DIOPHANTUS OF ALEXANDRIA

A STUDY IN THE HISTORY

OF

GREEK ALGEBRA

B

SIR THOMAS L. HEATH *K.C.H.,

SC.D., SOMETIME FELLOW OF TRINITY COLLEGE, CAMBRIDGE

SECOND EDITION

WITH A SUPPLEMENT CONTAINING AN ACCOUNT OF FERMAT’S
THEOREMS AND PROBLEMS CONNECTED WITH DIOPHANTINE
ANALYSIS AND SOME SOLUTIONS OF DIOPHANTINE
PROBLEMS BY EULER

( Cambridge :
at the University Press
1910




THEOREMS AND PROBLEMS BY FERMAT 281

The Indian Solution.

If the Greeks did not accomplish the general solution of our equation,
it is all the more extraordinary that we should have such a general solution
in practical use among the Indians as early as the time of Brahmagupta
(born 598 A.D.) under the name of the “cyclic method.” Whether this
method was evolved by the Indians themselves, or was due to Greek
influence and inspiration, is disputed. Hankel held the former view!;
Tannery held the latter and showed how, from the Greek manner of
deducing from one approximation to a surd a nearer approximation, it is
possible, by simple steps, to pass to the Indian method® The question
presumably cannot be finally decided unless by the discovery of fresh
documents; but, so far as the other cases of solution of indeterminate
equations by the Indians help to suggest a presumption on the subject,
they are, I think, rather in favour of the hypothesis of ultimate Greek
origin. Thus the solution of the equation ax—4y =¢ gfven by Aryabhata
(born 476 A.D.) as well as by Brahmagupta and Bhaskara, though it
anticipated Bachet’s solution which is really equivalent to our method of
solution by continued fractions, is an easy development from Euclid’s
method of finding the greatest common measure or proving by that process
that two numbers have no common factor (Eucl. vIL 1, 2, X. 2, 3)*, and
it would be strange if the Greeks had not taken this step. The Indian
solution of the equation xy = ax + &y + ¢, by the geometrical form in which
it was clothed, suggests Greek origin*.

The “cyclic method ” of solving the equation
xr— Ay =1

is found in Brahmagupta and Bhaskara® (born 1114 A.D.) and is well
described by Hankel, Cantor and Konen®.

The method is given in the form of dogmatic rules, without any proof
of the assumptions made, but is equivalent to a preliminary lemma followed
by the solution proper.

1 Hankel, Zur Geschichte der Math. im Alterthum und Mittelalter, pp. 203—4.

2 Tannery, “‘Sur la mesure du cercle d’Archimede” in Mém. de la soc. des sciences
phys. et nat. de Bordeaux, 11° Sér. 1v., 1882, p. 325; cf. Konen, pp. 27-28; Zeuthen,
¢ L’Oeuvre de Paul Tannery comme historien des mathématiques” in Bibliotheca Mathe-
matica, Vi3, 19o5—0, pp. 271-273.

3 G. R. Kaye, ““Notes on Indian mathematics, No. 2, Aryabhata” in Journal of the
Asiatic Society of Bengal, Vol. 1v. No. 3, 1908, pp. 135-138.

4 Cf. the description of the solution in Hankel, p. 199; Cantor, Gesch. d. Math. 13,
p. 631.

5 The mathematical chapters in the works of these writers containing the solution in
question are contained in H. T. Colebrooke’s 4lgebra with arithmetic and mensuration
from the Sanskrit of Brakmegupta and Bhaskara, London, 1817.

