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SupposeG to be a reductive group defined over an algebraically closed field k. There exist inGmaximal

subgroups which are tori , that is to say algebraically isomorphic to a product of copies of k×. Fix one of

them, say A. The adjoint action of A on g is the direct sum of eigenspaces. The 0­eigenspace is a, and
the rest are of dimension one. An eigencharacter λ 6= 0 is called a root of the Lie algebra. Let Σ be the

set of all roots, a subset of the group

X∗(A) = Hom(A,Gm)

of algebraic characters ofA. Associated to each root λ is an eigenspace gλ and a corresponding subgroup

Uλ of G isomorphic to the additive group Ga. There also exist in G maximal solvable subgroups

containing A, called Borel subgroups . Such a group B contains a normal unipotent subgroup U such
that the quotientB/U is isomorphic to A. Fix one of these Borel subgroups.

The standard example is G = GLn, with A the group of diagonal matrices, B that of upper triangular
matrices, U the subgroup of unipotent matrices in B. If εi is the character




t1 0 0 . . . 0
0 t2 0 . . . 0
0 0 t3 . . . 0

. . .
0 0 0 . . . tn


 7−→ ti ,

the roots are εi/εj for i 6= j, written additively εi − εj .

The Lie algebra of U is the direct sum of root spaces gλ. If Σ+ is the set of roots occurring, which are
called positive roots , then Σ is the disjoint union of Σ+ and Σ− = −Σ+. There exists in Σ+ a subset

∆ with the property that every λ > 0 is a unique integral linear combination of elements of ∆ with

non­negative coefficients. It is called a basis of Σ. For each λ > 0, choose an isomorphism uλ of Ga with
Uλ. There then exists a unique isomorphism u−λ of Ga with U−λ such that

uλ(−x)u−λ(1/x)uλ(−x)

lies in the normalizer of A. There exists a unique homomorphism λ∨ from SL2 to G taking

[
1 x
0 1

]
7−→ uλ(x),

[
1 0
x 1

]
7−→ u−λ(x) .

The condition on u−λ is motivated by the equation

[
1 −x
0 1

] [
1 0
y 1

] [
1 −x
0 1

]
=

[
1 − xy −2x+ x2y
y 1 − xy

]
,
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which shows that the left hand side will lie in the normalizer of the diagonal matrices in SL2 if and only

if y = 1/x. When y = 1/x, we have

[
1 −x
0 1

] [
1 0

1/x 1

] [
1 −x
0 1

]
=

[
0 −x

1/x 0

]
=

[
x 0
0 1/x

] [
0 −1
1 0

]
= say sλ(x) .

Let X∗(A) be the group of cocharacters of A, the group of algebraic homomorphisms from Gm to A. If

we assign A coordinates (xi) then the characters are all of the form
∏
xmi

i and the cocharacters of the
form t 7→ (tmi), so both groups X∗(A) and X∗(A) are free modules over Z. They are canonically dual

to each other. Given λ∨ in X∗(A) and µ in X∗(A), the pairing is defined by the equation

µ
(
λ∨(x)

)
= x〈µ,λ∨〉

for x in k×. The homomorphism λ∨ from SL2 to G determines also the cocharacter

x 7−→

[
x 0
0 1/x

]
λ∨

7−→ A ⊂ G ,

which I’ll also express as λ∨.

The Weyl group W of G with respect to A is the quotient of the normalizer NG(A) by A. For a fixed λ,

all the sλ(x) have the same image in W . The group W is generated by the images of the sα(1) for α in
∆. The Weyl group W acts on X∗(A) by conjugation, and the sλ(1) act as reflections. Elements of W ,

and in particular the reflections sλ, take Σ into itself. For G = GLn, for example, the reflections swap εi

and εj .

As we shall see in the next section, this means that reductive groups give rise to root systems . Important
properties of these groups follow immediately from properties of their root systems, which are worth

studying on their own. This chapter is concerned with the structure of abstract root systems. Applications

to the structure of reductive groups will come later.

1. Definitions

I first recall that a reflection in a finite­dimensional vector space is a linear transformation that fixes

vectors in a hyperplane, and acts on a complementary line as multiplication by −1. Every reflection can

be written as
v 7−→ v − 〈f, v〉f∨

for some linear function f 6= 0 and vector f∨ with 〈f, f∨〉 = 2. The function f is unique up to non­zero

scalar.

I define a root system to be

• a quadruple (V,Σ, V ∨,Σ∨) where V is a finite­dimensional vector space over R, V ∨ its linear

dual, Σ a finite subset of V − {0}, Σ∨ a finite subset of V ∨ − {0};

• a bijection λ 7→ λ∨ of Σ with Σ∨

subject to these conditions:



Root systems 3

• for each λ in Σ, 〈λ, λ∨〉 = 2;

• for each λ and µ in Σ, 〈λ, µ∨〉 lies in Z;

• for each λ the reflection
sλ: v 7−→ v − 〈v, λ∨〉λ

takes Σ to itself. Similarly the reflection

sλ∨ : v 7−→ v − 〈λ, v〉λ∨

in V ∨ preserves Σ∨.

Sometimes the extra condition that Σ span V is imposed, but often in the subject one is interested in

subsets of Σ which again give rise to root systems and do not possess this property even if the original
does.

In case V is spanned by V (Σ), the condition that Σ∨ be reflection­invariant is redundant.

One immediate consequence of the definition is that if λ is in Σ so is −λ = sλλ.

The elements of Σ are called the roots of the system, those of Σ∨ its coroots . The rank of the system
is the dimension of V , and the semi-simple rank is that of the subspace V (Σ) of V spanned by Σ. The

system is called semi-simple if Σ spans V .

If (V,Σ, V ∨,Σ∨) is a root system, so is its dual (V ∨,Σ∨, V,Σ).

