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MESSENGER OF MATHEMATICS.

NOTE ON CONTINUED FRACTIONS.#

By Henry J. Stephen Smith, Savilian Professor of Geometry in the
University of Oxford.

P= e Rl :
1. Ler ¢ T#‘_P#g_-l- A P an.d q being two
numbers relatively prime, of which p is the greater.

s - 1 1 ik
Writing, for convenience P=- and @=-, we divide a

line 01 of unit length (measured from left to right) into p
equal parts at the points 17, 2P, 3P, ...(p—1) P; and also
into ¢ equal parts at the points 1¢), 20, 3Q}:...[Q -1) Q. We
do not reckon 0 either as a point P or as a point @, but
we reckon 1 both as a point P and as a point @, so that
we have in all p points P, and ¢ points ¢, of which none
are coincident, excepting the two extreme points, which
coincide at 1. .

2. It is the purpose of this note to show that the
arrangement of the points P and @ upon the line 01, or,
which is the same thing, the arrangement in order of magni-

tude of the proper fractions - and <, may be inferred from
the development, of L in a continued fraction; and that,

vice versd, the development of *g may be inferred from an

* The substance of this note was communicated to the Mathematical Section
of the British Association, at the Bristol Meeting in 1875,

VOL. VL. . B




2 NOTE ON CONTINUED FRACTIONS.

inspection of the arrangement of the points. An example
will serve to explain the nature of the relation which we have
to establish.

3. Let p=39, =11, so that we have the development
1 1 .

=24 3597 3 the arrangement of the points 2 and

is indicated in the following scheme, in which transverse

lines are placed at the close of each of the sequences® to be

presently defined.

P, 2P, Q| 3P, 4P,2Q | 4P, 5P,3Q | 1P, || 8P, 9P, 4Q |,
10P, 11P, 5Q | 12P, 13P, 6Q | 14P || 15P, 16P,7Q Il
17P, 18P, 8Q | 197, 20P, 9Q. | 21P, 22P,10Q | 23P |

24P, 25P,11Q | 26P, 2P, 12Q | 28P, 29P, 13Q | 30P, |

31P, 32P, 14Q | 33P, 34P, 15Q | 35P, 36, 16Q) |
37P, 38F, 17Q | 39P I,

In this scheme, because u, =2, we have two points P
before we come to a point ¢; the sequence PP(), which
consists of w, points P followed by a point @, we term a
sequence of order 1; this sequence is repeatecf three times,
because w,=3, and is then followed by a single point P
(which is a sequence of order zero); a sequence, such as
PPQ | PPQ | PPQ | P, consisting of p, sequences of order 1,
followed by a sequence of order zero, we term a sequence

* These sequences have been already noticed by M. Christoffel, in an in-
teresting paper entitled “Observatio Anithmetica,” (Annali di Matematica, 2nd
series, vol. VL, p. 148), with which I unfortunately did not become acquainted
until my own i.nvaatigation was completed. M. Christoffel considers the least

itive remainders of ‘the series of numbers g, 2¢, f&n for the modulus p, and
Egilgnat.eaanyremainderby the symbol e or d, according as it is less or greater
than the remainder immediately following. It is easily seen that the sequences
of the symbols ¢ and d coincide with the sequences of the points P and (). For
if the remainder of s is greater than the remainder of (s + 1) ¢, we shall have,
for some integral value of %, the inequalities

(h=1)p<sg<hp <(s+1)q<(h+1)p,

s b s+1

T S
whence P g p ®
or the point @ les between the points sP and (s+ 1) P. And, again, if the
remainder of sg is less than the remainder of (s + 1) g, the inequalities

(h=1)p<sg<hp, (h—1)p<(s+1)q<hp,
which give immediately x
L h—=1 & h_s+1
R ST A )

prove that no point @ can lie between the points sP and (s + 1) P.
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of order 2; it contains i, + 1 points P, u, points Q; this
sequence of order 2 is, in the scheme before us, repeated
twice, because p =2, and is then followed by a sequence
of order 1; the sequence thus obtained, consisting of u,
sequences of order 2, followed by a sequence of order 1, we
term a sequence of order 3. This sequence, containing
Ffbotly + o, + p, =16 points P, and ppu +1=17 points @, 18
i the scheme repeated twice, because =2, and is followed
by a sequence of order 2. We thus obtain a sequence of
order 4, consisting of u, sequences of order 3, followed by
a sequence of order 2, and containing

Fafbbiafly + fpty + o, + popt, + 1=39 points P,
and Moo, + @, + p, =17 points Q.