6 Hankel, pp. 200-203; Cantor, I3, pp. 632-633; Konen, 0p. ciz., pp. 19—26.
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Lemma.
If x=p, y=¢ be a solution of the equation

Ay +s5=a,
and x =2/, y=¢ a solution of the equation
A+ =
then, say the Indians, x = pp’' + Agq', y=p¢’ + p'q is asolution of the equation
Ay? + 55’ =
In other words, if
Ap +s =2
Ag*+ =P'2}’
then A(pd 29y +s5'=(p0' + 497

This is easily verified®.
In particular, taking s=¢, we find, from any solution x =2, y=¢ of

the equation
Ay +s=a7,

a solution x = p* + Ag* y=2pq of the equation
A+ =t
Again, particular use of the lemma can be made when s=+1 or 5=+ 2.
(@) Ifs=+1,and x=p, y=g¢ is a solution of
Ay? t1=a, :
then x = #* + Ag, y = 2p¢ is another solution of the same equation.
If s=—1,and x=p, y=g¢ is a solution of
Ay —1=x%
then x = * + Ag* y = 2pg is a solution of
A1 —x.
(3) Ifs=+2,and x=p, y=gis a solution of
Ayita—,
then x = #* + Ag® y=2pyg is a solution of
Ay + 4 =2
In this case, since 2p¢ is even, the whole result when the values of
x, y are substituted must be divisible by 4, and we have x = L(p*+ 49,
y = pg as a solution of the equation
Ayt r=1o

1 For, since s=p%— Ag?, s'=p"2— 4q?,
ss'=(p% - 4g?) (#% - 49"?)
=(22)2+(4g9¢)2~ 4 (29)2 - A4 (#9)?
={(pp)2 2 App'9q + (Agq)?} — A (g = 220'97' + (#'9)*}
=(pp £ Agq )2~ A (9 £0'9)%
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Solution proper of the equation x*—Ay*= 1.

We take two numbers prime to one another, 2, 7, and a third number s
with no square factor, such that

Ag2 +3 :PQ’
the numbers being also chosen (in order to abbreviate the solution) such
that s is as small as possible, though this is not absolutely necessary.
(This is a purely empirical matter; we have only to take a rough ap-
proximation to ,/4 in the form of a fraction 217.)

[It follows that s, ¢ can have no common factor ; for, if & were a
common factor of s, ¢, it would also be a factor of 2% and 27 ¢* would have
a common factor. But p, ¢ are prime to one another.]

Now find a number 7 such that

= iﬁ%ﬂ’ is a whole number.

[This would be done by the Indian method called cu/faca (““pulveriser ),
corresponding to our method by continued fractions. ]

Of the possible values of » a value is taken which will make 7*— 4
as small as possible.

Now, say the Indians, we shall have :

s =t is an integral number,

and Ag+ 5= <Pf’lg‘ ‘)2 =

(Again the proofs are not given; they are however supplied by Hankel'.)

. gy, 5 3
1 Since ylzp x?’ is an integral number, all the letters in gi5=p+¢7 represent
integers.
Further, s=p2— Ag?;

therefore, eliminating s, we have
71 (22 - Ag")=p+gr,
or p(pp—1)=q (r+dgq).
Since p, ¢ have no common factor, ¢ must divide gg1—1; that is,

91—

T 5
=an Integer.

We have next to prove that s;=(72 — 4)/s is an integer.
4 _{g1s =2~ Ag® _gi®sP—2pps+s
7 7"
s(g12s — 2091+ 1)
7
and, since s, ¢ have no comn on factor, it follows that

p%-opp+1_ P-4
372 = s

Now 72— , since s=p%-- Ag?;

therefore is an integer,

is an integer.

P-A _q¥-pp+1 _q2(P-A¢) -+ (Pn-1N_
] ey = ) = ——‘( = (./l'

Also S1=
& 7 g g
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We have therefore satisfied a new equation of the same form as that
originally taken'.

We proceed in this way, obtaining fresh results of this kind, until we
arrive at one in which s =+ 1 or + 2 or +4, when, by means of the lemma,
we obtain a solution of

Ay +1=x%

Example. 'To solve the equation 67)* + 1 = a™

Since 82 is the nearest square to 67, we take as our first auxiliary equation
67.12—3=28% sothat p=8,¢=1, s=—3.

