R,Q) .
If we apply a rigid transformation T' we get
d(T(P),T(Q)) = d(T(P),T(R)) + d(T(R),T(Q))

which means that T'(R) lies on the segment between T'(P) and T'(Q).
A similar characterization can be given for the points on the line beyond P or beyond Q).
Exercise 2.1. Give such a characterization.

The same argument shows that T'(R) is the unique point on the segment PQ which lies at distance PR from
T(P).
The points on the line through P and @ are those which can be written (1 — ¢)P + tQ as ¢ ranges over all of
(—o0,00). We can extend the observation made a moment ago to deduce

o fR=(1-1t)P+1tQthenT(R) = (1-¢)T(P)+tT(Q).
In other words, if we know what T does to the points P and @) then we know what T does to all points on that
line.

This suggests what we shall later see to be true—that any rigid transformation must be an affine transformation,
which is to say it has the form
[2r Ys 2] =[2 y 2] A+ 70 7y 72]

where A is a 3 x 3 matrix. What the result just stated says is that this is true when a rigid transformation is
restricted to 1.D.

e A rigid transformation must preserve angles as well as distances.
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The angle between two segments P@Q and PR is determined by the lengths PQ, PR, QR, according to the cosine
law:
QR -PQ'-PR’

2 PQ PR

cos 0 =

Apply T to this equation to see that the angle between T'(P)T(Q) and T(P)T(R) must be the same as that
between PQ and PR.

e The composition of two rigid transformations (one performed after the other) is a rigid transformation.

e Ifarigid transformation has an inverse, then that inverse is a rigid transformation.

The both follow straight from the definition. Incidentally, we shall see later that in actuality every rigid transfor-
mation has an inverse, but that is not immediately clear.

The definition of rigid transformations makes sense in any number of dimensions. They are very simple to
describe completely in 1D. Let P and @ be any two points on the line. Let T be a rigid transformation. Given
T(P), what can we say about T'(Q)? The distance between T'(¢)) and T'(P) must be the same as that between
P and @, so there are two possibilities, one on either side of T'(P). In one case the direction from T'(P) to T'(Q)
is the same as the direction from P to ), and in the other it is opposite. In the first case orientation is said to be
preserved, in the second reversed. We have seen already that if we know what a rigid transformation does to two
points on a line then we know what it does to all of them.

(@)
[
(@)

These remarks put together tell us:

e In1D any rigid transformation is of the form
r—€exr+T

where e = +1.

Exercise 2.2. Suppose that P = 0, @ = 1. If we are given P, = z¢ and ), = z; on the one-dimensional line with
|zy — @o| = 1 there exists a unique rigid transformation of the line taking P, Q to B,, Q.. Find a formula for €
and 7. (Hint: as a first step try a few explicit examples.)

In 2D and 3D things are a bit more complicated. Instead of trying to deal with things geometrically right off, |
shall introduce some matrix algebra first. | call a rigid transformation affine if it is given by a formula

vi— Av+T

where A is a square matrix of the proper size (2 x 2in 2D, 3 x 3in 3D).

As | have already mentioned, every rigid transformation turns out to be affine, but we shall postpone that problem
for a while and instead restrict our attention to the affine ones. The first question we must settle is this: Under
what circumstances is an affine transformation

vi— Av+T

a rigid transformation?

If we are to believe that every rigid transformation is affine, then we can classify them according to whether the
determinant of A is positive or negative. In the first case | shall call the transformation a rigid motion. The idea is
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that in any continuous motion of an object from rest it cannot suddenly reverse its orientation, so that the motions
are what we expect to see.

Any translation is rigid. If we follow the transformation above by a translation by —7, we get the transformation
v— Av

which according to the composition principle will be rigid precisely when the original is. There is in fact no
condition on 7, and it is only on the matrix A that it is necessary to impose one. So we now ask under what
circumstances is a linear transformation (in either 2D or3D)

v — Av

a rigid transformation?

| begin by looking at things geometrically. Work in 2D for convenience-mostly because | can use pictures in
2D to illustrate how things are going. Define a unit frame to be a set of three points F, P;, P, that fit into the
following picture:

P,

Py P

The distance between Py and Py, as well as between By and P,, is required to be 1. The angle between the
segments Py P; and P, P; is required to be 90°.