This sequence, in the instance which we are considering,
exhausts the whole system of points, We observe that all
sequences begin with P, and that sequences of an uneven
order end with P, sequences of an even order with Q2.

.4 In general, when the continued fraction is given, and
It 1s required to obtain the arrangement of the points P
and @, we denote a sequence of order ¢ by 8§, and we then

find successively 8, =P"(Q, S,=S/P, 8,= 288, ..., the

2

final sequence (which exhausts the whole series of points)
being S, =SS

dee -z:-ersd,I when the arrangement of the points is given,
and it is required to infer from it the development in a
continued fraction, we count the points Ptill we come to the
first point @; if there are , of them, p, is the first quotient,
and §,=P"Q. If we can repeat this sequence s, times,
without departing from the given arrangement, the second

uotient is p,, and the sequence of order 2 is §,= /P
‘his sequence we now repeat as often as we can do so
without departing from the given arrangement, observing
however, that the last repetition of S, is to be followed by
a sequence S. If, subject to this condition, we can repeat
S, p, times, the third quotient is f,, and the sequence of

order 3 is S5/%S. The subsequent quotients and sequences
sl o P .
are to be determined in the same manner; and, lf{— is the
1 1 LAf
convergent u, + —— —, p; and ¢; are respectively the

numbers of points P and points @ in the sequence S,
B2



4 NOTE ON CONTINUED FRACTIONS.

5. Since p <£4;4 +1, or pP<@Q<(p,+1)P it is
1 q 1 ? 1

evident that the arrangement of the first u, +1 points of

the series is represented correctly by the sequence S, = 7.
We therefore proceed to show that the arrangement of the
first po,pe, + 1 points P, and the first u, points @ is correctly
represented by the sequence S,= S“P. Since
4 1 & P S o l__
'u'l “2 q Pl .#’3+ 1 1

we have (pl+ 1) P>kQ, for all values of % < g, but
(w4 1) P<kqQ,if k>p,

If we write. down the sequence '@, 1+ p, times over,
80 as to obtain the series

1P, 2P, wP, Q,
(1+p) P, (2+4p,)D, 2p, P, 20,
(1424,) P, (2+2p,) P, 3u,P, 30,

............................................................................

(L+[o=1]pm) P, @+ [p~1]u) Py oo pop, Py p,Q,
fl +F"-J'"|‘J I?: (2 F l"’-glu';) “P) (‘I +P-2) F‘rpnll(l +F‘g) Q;
6 S B e e

the inequalities Zu, P</@Q < (kp, +1) P, which hold as long
as k= p,, show that all these points, with the exception of
the last of them (1 + u,) @, succeed one another in the proper
order. But the last is mn error; for, putting k=1 + g,
(L+ g+ pop) P< (1 +p,) @, and consequently (1 + p,) @
does not follow immediatesly after (1+u,) u, P. We conclude,

therefore, that we can repeat the sequence @ g, times,
but that we cannot repeat it 1 + p, times. And, since two

points ) cannot come together, the series (P“Q)" is
necessarily followed by a point P, so that the sequence

8,= 5P correctly represents, as far as it goes, the arrange-
ment of the points.

6. We have thus shown that the relation between the
continued fraction and the sequences S, S, S,... holds as
far as 5. Assuming, therefore, that it holds as far as §;
where ¢ 2, we have to prove that it holds as far as §,.
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The_proof depends on an elementary theorem relating to
continued fractions, which was first established by Lagrange.

