Light Issues In Computer
Graphics

Presented by Saleema Amershi

 Light plays an important part in computer
graphics for rendering realistic images.

e Using lighting models, we can simulate
shading, reflection and refraction of light,
comparable to what we see In the real
world.

 Local illumination refers to direct
Interaction between one light source and
one object surface.

e Global illumination refers to the interaction
of light between all surfaces in a scene.
— Responsible for shading
— Reflection between surfaces
— Refraction of surfaces

L ocal Hlumination Models

* |In computer graphics, single object-light
Interaction is approximated through local
Illumination models.

e Basic model used is the Phong model which
breaks local illumination into 3 components:
— Ambient reflection
— Diffuse reflection
— Specular reflection

e For every point, or small surface area, of an
object, we want to calculate the light due to
these three components.

Ambient reflection

Crude approximation to
global effects of light.

Accounts for the general
brightness in a scene
from light scattering in all
directions from all
surfaces.

= kamblent ambient
| is the light intensity

(power per unit area), or
Illumination.

Diffuse Reflection

 All materials have diffuse properties, due
to the ‘roughness’ of a surface at the
microscopic level.

 |deal diffuse reflection refers to light hitting
a surface and then scattering evenly in all
directions due to the surface ‘roughness’.

NG

Lambert's Cosine Law
i T T
_-. . -: ol ! __T g e LA ‘ ¥ H.l I'. .'I::- i' . -I'- f .: : |
. i | -, e i R

e Lambert said that the energy reflected off a
surface from a light source is proportional to
the cosine of the incident angle, I, between
the light and the normal to the surface.

|, @ COS(l) orl ,an |

So now we have
- kamblent ambient T I(diffuse ' IIight -n -

Specular Reflection

« Shiny materials have
specular properties, that give
highlights from light sources.

e The highlights we see
depends on our position
relative to the surface from
which the light is reflecting.

e For an ideal mirror, a
perfectly reflected ray is
symmetric with the incident
ray about the normal.

« But as before, surfaces are not perfectly
smooth, so there will be variations around
the ideal reflected ray.

 Phong modelled these variations through
empirical observations.

e As a result we have:

Iout = kspecular ' IIight ' COSS(G)

e SIS the shininess factor due to the surface
material.

Phong Lighting Model

e Putting all these components together gives us:

Iout: kambient'lambient + kdiffuse'llight'(ﬂ'l)
: (v -r)s
+ kspecular IIight (V r)

 |In reality, however, we can have more then one
light source reflecting light off of the same surface.
This gives us:

- kamblent ambient
t leight (kdiffuse (n'|)+ kspecular'(v'r)s)

» Varying shininess coefficient in specular

component:

« Combining diffuse and specular lighting:

diffuse diffuse
plus
specular

How do we use really use this?

B
230N

y=bottom £~ near

e Viewing frustrum x=left

X= rlght
e /Z-buffering and the |mage plane

]@
1)

Example

e NoO shadows
 No refractions or reflections

Ray Tracing!

e Better method, can show these realistic effects.

Ray Tracing Method

e Cast a ray from the eye (or the camera)
through each pixel in the image plane,
until the ray intersects an object.

e Calculate local illumination for this point
using Phong model.

Calculating Intersections

Largest computational overhead.

Most objects are represented by
collections of planar polygons.

ntersections are between rays and
nlanes.

mplicit plane equation
F(P)=N-P+D =0
Parametric ray equation
P(t) — Pa T t(Pb _ Pa)

e Solve for t:
F(P(t)=N-(P,+t(P,-P,)+D=0
t=(-D-N-P_)/(N-P,-N-P,)

* Plug back into P(t) to get intersection
point.
e Remember that calculating t is solving a

guadratic. We want the first intersection of
the ray with a surface, so take the smallest

t value.

 After finding the intersection point, we
need to actually see If this point lies within
the polygon that described the plane.

e Use barycentric coordinates to test (not
covered here).

* Try to avoid calculating intersections, by
testing whether there actually will be an
Intersection before calculating it.

So Whats New?

 Need to do more then
just calculate the local

ilumination for the I % JY e
point of intersection to Furiace
make full use of ray ¢ B e
tracing. < oy

« Cast secondary cUfce

reflection and
refraction rays from
point of intersections
to see other effects.

Checking for Shadows

 For each light source Iin a scene, cast a ray from
that light source to the intersection point we just

calculated.
 |f the ray hits an object before reaching the point,
then ignore contributions from that light source.

e Add this to local illumination model:

Iout = kambient'lambient
T Zblightllight ' (kdiffuse'(n '|)+ kspecular'(v'r)s)
* DjgneIs O or 1 depending on whether light is
obstructed or not.

Refraction

* As we all know, lenses, glass, water and
other translucent materials refract light.

 We can cast a secondary refraction ray
from the Intersection point if a material Is
translucent.

Snell’'s Law!

Computer graphics uses Snell’s law to
compute the refracted ray, but in vector
form.

Snell’'s Law: n; sin(i) = n. sin(r)
Vector form: n. (I xn) =n, (r x n)

Solve for r (complicated derivation)
—r=n,/n (cos(i)) —cos(r)n -n,/ n_|
=n/n. (n-1)—
N@A-(n/n)2 (@A —-(-)2)* n-n/n]|

« After calculating the direction of the
refracted ray, we can cast a secondary ray
In this direction and recursively look for
Intersections and add illumination values
from these other intersections to the
Illumination of the original intersections.

e Can do the same for reflected rays off of
other surfaces by casting a ray in the
direction of reflection as before:

r=2 -n)n -1

 These secondary illumination values will
not have as much weight on the
illumination of the pixel as the original
illumination value, as intensity of light
decreases as distance increases.

« Add a weighting factor to these secondary
Hlumination values to account for this.

 Recurse from secondary intersections.

The Ray Tracing Algorithm

raytrace(ray from a pixel)

-calculate closest intersection

-calculate local illumination /[take shadows
for intersection point //into account
-reflected_component = raytrace(reflected ray)

/[If an object surface has reflection properties (ie. Is
//not completely diffuse)

-refracted_component = raytrace(refraced _ray)
//if an object surface is transparent

-color_of pixel = c1 * localcolor
+ c2 * reflected_component
+ c3 * refracted _component

Cool Ray Traced Images

yRay Tracing