The standard unit frame is made up of (0, 0), (1,0), and (0, 1). Because a rigid transformation preserves distances
and angles and takes line segments to line segments:

e A rigid transformation takes any unit frame into another unit frame.

The definition of a unit frame can be expressed in terms of vectors. Let R, P;, P, be any three points, let v; be
the vectors from P, to Py, v, that from P, to Ps. The three points make up a unit frame precisely when v; and v,
each have unit length, and the dot product v; » v, is equal to 0. Another way of expressing this: make up a matrix
A whose columns are v; and vs. If *A A is the transpose of A then its rows are the columns of A and vice-versa.
The product of 4 and A has the expression

tAA: [U1°111 ’010’1)2:|

Ua2°U1 U202
The condition for a unit frame therefore becomes
‘AA=T.

in which case the matrix A is said to be orthogonal.

One property of such matrices is simple. If we take determinants of both sides we get
det(*A A) = det('A) det(A) = det(A) det(4) = det(4)* = det(I) =1

so that
det(4) = %1
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if A is orthogonal.
In 3D also a 3 x 3 matrix is called orthogonal if'tA A = I.

What we have said so far amounts to:

e If T is an affine rigid transformation of the form
v Av+ T

then A is orthogonal.
I now claim that the condition that A be orthogonal is sufficient as well, or in other words the converse holds:

e If A is orthogonal then
vi— Av

is a rigid linear transformation.

This is simple algebra. Let P and () be any two points, and let « and v be vectors whose ends are P and (). Let A
be an orthogonal transformation, T': v — Av. We want to show that the distance from T'(P) to T'(Q) is the same
as that from P to Q. The distance from P to @Q is ||v — u]|, and that from T'(P) to T(Q) is || Av — Au]|. Since A is

linear
|[Av — Aul| = [|A(v — u)||

so that what we must show is that if w is any vector then || Aw|| = ||w]|. Let
w = c1ey + ceea, Aw = civ1 + ca2vs
where e; = (1,0) and e; = (0,1), then
|Aw||> = (crv1 + cavz) @ (crv1 + cava) = ¢ (v1 o v1) + 2c1e2(vy o v2) + ca(va o va) = ¢ + ¢ = || Aul|?

because of simple algebraic properties of the dot product.
In 3D the calculation is a bit more complicated, but otherwise very similar.

We can now see why the following fact in 2D is true:

e Given any unit frame, there exists at least one rigid transformation transforming the standard unit frame
into it.

3. Orthogonal transformations in two dimensions

We now have an algebraic characterization of rigid transformations in any number of dimensions in terms of unit
frames.

In two dimensions, we can in fact describe all rigid linear transformations (no translation component) geometri-
cally. Start with the particular triple of points Py = (0,0), P, = (1,0), P, = (0,1). Suppose we are given a rigid
linear transformation 7' in 2D, and let Q; = T'(P;). Since the transformation is linear, Qo = (0,0). The point @4
must lie at distance 1 from it, that is to say at any point on the unit circle centred at the origin. If we fix ¢ then
we have exactly two choices for ()5, on opposite sides of the unit circle around o on the diameter perpendicular
to the radius Qo Q.
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If we choose @), so that it is obtained from ¢); by a rotation of 90°, then the whole transformation must be a
rotation through the angle between Py P; and Qo Q. This is the case where the orientation of frames is preserved,
and the matrix A has determinant 1.

In the other case, the determinant is —1. Our reasoning and our final description are a bit more complicated. A
reflection in the plane is a transformation mirror-imaging points through some line in the plane. In other words,
it fixes points on the mirror-line and reverses points on the line perpendicular to that one. A more mathematical
description is that it is a scale change by factors 1 and —1. | claim that any rigid linear transformation with
determinant —1 is a reflection.

