
Light Issues in Computer
Graphics

Presented by Saleema Amershi

• Light plays an important part in computer
graphics for rendering realistic images.

• Using lighting models, we can simulate
shading, reflection and refraction of light,
comparable to what we see in the real
world.

• Local illumination refers to direct
interaction between one light source and
one object surface.

• Global illumination refers to the interaction
of light between all surfaces in a scene.
– Responsible for shading
– Reflection between surfaces
– Refraction of surfaces

Local Illumination Models

• In computer graphics, single object-light
interaction is approximated through local
illumination models.

• Basic model used is the Phong model which
breaks local illumination into 3 components:
– Ambient reflection
– Diffuse reflection
– Specular reflection

• For every point, or small surface area, of an
object, we want to calculate the light due to
these three components.

Ambient reflection
• Crude approximation to

global effects of light.
• Accounts for the general

brightness in a scene
from light scattering in all
directions from all
surfaces.

• Iout = kambient · Iambient

• I is the light intensity
(power per unit area), or
illumination.

Diffuse Reflection

• All materials have diffuse properties, due
to the ‘roughness’ of a surface at the
microscopic level.

• Ideal diffuse reflection refers to light hitting
a surface and then scattering evenly in all
directions due to the surface ‘roughness’.

• Lambert said that the energy reflected off a
surface from a light source is proportional to
the cosine of the incident angle, i, between
the light and the normal to the surface.

• Iout α cos(i) or Iout α n · l

• So now we have
– Iout = kambient · Iambient + kdiffuse · Ilight · n · l

Specular Reflection
• Shiny materials have

specular properties, that give
highlights from light sources.

• The highlights we see
depends on our position
relative to the surface from
which the light is reflecting.

• For an ideal mirror, a
perfectly reflected ray is
symmetric with the incident
ray about the normal.

• But as before, surfaces are not perfectly
smooth, so there will be variations around
the ideal reflected ray.

• Phong modelled these variations through
empirical observations.

• As a result we have:
Iout = kspecular · Ilight · coss(θ)

• s is the shininess factor due to the surface
material.

Phong Lighting Model
• Putting all these components together gives us:

Iout = kambient·Iambient + kdiffuse·Ilight·(n·l)
+ kspecular·Ilight·(v·r)s

• In reality, however, we can have more then one
light source reflecting light off of the same surface.
This gives us:
Iout = kambient·Iambient

+ ∑Ilight · (kdiffuse·(n·l)+ kspecular·(v·r)s)

• Varying shininess coefficient in specular
component:

• Combining diffuse and specular lighting:

diffuse diffuse

plus

specular

How do we use really use this?

• Viewing frustrum

• Z-buffering and the image plane

x=left

x=right

y=top

y=bottom z=-near
x

VCS

y

--zz

Example

• No shadows
• No refractions or reflections

Ray Tracing!
• Better method, can show these realistic effects.

Ray Tracing Method

• Cast a ray from the eye (or the camera)
through each pixel in the image plane,
until the ray intersects an object.

• Calculate local illumination for this point
using Phong model.

Calculating Intersections
• Largest computational overhead.
• Most objects are represented by

collections of planar polygons.
• Intersections are between rays and

planes.
• Implicit plane equation

F(P) = N·P + D =0
• Parametric ray equation

P(t) = Pa + t(Pb – Pa)

• Solve for t:
F(P(t)) = N·(Pa + t(Pb – Pa) + D = 0
t =(-D -N· Pa)/(N· Pb - N· Pa)

• Plug back into P(t) to get intersection
point.

• Remember that calculating t is solving a
quadratic. We want the first intersection of
the ray with a surface, so take the smallest
t value.

• After finding the intersection point, we
need to actually see if this point lies within
the polygon that described the plane.

• Use barycentric coordinates to test (not
covered here).

• Try to avoid calculating intersections, by
testing whether there actually will be an
intersection before calculating it.

So Whats New?
• Need to do more then

just calculate the local
illumination for the
point of intersection to
make full use of ray
tracing.

• Cast secondary
reflection and
refraction rays from
point of intersections
to see other effects.

Checking for Shadows

• For each light source in a scene, cast a ray from
that light source to the intersection point we just
calculated.

• If the ray hits an object before reaching the point,
then ignore contributions from that light source.

• Add this to local illumination model:
Iout = kambient·Iambient

+ ∑blightIlight · (kdiffuse·(n·l)+ kspecular·(v·r)s)
• blight is 0 or 1 depending on whether light is

obstructed or not.

Refraction

• As we all know, lenses, glass, water and
other translucent materials refract light.

• We can cast a secondary refraction ray
from the intersection point if a material is
translucent.

Snell’s Law!

• Computer graphics uses Snell’s law to
compute the refracted ray, but in vector
form.

• Snell’s Law: ni sin(i) = nr sin(r)
• Vector form: ni (l x n) = nr (r x n)
• Solve for r (complicated derivation)

– r = ni / nr (cos(i)) – cos(r)n - ni / nr l
= ni / nr (n · l) –

√(1- (ni / nr)2 (1 – (n · l) 2) * n - ni / nr l

• After calculating the direction of the
refracted ray, we can cast a secondary ray
in this direction and recursively look for
intersections and add illumination values
from these other intersections to the
illumination of the original intersections.

• Can do the same for reflected rays off of
other surfaces by casting a ray in the
direction of reflection as before:

r = (2l · n)n - l

• These secondary illumination values will
not have as much weight on the
illumination of the pixel as the original
illumination value, as intensity of light
decreases as distance increases.

• Add a weighting factor to these secondary
illumination values to account for this.

• Recurse from secondary intersections.

The Ray Tracing Algorithm
• raytrace(ray from a pixel)

-calculate closest intersection
-calculate local illumination //take shadows
for intersection point //into account

-reflected_component = raytrace(reflected_ray)
// if an object surface has reflection properties (ie. is
//not completely diffuse)

-refracted_component = raytrace(refraced_ray)
//if an object surface is transparent

-color_of_pixel = c1 * localcolor
+ c2 * reflected_component
+ c3 * refracted_component

Cool Ray Traced Images

