
Commensurability

We now know quite a bit about fractions, but they are not really what I am most interested in. I am
interested in the myriad of numbers out there that are not frcations. The simplest ones are square roots and
their relatives, and we’ll look at those first.

1. The square root of 2 is not a fraction

If
√

2 were a fraction, we could write it as p/q where the gcd of p and q is 1. If

√
2 =

p

q

then

2 =
p2

q2
, 2q2 = p2 .

Thus 2 divides p2. By a result in the notes on divisibility, 2 must divide p, we can write p = 2p•, and then
get

2q2 = (2p•)
2 = 4p2

•
, q2 = 2p2

•
.

But we can repeat the argument: 2 must divide q. But this contradicts the initial assumption that p and q
are relatively prime.

A similar argument will work for other square roots other than those which are actually integers. The best
result that follows from a similar argument is this:

Theorem. If r = p/q is a rational root of the polynomial equation

A(x) = anxn + an−1x
n−1 + · · · + a1x + a0 = 0

where the ai are integers, then p divides a0 and q divides an.

This implies immediately that the k-th root of N is never a fraction unless N is a perfect k-th power.

Proof. We need first

Lemma. If r is relatively prime to s then it is relatively prime to rn.

Left as exercise.

If p/q is a root of A(x) then

anpn + an−1p
n−1q + · · · + a1pqn−1 + a0q

n = 0

which can be rewritten
anpn = −(an−1p

n−1q + · · · + a1pqn−1 + a0q
n) .

Since q divides the right, it divides ther left. Since it is relatively prime to pn, it must divide an. Similarly,
r must divide a0.
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2. The geometric Euclidean algorithm

Two line segments are said to be commensurable if they are both integral multiples of some common
(smaller) segment. For example, if one segment is of unit length and the other is of length 3/2 then they
are both multiples of a segment of length 1/2, so they are commensurable. In general, two segments are
commensurable precisely when their ratio is a fraction, since if one is m times a segment and the other is n
times the same segment, then the ratio is m/n.

The Euclidaen algorithm as spelled out in class was applied only to integers, but the same process will
produce a common measure of any two given commensurable segments. Say the segments are a and b units
long. If d is the common measure of both, then it will be the coomon measure of a − qb if q is an integer.
So we find q such that this has length less than b, which is always possible; swap a and b, and continue on
until one segment fits into the other an even number of times.

But the converse is also true: two segments are not commensurable precisely when their ratio is not a
fraction, or in other words when the geometric Euclidean algorithm dosn’t stop.

Let’s look at a famous example of this.

Suppose a single line segment AC is partioned into smaller segments AB and BC with this property: The
ratio of AB to AC is the same as the ratio of BC to AB.

A B C

1 x-1

Choose units of length so that x is the length of the whole segment and 1 is that of the larger half. The
length of the smaller half is x − 1.

Let x be the length of the whole segment, and scale We can see immediately that 1 < x < 2.

By definition we have an equation
x

1
=

1

x − 1

which leads to

x2 − x − 1 = 0, x =
1 +

√
5

2
= 1.61803398 . . . .

This number is called the golden ratio.

Let’s apply the Euclidean algorithm to the segments 1 and x. Since 1 < x < 2, we have the first quotient
q0 = 1. The remainder is r = x − 1. So now we are looking at the two segments 1 and x − 1. But by
definition the ratio x − 1 :: 1 is the same as 1 :: x. In other words, in performing one step of the Euclidean
algorithm we are just scaling everything by 1/x. The second quotient q1 is again 1.

1 x-1

As is the third, fourth, etc. The process never stops, and we see that the golden ratio is not a rational

number.
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In general, if y is any number larger thna 1, can apply we apply the Euclidean algorithm to the intervals of
length 1 and x to test whether x is a rational number or not. It will be rational if and only if the process
stops. Suppose for convenience that x > 1. The first quotient is the largest integer less than or equal to x,
the floor bxc of x.

We get q0 = bxc, r = x − q with 0 ≤ r < 1. Then we apply the same division to 1 and r, dividing 1 by r
and setting q1 = b1/rc. In effect we are setting a new value of x to be 1/r. So we can describe the process
in brief like this to find the succession of quotients:

(1) Start with x > 1.

(2) Set q = bxc, r = x − q.

(3) If r > 0, set the new value of x to be 1/r. Loop again to (2). Otherwise stop.

Let’s try another example, x =
√

2. Here 1 < x < 2 since 1 < 2 < 4, so q0 = 1, r0 =
√

2 − 1. Next

x :=
1√

2 − 1
=

√
2 + 1√
2 + 1

1√
2 − 1

=
√

2 + 1 .

The q1 = 2, r1 = (
√

2 + 1)− 2 =
√

2− 1 again. So we are looping, and the succession of quotients here is 1,
2, 2, . . .

These examples are typical:

Theorem. If N is not a perfect square and x =
(

a + b
√

N
)

/c with integers a, b, and c then the succession

of quotients is always eventually periodic and non-vanishing. Conversely, if the succession of quotients is

periodic then x is of this form.

Let’s looka t just one example of how to go backwards here. What number x gives rise to the succession 1,
2, 1, 2, . . . ? We have

x = 1 + r0

1

r0

= 2 + r1

1

r1

= 1 + . . .

= x .

Therefore

r1 =
1

x

2 +
1

x
= r0

=
1

x − 1
.

which leads to the quadratic equation

x = 2x(x − 1) + (x − 1), 2x2 − 2x − 1 = 0 .