Let A be an orthogonal linear transformation in 2D with determinant —1. Its characteristic equation will be

N_th-1=0
where t is the trace of A. Its roots are
t 2+ 4
R . S
2 2

and are in particular must be real.

We now make the following remark: If X is a real eigenvalue of any orthogonal matrix then it is either 1 or —1.
This is true because if Av = Av then ||v|| = ||Av||,s0 |A| = 1.

The determinant of A is the product of its eigenvalues, which in our case is assumed to be —1. Therefore one is 1
and the other —1. The transformation associated to A is reflection in the line of eigenvectors for the eigenvalue 1.

Exercise 3.1. Find a formula for the reflection of v in the line along w.

Exercise 3.2. Find the matrix associated to reflection in the line through the origin which makes an angle of 8
with respect to the z axis. (Hint: do this directly by geometry.)

4. Rigid motions in three dimensions

To each affine rigid transformation is associated its linear component, determined by a matrix. Itis called a rigid
motion if the determinant of this matrix is 1, rather than —1. In 2D a rigid linear motion is a rotation, while a
rigid linear transformation which is not a motion is a reflection. In 3.D things are more complicated.

Geometrically, there is one simple way to obtain rigid motions in 3D. We choose an axis in space, and rotate
points around it through some fixed angle.
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| call such a linear transformation an axial rotation. We shall see a bit later how to describe its effect in terms of
coordinates.

e Every rigid linear motion in 3D is an axial rotation.

This is not quite an intuitive fact. For example, if we combine two rotations around distinct axes it is not at all
simple to see why this composition is also a rotation.

The proof of this claim is similar to that where we saw that every rigid linear transformation in 2D is a reflection.
Let A be an orthogonal matrix with determinant 1.

Step (1). If A were an axial rotation, then it would fix the vectors on its axis. Our first step will be to see that there
at least exist non-zero vectors fixed by A. A vector fixed by A satisfies the condition

Av=wv

which means that v is an eigenvector of A with eigenvalue 1. Therefore we must show that 4 has 1 as an
eigenvalue. The characteristic polynomial of 4 has degree 3, and has an expression

det(A— M) = -\ 4 .-

If A\ is large and negative, this expression will be positive, while if A is large and positive this expression will be
negative. There must exist some place in between where its graph crosses the z-axis, so in other words A has at
least one real eigenvalue A. If

Av =

then
[ Av|| = [[v]| = |Afl[v]]
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so that necessarily [A| = 1. If A = 1 we are done in this step. Otherwise, suppose A = —1, so we have a vector
v # 0 with
Av=—v.

Then A takes the whole line through v into itself, although reversing directions on that line. Since A preserves
angles, it must take points on the plane through the origin perpendicular to v into itself. It acts on this plane as
a 2D rigid transformation. On that plane it must have determinant 1 or —1. If it had determinant 1 there then
it would preserve orientation on that plane, but then since it reverses v it would have to reverse orientation in
space, which is a contradiction. Therefore on the plane it must reverse orientation, in which case we know that it
is a reflection there. Hence there exists a non-zero vector in that plane fixed by the transformation.

Step (2). We now have v # 0 fixed by A. The transformation acts, as we have just discussed, on the plane
perpendicular to v, where (by the same reasoning as above) it must preserve orientation. Hence on that plane it
is a rotation. We are through.

5. How axial rotations act

To begin this section, | remark that to determine an axial rotation we must specify not only an axis but a direction
on that axis. This is because the sign of a rotation in 3D is only determined if we know whether it is assigned
by a left hand or right hand rule. At any rate if choosing a vector along an axis fixes a direction on it. Given a
direction on an axis we shall adopt the convention that the direction of positive rotation follows the right hand
rule.

So now the question we want to answer is this: Given a vector a # 0 and an angle 8. If u is any vector in space
and we rotate v around the axis through « by 8, what new pointv do we get? This is one of the main calculations
we will make to draw moved or moving objects in 3D.

There are some cases which are simple. If u lies on the axis, it is fixed by the rotation. If it lies on the plane
perpendicular to « it is rotated by @ in that plane (with the direction of positive rotation determined by the right
hand rule).