“Tf ';;w)'i‘ ; Zi are consecutive convergents to the same
rational or irrational quantity 6, p,  — ¢, @ is less in absolute
magnitude than any quantity of the form 7 — x6, where x and
y are positive integers, of which & is less than ¢: ”

Supposing, for brevity, that 7 is uneven, we infer from
this principle that the least segment in the sequence S; is its
last segment ¢;Q) —p,P, and that the next least segment in
8, is the last segment of S, , viz. 2iP-q._ @ We have
to add that p,_ P—g, @ is also less than the segment
P(1+p,)— g.-é'which immediately follows S;. For if

g“*‘l = 1 +Pf+l’
a condition which is certainly satisfied when 7> 1, we have

})———*'9 p,-;—k 1 >§‘*-‘, ne > }-), because 7+ 1 is even. Let us
write down the g:equence S; 14/ times over, and let yQ — «P.
be any segment of S; contained between two consecutive
points 2 and @, of which @ is to the right of P; the cor-
responding segment in (1 + £) S; will be
(kgi+y) @—{kpi + =) P=Fk (q,Q - piP) + (y@ - 2P);
t.e. @ will be still further to the right of P, and the distance
between P and @ be increased. Next, let #P—yQ be a
segment of S, contained between two consecutive points P
and ¢, of which P lies to the right of ; or, again, let
xP—yQ represent the segment (1+p;) P— ¢;(), which im-
mediately follows S;. The corresponding segment in (k+1) S,
or immediately following (% + 1) S, will be
(kp +2) P (kgi+ y) Q=2P -y Q% (¢:.Q - p.P);
so that, if £ be not too great, the two new points P and @
will lie in the same relative position with regard to one
another as the two points originally considered, the distance
between them being diminished : but, for values of % which
surpass a certain limit, the point @ will be shifted to the
right of P, and the segment QF will be replaced by a
segment Q). As long as this interchange of places between
"+ two consecutive points ¢ and P does not occur, so long the
successive repetitions of S; will represent with accuracy the
arrangement of the points P and . Now the least of the
segments zP—y @ is p;_ P— ¢, (), and
Z’i-lp* Gies (I.) ¥ P'J"—l ('}"i {J = PIPJ
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is still positive; therefore we may repeat S; 1+ u;,, times,
but we cannot repeat it 2 + p,,, times, for

o gi—lQ'_ (1 +#’:‘+l)'(fiQ_P"P)

is negative. The sequence S8, will therefore truly re-

present, as far as it goes, the arrangement of the points P
and @; but the sequence S,-“’"‘”S;_, would fail to do so.
We should in fact come to an error in the last two points of
8., which, according to the law of that sequence, we should
have to write down as QP, whereas the true arrangement
of these points is PQ. This suffices to establish the general
theorem of Art. 4; but it is of interest to add, that the error
which we have just shown must occur in the last two points

of the sequence ;""" S,y is the only error that can oceur
in that sequence. And this is certain; for, in the first place,

we have seen that there is no error in 8"*; and, in the
second place, if zP— yQ be any segment of S, , of the same
positive sign as p, P—gq, O, aP—yQ—(1+ P y(9.Q—p.P)
1s necessarily positive; for, by the theorem of grange,
2P-yQ>q, ,Q—p, P; and

2P-yQ+piP-4,Q> (p.— p) P~(,—q.) @>p., P~ 4,0
by the same theorem ; whence

2P—yQ-(1+p,) (2.Q- p.P)
is positive, because

P-’-JP_ Tiey Q = Mgy (f.‘Q _f}ip)

is positive.

7. It will be ‘noticed that the sequence S, can only be
repeated p, times, whereas any subsequent sequence S; can
be repeatea 1+p,,, times. The exception in the case of S, is
apparent rather than real, and arises from the fact, that the
period S, consists of only one term. If we were to attempt
to repeat the se?uence S, 2 + p, times, the sequence §S,, which
commences the last repetition of S, ought, according to the
general theory, to be in ervor; viz. its last point must be
interchanged with the preceding point; and, as S, contains
but one point, this interchange vitiates the sequence S, im-
mediately preceding. :

8. Any finite continued fraction may be written either
with an even or with an uneven number of quotients, becapse
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the last quotient may be made either equal to unity or
greater than unity. If the number of quotients be even,
the two extreme points P and (), which coincide with 1,
must be written in the order QF; if the number of quotients
be'uneven these points must be written in the order 2Q.

9. If we omit these two last coincident points, the re-
maining p —1 points P and ¢—1 points ¢ evidently form
a symmetric series, being similarly distributed on either side
of the middle point of the line. And, similarly, if we remove
from any sequence whatever its two final points, we obtain
a symmetrical series, because the sequence S; corresponds to
the division of a line into p; equal parts and also into ¢;
equal parts.

