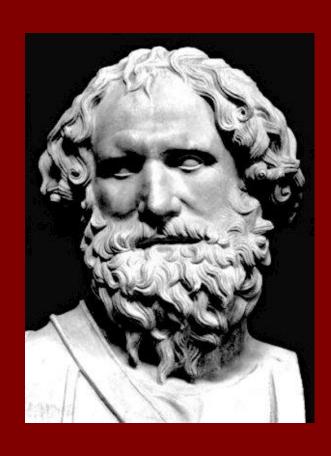
Laser beam shaping in industrial applications

Wei-Yuen Tan 84717925 MATH 309 Spring 2004

Outline

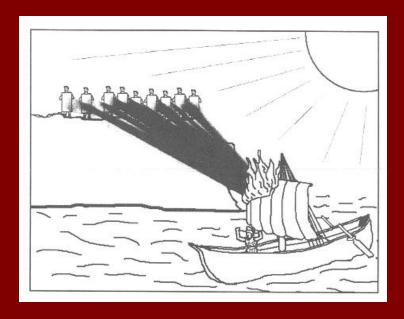
- Really brief beam shaping background
- Lasers and what they're used for
- Theory of refractive laser beam shaping
- Demonstration
- Samples of real-life beam-shaping technology

Archimedes of Syracuse (287-212 BC)

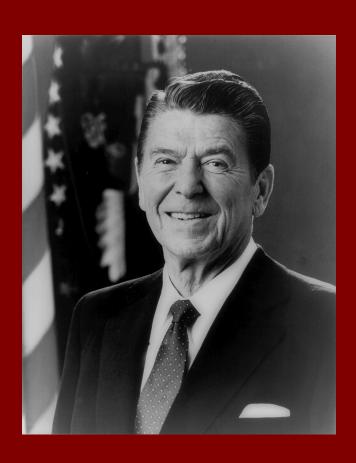


Siege of Syracuse 213 BC

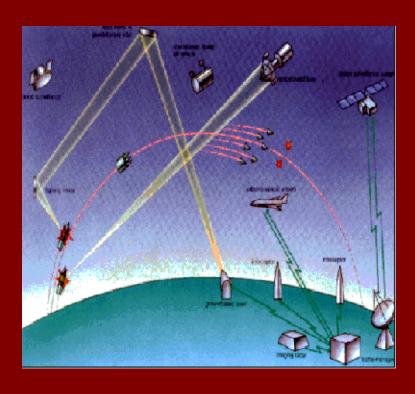
• Not the most productive use of his genius (note the date)



Reagan of Illinois (1911-? AD)

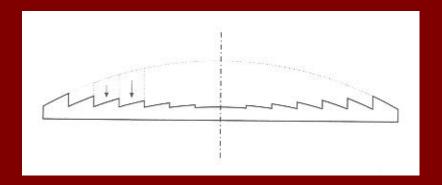


My beam is bigger than yours



Fresnel lenses

• Lighthouses, automotive headlights



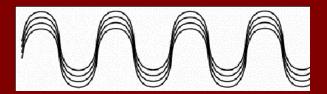
• Not much different except saves weight

Optics so far in this course:

- Two related concepts:
 - Ray direction due to refraction
 - Optical path length
- So far have been discussed separately.

Lasers

- Conventional light-sources: divergence and incoherence reduce effective intensity.
- Lasers: light is directional, monochromatic and coherent in phase.



Applications of lasers

- Microphotolithography
- Materials processing
- Laser writing
- Medicine

Our fundamental concern

• Typical laser source has non-uniform intensity distribution — a concern for industrial applications.

• Consequences?

What is laser beam shaping

- Redistribution of irradiance through an optical system.
- What's so difficult about it? Preservation of wave-front uniformity and loss-less shaping.

The case that we will deal with

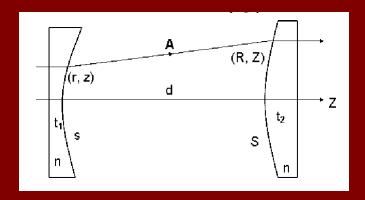
• Go from a Gaussian energy distribution to flat-top.

