
Quick course in PostScript drawing

by Bill Casselman

These notes are intended to provide a basic short course in how to use PostScript for drawing mathematical
figures. Many people, if they are familiar with PostScript at all, probably think of it as a primitive language
produced by a computer drawing program like Adobe Illustrator for nothing but producing pictures on a printer.
In fact, it is a well designed and versatile programming language with which you can produce almost any
mathematical illustration you desire.

It is made more useful by the fact that there are freely available programs Ghostscript and Ghostview or GSView
which translate your programs into screen pictures. They run on almost any machine you are likely to meet. You
can download them for any platform from

http://www.cs.wisc.edu/ ghost/

Your principal source of information on generating mathematical will probably be

http://www.math.ubc.ca/ cass/graphics/text/www/

1. Starting

To draw a picture with PostScript, write a file of commands and then use gsview (or ghostview) to interpret it
and draw a picture on the screen. You can keep modifying your file and reopening it from the same window
until it looks right. If you want a printed copy you send the file to the printer through your viewer also.

Every PostScript file should begin with the ‘magic’ characters %!. These should be the very first two characters
of the file.

Comments in PostScript are generally begun with %. The rest of the line after a % will be ignored when the
computer reads the file. To get a file printed, your file should end with showpage. Spaces and line ends are all
the same in PostScript.

2. Driving in reverse

The first feature of PostScript that causes some confusion is that commands and operators are expressed in an
order somewhat backward from what you may be used to. To add 3 and 4 you type 3 4 add. To find the sine
of 40◦ you type 40 sin. Operations and commands apply to a stack —an array of data—much like with an HP
calculator. Operations are applied to things at the top of the stack, and usually remove them to replace them with
the result of the operation.

This convention is called RPN (Reverse Polish Notation), after a group of mathematicians who invented it. Its
virtue is speed of interpretation on a machine.

Arithmetic operations are in words: add, sub, mul, div. Mathematical functions available are sqrt, sin, cos,
tan, ln (natural logarithm), exp (y x exp gives yx), and atan (so that y x atan gives atan(y/x). All operations
and commands leave the result at the bottom of the stack. Angles are in degrees.

Arrays in PostScript are bracketed by [...], indexed starting with 0, accessed as in [4 5 6] 1 get which gives
5.

Quick course in PostScript drawing 2

3. Drawing

PostScript is above all designed for drawing, but just as an army is designed for fighting and yet usually has only
a relatively small number of fighting soldiers, PostScript has a small number of commands directly concerned
with drawing.

Here is how a unit square is drawn:

newpath
0 0 moveto
1 0 lineto
1 1 lineto
0 1 lineto
0 0 lineto
stroke

The command moveto is like raising your pen from the paper and putting it down somewhere. The command
lineto keeps the pen on the paper while it moves. Closely related commands are rmoveto and rlineto, which
use coordinates relative to the current position . But nothing is actually drawn until you enter stroke or fill.
The first draws a line along the path, the second fills in a closed path if you have drawn one. You can close a path
up with closepath, always a good idea to include it if you mean to draw a truly closed curve.

Another drawing command is arc. Thus

newpath
1 2 0.5 0 360 arc
fill

fills in a circle with centre (1, 2), radius 0.5. You can also restrict all subsequent drawing to within a path with
clip (instead of stroke or fill).

The most interesting drawing command in PostScript is curve, but understanding how it works and how to use
it is more complicated than I can explain here. Basically, it is used for drawing smooth curves which look good at
all magnifications. For many purposes, however, you can approximate a smooth curve by a sequence of straight
line segments.

4. The stack

You can’t understand what your programs do without knowing a bit about how the stack works. The first basic
fact is that most commands apply to items at the top of the stack, removing them and replacing them by the
return value of the command. Thus the sequence 4 5 add (1) puts 4 on the top of the stack; (2) next puts 5 on it;
(3) removes these two items and returns by putting 9 on the stack, ready to be used in the next operation. The
items a command swallows up are called its arguments .

Certain commands just manipulate items on the stack without changing them. The command exch exchanges
the two items at the bottom (the exposed part) of the stack. The command pop gets rid of the bottom item on the
stack. The command == displays and pops the top item. The command dup makes an extra copy of the item on
the top of the stack (so there will now be two copies of it at the top).

5. Units

The natural unit of length in PostScript is one point which is 1/72′′ of one inch. The unit square in these units is
barely visible. To change scale, for example to inches, type 72 72 scale.

When PostScript begins, the width of lines is 1 unit. You can set it with the command setlinewidth. Thus 0.01
setlinewidth is a good choice if you have scaled to inches. (If you do not reset the linewidth, it will remain at
one unit—i.e. one inch.)

Quick course in PostScript drawing 3

6. Coordinates

At the beginning of each program, the origin is at the lower left. But one thing that makes PostScript powerful is
that you can change coordinate systems easily. You can shift the origin by translate. Thus

72 72 scale
4.25 5.5 translate

will put the origin at the centre of a 8.5′′ × 11′′ page.

You can rotate your figures with something like 40 rotate (degrees again). Be sure to unrotate afterwards.

7. Colours

Black is 0, white is 1, grey in between. Thus 0.5 setgray sets the current colour to medium grey (note American
spelling). One figure always paints over an earlier one.

Using colours can be striking. They are described in RGB terms. Thus 0 0 1 setrgbcolor makes the current
colour equal to blue.

Colours, line widths, scale, the origin of the coordinate system are all part of the graphics environment .

8. Pages

You end a page with showpage. It is best to set up coordinates and sizes over again on each page. You can best do
this if you begin every page with a gsave (saving the default graphics environment) and ending it with grestore
showpage (restoring the original default environment).

9. Variables

Variables are defined with def. Thus /x 3 def sets x = 3. It is possible to make variables local, but in this crash
course we’ll skip that.

10. Procedures

A procedure in PostScript is a sequence of commands enclosed in {...}. They can be assigned to variables just
like anything else. Entering this variable afterwards just replaces the variable by the sequence it stands for. Thus

/degrees {180 mul 3.14159 div} def

defines a procedure which will change radians to degrees, as in 3.14159 degrees, which gives 180◦.

11. Loops

There are several ways to loop in PostScript. The simplest is repeat. Thus

10 {2 mul} repeat

will multiply a number on the stack by 210.

Another is for. At the beginning of every loop here the loop variable is placed on the stack. Thus

0
1 1 10 {
add
} for

puts the sum 1 + 2 + · · · + 10 on the stack. Only integers should be used as loop variables.

Quick course in PostScript drawing 4

12. Brief command list

newpath
moveto
rmoveto
lineto
rlineto
stroke
fill
clip
closepath
arc
==
gsave
grestore
scale
translate
rotate
cos
sin
exp
ln
atan
add
sub
mul
div
sqrt
setlinewidth
setgray
setrgbcolor
showpage
for
get
aload pop
exch
def
repeat
dup
[...]