10. If we wish, from the arrangement of the points P
and (), to infer the arrangement corresponding to the fraction

,u.,-H+L+..., obtained from the fraction £ by omitting its

first ¢ i;:ruotients, we. have only to replace the sequences S;
and S, by single points. Thus, in the example of Art. 3,
if we put S,=4, 8§, =B, we find

A,24,34,B|44,54,64,2B |74 184,94, 104, 3B |
114,124,134, 4B | 144 || 154, 164, 174, 5B ||,

1

corresponding to 17 e And, again, if we wish

§.
to obtain the arrangement corresponding to the fraction
1 5%
e where ¢+ j<s, we first replace S; &S;
P P o pigy? J <8 P el

by single points, and then consider in the resulting arrange-
ment the sequence of order j. Thus the arrangement

A,24,34, B| 44,54,64,2B|14 ||

corresponds to the fraction 3 + §.

Addition to the preceding note.

11. The theorem of Lagrange, on which the demonstration
in the preceding note depends, will be found in the second
paragraph of his Additions to Euler’s Algebra. But as this
theorem is no longer included in elementary treatises, we
shall here place Lagrange’s demonstration of it.
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If ¢ is the complete quotient of ‘order ¢ in the development
of 0, we have .

6=?M—3 , OF = _Piy—9i,0

¢I‘ g:'——i o (I.‘—-e p;_1 7= 9,-_-; G .
But ¢, is positive and greater than unity ; hence, p, ,— g, 6,
and p., —g,,6 are of opposite signs, and Py —¢:,0 18 less in

absolute magnitude than p,  —g, 0.

Again, since pg, . —p.q,= (- 1), we can always find,
whatever the given integra]l numbers & and y may be, two
integral numbers A and p satisfying the equations

T =7"Q.’—i + Mgy = R’Pd—l +F‘P.‘!
whence we obtain

y—al=2x (P-‘-; — QHG) +u (P. "9;6)'
As 7, ~q.,0 and p,— g0 are of opposite signs, if y— 0 is
less than p, —¢, 6, A and g must Ee of the same sign; that
18 to say, z and y are either respectively equal to ¢ and p,
or else they are respectively greater than g« and p.

12. In the same place Lagrange has also established the
eonverse theorem, that if 4—af is a minimum difference,
t.e. if b —ab is less in absolute magnitude than any difference

: : : o
y—20, in which @ is less than «, , 1s & convergent to 6.

Writing p., for 4, and ¢, for a, we first determine the
positive numbers p, . and g, _, respectively less than p_ and
4,y Which satisfy the equation PiaQig = Piyqi, =F¢, ¢ denoting
an unit of the same sign as Py —g.,0. If we write
Pia=9e0=4_;; p.,—g. 0 =u., we tind, on eliminating 6;

g = i r

91y Gy G,
In this equation w,_, is greater, by hypothesis, than U,
because g, <g,..; & fortiori s is greater than =, But

. . -2 “1
u,_, 1s of the same sign as ¢ ; t erefore, u_, and %, must have
contrary signs. Consequently the quotient

el B Piy= 4:s0
: LS L 5"!—16

is positive, and greater than unity ; and it 2= be developed in a

=

’-—-*--;—“

- F -
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continued fraction having P"—“ for its last convergent (which

is always possible) we obtain

9=1?£-_=L¢."_Pa= +1 4 e
Gt D gy T Bt Bytees Byt O

LT : b :
i.e -i: =2 and ‘g—' = — are successive convergents to 6.
i-2 -1

13. Combining the two theorems of Lagrange, we see
that if we have ascertained, by observation, that p, —g. .0
is less than any difference 7 — @@ in which z is less than ¢, ,,
we can at once infer that p, - ¢..0 is also less. than any
difference y — 6 n which ¢, , <z <g.

14. The two theorems of Lagrange serve to define the
successive minima of the expression y —zf. The theory of
the successive minima of the, expression g — 0 is perhaps less
complete. Thus we have the elementary theorem, that the
difference 2=t — @ is less than any difference % — 6 in which

does not snﬁ’lpass ¢,y and is also less than any difference
of the same sign with itself, in which @ does not surpass

¢.; but there may be differences of a contrary sign to =1 — a,

in which 2 does not surpass g, and which are less in a solute
magnitude than Py _ g, And again, if g — 6 be a minimum
i1
difference (i.e. if g — 6 be less in absolute magnitude than any
difference %—8, in which z is less than @), we cannot in
general infer that = is a convergent to 6. 'We shall attempt,
in what follows, to define accurately the successive minima
of the expression g — 6, and thus to give a greater amount of

precision to this part of the theory of continued fractions.