If u is an arbitrary vector, we express it as a sum of two vectors, one along the axis and one perpendicular to it,
and then use linearity to find the effect of the rotation on it.

To be precise, let R be the rotation we are considering. Given u we can find its projection onto the axis along « to
be
aeu
Ug = ( ) 67
[e R Nod

U=1ug+uyL
Ru = Rug + Ru
=up + Ru, .

Its projection w | is then u — uo. We write

How can we find Ru | ?

Normalize a so ||a|| = 1, in effect replacing a by a/||a||. This normalized vector has the same direction and axis
as a. The vector u, = a x u_ will then be perpendicular to both a and to », and will have the same length as
u_ . The plane perpendicular to « is spanned by «; and u,, which are perpendicular to each other and have the
same length. The following picture shows what we are looking at from on top of .
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It shows:

e The rotation by 6 takes u, to
Ru) = (cos®)uy + (sinf) u, .

In summary:
(1) Normalize «, replacing a by a/||c||.

(2) Calculate

(3) Calculate

(4) Calculate
Uy = XU .

(5) Finally set
Ru = up + (cosb)u + (sinf) u, .

Exercise 5.1. What do we get if we rotate the vector (1,0, 0) around the axis through (1, 1,0) by 36°?

Exercise 5.2. Write a PostScript procedure with a and ¢ as arguments and returns the matrix associated to rotation
by 8 around a.

6. Finding the axis and angle

If we are given a matrix R which we calculate to be orthogonal and with determinant 1, how do we find its axis
and rotation angle? (1) How do we find its axis? If e; is the z-th standard basis vector (one of i, j, or k) the ¢-th
column of R is Re;. Now for any vector u the difference Ru — u is perpendicular to the rotation axis. Therefore
we can find the axis by calculating a cross product (Re; — e;) x (Re; — e;) for one of the three possible distinct
pairs from the set of indices 1, 2, 3—unless it happens that this cross-product vanishes. Usually all three of these
cross products will be non-zero vectors on the rotation axis, but in exceptional circumstances it can happen that
one or more will vanish. It can even happen that all three vanish! But this only when A is the identity matrix, in
which case we are dealing with the trivial rotation, whose axis isn’t well defined anyway.

At any rate, any of the three which is not zero will tell us what the axis is.
(2) How do we find the rotation angle?

As a result of part (1), we have a vector a on the rotation axis. Normalize it to have length 1. Choose one of the
e; o that a is not a multiple of e;. Let w = e;. Then Ru is the ¢-th column of R.
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Find the projection uy of v along a, set u; = u — ug. Calculate Ru; = Ru — uo. Next calculate
Uy = XU .

and let 8 be the angle between u; and Ru . The rotation angle is 8 if Ru, *u, >= 0 otherwise —86.

Exercise 6.1. If
0.899318 —0.425548 0.100682

R = (0425548 0.798635 —0.425548
0.100682  0.425548  0.899318

find the axis and angle.

7. Euler’s construction

The fact that every orthogonal matrix with determinant 1 is an axial rotation may seem quite reasonable, after
some thought about what else might such a linear transformation be, but I claim that it is not quite intuitive. To
demonstrate this, let me point out that it implies that the combination of rotations around distinct axes is again a
rotation. This is not at all obvious, and in particular it is difficult to see what the axis of the combination should
be. This axis was constructed geometrically by Euler.

Let P; and P, be points on the unit sphere. Suppose P; is on the axis of a rotation of angle 6,, P, that of a rotation
of angle #,. Draw the spherical arc from P, to P,. On either side of this arc, at P, draw arcs making an angle of
6.1 /2 and at P, draw arcs making an angle of 65 /2. Let these side arcs intersect at « and 8 on the unit sphere. The
the rotation R; around P; rotates a to 3, and the rotation R, around P, moves 3 back to a. Therefore « is fixed
by the composition R, Ry, and must be on its axis.

Exercise 7.1. What is the axis of R; R»? Prove geometrically that generally

RiR, # RoR, .



