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Outline

• Really brief beam shaping background
• Lasers and what they’re used for
• Theory of refractive laser beam shaping
• Demonstration
• Samples of real-life beam-shaping 

technology



Archimedes of Syracuse (287-
212 BC)



Siege of Syracuse 213 BC

• Not the most productive use of his genius 
(note the date)



Reagan of Illinois (1911-? AD)



My beam is bigger than yours



Fresnel lenses

• Lighthouses, automotive headlights

• Not much different except saves weight



Optics so far in this course:

• Two related concepts:
– Ray direction due to refraction
– Optical path length

• So far have been discussed separately.



Lasers

• Conventional light-sources: divergence and 
incoherence reduce effective intensity.

• Lasers: light is directional, monochromatic 
and coherent in phase.



Applications of lasers

• Microphotolithography
• Materials processing
• Laser writing
• Medicine



Our fundamental concern

• Typical laser source has non-uniform 
intensity distribution – a concern for 
industrial applications.

• Consequences?



What is laser beam shaping

• Redistribution of irradiance through an 
optical system.

• What’s so difficult about it? Preservation of 
wave-front uniformity and loss-less 
shaping.



The case that we will deal with

• Go from a Gaussian energy distribution to 
flat-top.



Different approaches possible

• Simple aperture masking (lossy)
• Diffractive optics (Fourier transforms) (way 

difficult, dude)
• Loss-less geometric (refractive) optics



Loss-less refractive shaping

• Two goals:
– uniform energy balance across output
– uniform optical distance through system



Energy Balance condition 1/2

• Energy (intensity) is conserved in a bundle of rays:

• Thus conserved also over the cross section of a beam:



Energy Balance condition 2/2

• Typical Gaussian 
intensity function:

• The solution of 
the previous 
integral yields R as 
a function of r:

(explain r0 )



Optical path length condition 1/2

• Optical path length along axis of system:
(OPL)0 = nt1 + d + nt2

• Optical path length distance r from axis:
(OPL)r = nz + [(R – r)2 + (Z – z)2]½+ n(t1 + d + t2 – Z)
(in our case t1 & t2 will be zero)

• and since wave-front uniformity must be preserved:
(OPL)0 = (OPL)r



Optical path length condition 2/2

• Combining previous equations yields:

• We can rewrite this, solving for (Z – z) as dependent on r

• Note that by Energy Balance condition we already have R 
dependent on r



Ray tracing 1/2

Rays are refracted at surfaces 
according to Snell’s law. 

Ray trace equation of from 
(r,z) to (R,Z) is:

Where A is ray vector:



Ray tracing 2/2

Previous equations can be combined to solve for z’
as a quadratic dependent on r:

Note: R and (Z – z) have also been expressed in terms of r.



We’re left with nasty calculus

• Analytical integration of  z’(r) is difficult
• We’ll do something simpler – just 

approximate using Riemann sums (and the 
opposite to derive Z into Z’).

• Demo (raytrace and OPL)



Analysis of the optical system

• Least squares fit of (r,z) and (R,Z) to a 
simple function.

• Used so that we can have a typical spherical 
or conical lens (low cost of manufacture).



Realistic output patterns

(data sheet for Vision Tech SNF Series Lasers, www.vlt.nl)
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