Thus ¢, =— i o put =7, which makes ¢, an integer and at the
2 -—
same time makes s, = — T =97 _ 6 as small as possible.
Thus qi=—5 H=(pp—-1)l¢=~41
and we have satisfied the new equation >
67 .52 6=—41"
Next we take ¢,= 4—12—ﬁ, and we put 7,=s5, giving ¢,=11; thus
7y — 67
== 6 =—1, and py= (142 — 1)/91= 99 and
' 67.(11)*—7=090%
Next g, =— s 1173, and we put 7, =9, giving ¢; = — 27 ; therefore
72—6 —Q0.27—F
53:%_7_7:_2, pszi-ﬂ7— =—221, and

67.(27)*— 2=(221)"

As we have now brought our s down to 2, we can use the lemma, and
67 (2.27.221)°+4=(221°+67. 272
or 67 (11934)* + 4 = (97684)%;
therefore, dividing by 4, we have

67 (5967)° + 1 = (48842)%
Of this Indian method Hankel says, “It is above all praise; it is
certainly the finest thing which was achieved in the theory of numbers

1 Hankel conjectures that the Indian method may have been evolved somewhat in
this way.
If Ag?+s=p? is given, and if we put 4¢2+s’ =22, then
A (g —p 9 +ss'=(2f - g7’
Now suppose £, ¢’ to be determined as whole numbers from the equation ¢’ —p'g=1,
and let the resulting integral value of £z’ — Agq’ be 7.
Then A +ss' =72, and accordingly 72— A4 must be divisisle by s, or S=(A4-7)[s is
a whole number.
Eliminating 2’ from the two equations in 2’, ¢’y we obtain
§=(p+g(P2 - Ag2={p 975
and, as stated in the rule. » has therefore to be so chosen that (p+g¢7)[s is an integer.
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before Lagrange ” ; and, although this may seem an exaggeration when we
think of the extraordinary achievements of a Fermat, it is true that the
Indian method is, remarkably enough, the same as that which was redis-
covered and expounded by Lagrange in his memoir of 1768'. Nothing is
wanting to the cyclic method except the proof that it will in every case
lead to the desired result whenever 4 is a number which is not a square;
and it was this proof which Lagrange first supplied.

Fermat.

As we have already said, Fermat rediscovered our problem and was

the first to assert that the equation

—A}’2 =1,
where 4 is any integer not a square, always has an unlimited number
of solutions in integers.

His statement was made in a letter to Frénicle of February, 16572%
Fermat asks Frénicle for a general rule for finding, when any number not a
Square is given, squares which, when they are respectively multiplied by the
given number and unity is added to the product, give squares. 1If, says
Fermat, Frénicle cannot give a general rule, will he give the smallest value
of y which will satisfy the equations[61y*+ 1 = x}ndilogy +1=a27%)

At the same time Fermat issued a challenge to the same effect to
mathematicians in general, prefacing it by some remarks which are worth
quoting in full4,

“There is hardly any one who propounds purely arithmetical questions,
hardly any one who understands them. Is this due to the fact that up to
now arithmetic has been treated geometrically rather than arithmetically?
This has indeed generally been the case both in ancient and modern
works ; even Diophantus is an instance. For, although he has freed
himself from geometry a little more than others have in that he confines
his analysis to the consideration of rational numbers, yet even there
geometry is not entirely absent, as is sufficiently proved by the Zetetica
of Vieta, where the method of Diophantus is extended to continuous
magnitude and therefore to geometry.

“Now arithmetic has, so to speak, a special domain of its own, the
theory of integral numbers. This was only lightly touched upon by Euclid
in his Zlements, and was not sufficiently studied by those who followed
him (unless, perchance, it is contained in those Books of Diophantus of

1 ““Sur la solution des problémes indéterminés du second degré” in Mémoires de
PAcad. Royale des Sciences et Belles-Lettres de Berlin, t. XXIL. 1769 (= Oeuvres de
Lagrange, 11. pp. 377 sqq.). The comparison between Lagrange’s procedure and the
Indian is given by Konen, pp. 75-77.

2 Qeuwvres de Fermat, 11. pp. 333—4-

3 Fermat evidently chose these cases for their difficulty ; the smallest values satisfying
the first equation are y=1226153980, x=1766319049, and the smallest values satisfying
the second are y=15140424455100, x=158070671986249.

4 Oeuvres de Fermat, 11. pp. 334—5-