Different approaches possible

- Simple aperture masking (lossy)
- Diffractive optics (Fourier transforms) (way difficult, dude)
- Loss-less geometric (refractive) optics

Loss-less refractive shaping

- Two goals:
 - uniform energy balance across output
 - uniform optical distance through system



Energy Balance condition 1/2

• Energy (intensity) is conserved in a bundle of rays:

$$I_{in} dw = I_{out} dW$$

• Thus conserved also over the cross section of a beam:

$$\int_{0}^{2\pi} d\theta \int_{0}^{r} I_{in}(r) r dr = \int_{0}^{2\pi} d\theta \int_{0}^{R} I_{out}(R) R dR$$

Energy Balance condition 2/2

- Typical Gaussian intensity function:
- The solution of the previous integral yields *R* as a function of *r*:

$$I_{in}(r) = \exp[-2(r/r_0)^2]$$

$$R = \sqrt{\frac{r_0^2}{2I_{out}} \left[1 - \exp\left(-\frac{2r^2}{r_0^2}\right) \right]}$$

$$I_{\text{out}} = \frac{r_0^2}{2R_{\text{max}}^2} \left[1 - \exp\left(-2r_{\text{max}}^2/r_0^2\right) \right]$$

(explain r_0)

Optical path length condition 1/2

• Optical path length along axis of system:

$$(OPL)_0 = nt_1 + d + nt_2$$

• Optical path length distance r from axis:

$$(OPL)_r = nz + [(R - r)^2 + (Z - z)^2]^{1/2} + n(t_1 + d + t_2 - Z)$$

(in our case t_1 & t_2 will be zero)

• and since wave-front uniformity must be preserved:

$$(OPL)_0 = (OPL)_r$$

Optical path length condition 2/2

Combining previous equations yields:

$$[(R-r)^{2} + (Z-z)^{2}]^{\frac{1}{2}} = n(Z-z) - d(n-1)$$

• We can rewrite this, solving for (Z - z) as dependent on r

$$(Z-z) = \frac{n(n-1)d + \left[(n-1)^2 d^2 + (n^2-1)(R-r)^2 \right]^{1/2}}{n^2 - 1}$$

Note that by Energy Balance condition we already have R dependent on r

Ray tracing 1/2

Rays are refracted at surfaces according to Snell's law.

Ray trace equation of from (r,z) to (R,Z) is:

$$(R-r)(\mathbf{A})_z = (Z-z)(\mathbf{A})_r$$

Where A is ray vector:

$$\mathbf{A} = \frac{z' \left[n - \sqrt{1 + z'^2 \left(1 - n^2 \right)} \right]}{1 + z'^2} \mathbf{r}$$

$$+ \frac{\left[nz'^2 + \sqrt{1 + z'^2 \left(1 - n^2 \right)} \right]}{1 + z'^2} \mathbf{k}$$

Ray tracing 2/2

Previous equations can be combined to solve for z' as a quadratic dependent on r:

$$z' = \frac{-(R-r)(Z-z) \pm n\sqrt{(Z-z)^2 + (R-r)^2}}{\left[1 - n^2\right](Z-z)^2 - n^2(R-r)^2}$$

Note: R and (Z - z) have also been expressed in terms of r.

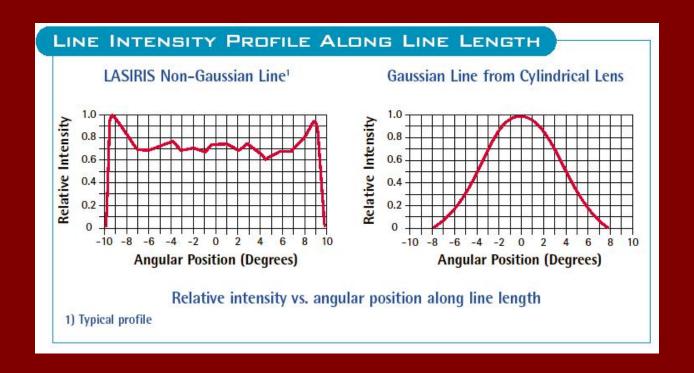
We're left with nasty calculus

- Analytical integration of z'(r) is difficult
- We'll do something simpler just approximate using Riemann sums (and the opposite to derive Z into Z').
- Demo (raytrace and OPL)

Analysis of the optical system

- Least squares fit of (r,z) and (R,Z) to a simple function.
- Used so that we can have a typical spherical or conical lens (low cost of manufacture).

Realistic output patterns



(data sheet for Vision Tech SNF Series Lasers, www.vlt.nl)

Acknowledgements

• Theory largely sourced from Chapter 4 of *Laser Beam Shaping: theory and techniques.* (Dickey & Holswade 2000). ISBN-082470398-7