15. We still consider a rational or irrational quantity,6,
of which the development is

g PPrtPia _ 1 07 % o

= I + — o I
¢f?-‘-1 25 [/ ’u‘==+"' My 5 ¢-’=
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and, adopting the designation ' of Lagrange, we term the
fractions L _lpotp., y where 0> % < p,, intermediate frac-
tions, These f%;:;t”;og:: are evidently intermediate between
Pir ang ‘;zrf; hence 6 lies between any one of them and ey
i

If ~— 0 is a minimum difference, we can, by reasoning as in
a

Art. 12, arrive at an equation of the form

. R e oy o S
J“';"'lu’s""‘ Pj-l'l' A"" ‘I(r’
where E=ﬂ, b - 1—5
a L }-l-j_:'l' A

and we can prove that in this equation - is positive. But
we cannot prove that y is greater than unity; i.e. instead of
the equation A= u;, we have the inequalities 0 <2 <#;; and

thus from the hypothesis that = — @ i3 a minimum difference,

: b. :
we cannot infer that - 18 a convergent to 6, but only that $ is
a

either a convergent or an intermediate fraction. But not
every intermediate fraction can give a minimum difference ; |

. P ol :
for in order that —* — @ should be a minimum difference,

: ﬂ_e must (at al;y rate) be less than 2= — 0, because :
1 g:, <@, 'The absolute value of + -
| LU R e S

G Qi (s +4:,) " -

and the absolute value of

¢|‘ -k )
(kg +q a) (g, + 9-'-2) v

P o 3
whence, if 1,5' — 0 is a minimum difference, we must have
&

i :
=20
o

¢|<2k+ 9”%,, 4
i1

g e o R

| \ iy, e Moyt Hig teee




NOTE ON CONTINUED FRACTIONS. 11

And this necessary condition is also sufficient. For, since 6
lies between 25 and E‘f:‘, and since (if the condition 4 be

. d o, 2a ;
satisfied) @ also lies nearer to - Q* than to j; =', any frac-
& =1
! e : : P,
tion which is nearer to 6 than —-.* must lie between —_* and
: ¥ I )
}-"_‘—’, and must therefore have a denominator greater than

-1 I
(), because £y P (—_19): :

W I A T : :
We are thus led to divide the fractions, intermediate be-
tween =2 and 2 into two sets, according as they do or do

not satiaf} the %ondition (4). We may call those fractions
which do not satisfy that condition the #nferior, and those
which do satisfy it the superior intermediate fractions. We
then Liave the theorem,—

“The complete series of successive minima of the expression

%—9 is obtained by taking in succession for Z the con-
Hi

vergents, and the superior intermediate fractions in their
natural order.”

16. If &>} p, the condition (4) is satisfied ; if =4, the
condition is satisfied if p,, <p, ; if k=4p, p_ =p,, the
condition is satisfied if u_, > u,,, and so on continually. If
the continued fraction be finite, symmetrical, and of an uneven
number of quotients, u,=2% being the middle quotient, we

have a singular case in which the errors of };i and g are
-1 [ 3

exactly equal; we may in this case regard —* as an inferior
fraction. It will be seen that, as nearly as po;sible, one-half

of the fractions intermediate between 22 and 2 are superior.

Thus, if w=2k+1 is uneven, there are % inferior and %
superior intermediate fractions; if u,=2% is even, there are
certainly 4 — 1 inferior, and % —1 superior intermediate frac-

) B p . .
tions; but whether " is inferior or superior, can only be

A
decided (as we have just seen) by comparing the quotients
which precede p¢ with those which follow it. E i
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17. The difference 2t — @ is of the sign (- 1)7"; the

differences o g, which,"-iln forming the complete series of

¢

minima ot'% — 6, we have to intercalate between 2= — 6, and

=
L _ g are of the same sign as the latter of-these diﬁ‘erences,
w.c. they are of the sign (—1)%. Thus, after every convergent
there is a change of sign in the series of minimum differences,
and the minimum differences formed with convergents are
distinguished by this criterion from the minimum differences
formed with superior intermediate fractions.

18. Again, if 2—6 be any minimum difference, and if

J

¢.,=a<gq, the only differences s 6, which are less than

- — 6, and which have denominators = less than ¢ are the
a .

minimum differences which lie between f;— @ and ;—’— g It
is sufficient to prove this for the case in which a=g¢, , b=p, .

Let B =L be the last of the inferior fractions, intermediate

@\,
Pia

: : A Py
between 2! and a; then 6, which lies between Q\i'- and S

i-1 i i A1
is nearer to the latter than to the former of those fractions.

i-1

If then g be nearer to @ than 2 is, ‘z must itself lie between
Piy

=1 andf-)‘-'-'. But, if z < ¢, 7 cannot lie between 2
9:_1 QA-—| Z gl‘—:

‘E—‘; hence, 7 must lie between £ and fP%l. But the only
Fi T

7 TR A T :
fractions between these limits, which have denominators

and

. i -
less than ¢, and lie nearer to € than P—"‘, are the superior

fractions intermediate between 2°2 and ‘? TFor all such
fractions are of the type z%—:-i:—:‘%:-, the relativel?' prime

numbers ¢ and 7 satisfying the inequalities
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0+ TG, <Gy Whence o < f.iveiiiin. (2),
9% 4 %
P, <2 = g, (3).

Now if p; =2k + 1, we have A — 1 =4, and the inequalities
hqg, and ¢ <2h+1 (from which equality is excluded),
show that unity is the only admissible value for 7. Again,
if p,=2kh and L is an inferior Ifraction, we have ké%,

Ch
o <2h, and unity is the only admissible value for 7. In
both these cases, therefore, the only fractions having de-

nominators less than ¢, which lie between -I:X" andfl', are
\ ;
the superior intermediate fractions. If, l;owe1\‘0r, =2k,
" Sy A ! 0
and % is a superior fraction, the inequalities (1) and (2) are
P ‘
satisfied by the values o =2k —1, 7=2, so that, besides the
(2h—1)p,, +2p.,
(2}?'_ 1) Fia +2q;,

lies between the limits ﬁ}ﬂ and g— . But this fraction is more
“h-1 i
2h—1

remote from @ than 2 is, because the equatio: %:- 5

superior intermediate fractions, the fraction

is inconsistent with the'ilnequality (3).

—— 2 o
19. The inferior intermediate fractions %, £ =A— 1, do

- . - £ ‘i
not give minimum differences, because ¢, < @, and Ba_g
is less in absolute magnitude than —£—6. DBut, with the

single exception of &—9, all other differences 2—9, in
@

qf—l
which z is less than (), are greater than fee 0. Yor, if %
lie between L and 22, & must be gre;ter than @,; if

& G
L lie between g—- and J;i“—', the difference %_ @ is certainly
& -1

greater than ~* — @, because 6 lies between 7 and 1’:1;

a& P (47 Giy
lastly, if P2 Jies between 2 and —£ . we find (taking the
G-y z Q*

case in which ¢ is uneven)




14 ON CLAIRAUT’S THEOREM, &C.

‘l> = iy

B Gy By WDl ;_77_, e @, @

20. The theorem of Lagrange admits of an important
geometrical interpretation.  If with a pair of rectangular
axes in a plane we construct a system of unit points (2. e.
a system of Eoints of which the coordinates are integral
numbers), and draw the line y=~0x, we learn from that
theorem that if (z, ) be an unit point lying nearer 1o that
line than any other umit point having a less abscissa (or,
which comes to the same thing, lying at a less distance
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from the origin), g is a convergent to 0; and, vice versd,
if s a convergent, (z, y) is one of the “nearest points.”
x

Thus the “nearest points” lie alternately on opposite sides of
the line, and the double area of the triangle, formed by the
origin and any two consecutive “ nearest points,” is unity.

In particular, if 5=£, 2 and g being relatively prime

integers, the coordinates of the two “nearest points” above
and below the finite line Joining the origin to the unit point
(9, p) satisy respectively the equations pr—gy=1, and
pr—gy=—1. We thus obtain a simple geometrical method
of finding the least solution in integral numbers of either of
those indeterminate equations.
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