The Weyl group of the system is the groupW generated by the reflections sλ. As a group, it is isomorphic
to the Weyl group of the dual system, because:

Proposition 1.1. The contragredient of sλ is sλ∨ .[wdual]

Proof. It has to be shown that

〈sλu, v〉 = 〈u, sλ∨v〉 .

The first is

〈u− 〈u, λ∨〉λ, v〉 = 〈u, v〉 − 〈u, λ∨〉〈λ, v〉

and the second is
〈u, v − 〈λ, v〉λ∨〉 = 〈u, v〉 − 〈λ, v〉〈u, λ∨〉 .

Define the linear map

ρ:V −→ V ∨, v 7−→
∑

λ∈Σ

〈v, λ∨〉λ∨

and define a symmetric dot product on V by the formula

u • v = 〈u, ρ(v)〉 =
∑

λ∈Σ

〈u, λ∨〉〈v, λ∨〉 .

The semi­norm

‖v‖2 = v • v =
∑

λ∈Σ

〈v, λ∨〉2

is positive semi­definite, vanishing precisely on the v with 〈v, λ∨〉 = 0 for all λ in Σ. In particular

‖λ‖ > 0 for all roots λ. Since Σ∨ is W ­invariant, the semi­norm ‖v‖2 is also W ­invariant. Its radical is

the space of v annihilated by Σ∨.

Proposition 1.2. For every root λ[norms]

‖λ‖2 λ∨ = 2ρ(λ) .
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The important consequence of this is that some scalar multiple of λ 7→ λ∨ is the restriction of a linear

map to Σ.

Proof. For every µ in Σ
sλ∨µ∨ = µ∨ − 〈λ, µ∨〉λ∨

〈λ, µ∨〉λ∨ = µ∨ − sλ∨µ∨

〈λ, µ∨〉2 λ∨ = 〈λ, µ∨〉µ∨ − 〈λ, µ∨〉sλ∨µ∨

= 〈λ, µ∨〉µ∨ + 〈sλλ, µ
∨〉sλ∨µ∨

= 〈λ, µ∨〉µ∨ + 〈λ, sλ∨µ∨〉sλ∨µ∨

But since sλ∨ is a bijection of Σ∨ with itself, we can conclude by summing over µ in Σ.

Corollary 1.3. For every v in V and root λ[dot-product]

〈v, λ∨〉 = 2

(
v •λ

λ • λ

)
.

Thus the formula for the reflection sλ is that for an orthogonal reflection

sλv = v − 2

(
v •λ

λ •λ

)
.

Corollary 1.4. The semi­simple ranks of a root system and of its dual are equal.[equi-ranks]

Proof. The map
λ 7−→ ‖λ‖2 λ∨

is the same as the linear map 2ρ, so ρ is a surjection from V (Σ) to V ∨(Σ∨). Apply the same reasoning

to the dual system to see that ρ∨◦ρ must be an isomorphism, hence ρ an injection as well.

Corollary 1.5. The space V (Σ) spanned by Σ is complementary to the space VΣ∨ annihilated by all λ∨[spanning]

in Σ∨.

Proof. Because the kernel of ρ is VΣ∨ .

Corollary 1.6. The Weyl group is finite.[weyl-finite]

Proof. It fixes all v annihilated by Σ∨ and therefore embeds into the group of permutations of Σ.

Corollary 1.7. For all roots λ and µ[wvee]

(sλµ)∨ = sλ∨µ∨ .

Proof. We have
2ρ(sλµ) = ‖sλµ‖

2(sλµ)∨

= ‖µ‖2(sλµ)∨

= ρ(µ− 〈µ, λ∨〉λ)

= ρ(µ) − 〈µ, λ∨〉ρ(λ)

= ‖µ‖2µ∨ − 〈µ, λ∨〉‖λ‖2λ∨

so all in all ‖µ‖2(sλµ)∨ = ‖µ‖2µ∨ − 〈µ, λ∨〉‖λ‖2λ∨ .

On the other hand,
‖µ‖2sλ∨µ∨ = ‖µ‖2(µ∨ − 〈λ, µ∨〉λ∨

= ‖µ‖2µ∨ − ‖µ‖2〈λ, µ∨〉λ∨
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so it suffices to verify that

‖µ‖2〈λ, µ∨〉 = ‖λ‖2〈µ, λ∨〉

which reduces in turn to the known identity

〈λ, ρ(µ)〉 = 〈µ, ρ(λ)〉 .

Proposition 1.8. The quadruple (V (Σ),Σ, V ∨(Σ∨),Σ∨) is a root system.[semi-simple]

It is called the semi-simple root system associated to the original.

Proposition 1.9. Suppose U to be a vector subspace of V , ΣU = Σ ∩ U , Σ∨
U = (ΣU )∨. Then[intersection]

(V,ΣU , V
∨,Σ∨

U ) is a root system.

Proof. The only tricky point is to show that Σ∨
U is stable under reflections. This follows from Corollary♣ [wvee]

1.7.

2. Hyperplane partitions

Suppose (V,Σ, V ∨,Σ∨) to be a root system. Associated to it are two partitions of V ∨ by hyperplanes.

The first is that of hyperplanes λ∨ = 0 for λ∨ in Σ∨. The other is by hyperplanes λ = k in V ∨ where
λ is a root and k an integer. Each of these configurations is stable under Euclidean reflections in these

hyperplanes. Our goal in this section and the next few is to show that the connected components of the

complement of the hyperplanes in either of these are open fundamental domains for the group generated
by these reflections, and to relate geometric properties of this partition to combinatorial properties of

this group. In this section we shall look more generally at the partition of Euclidean space associated to

an arbitrary locally finite family of hyperplanes, an exercise concerned with rather general convex sets.

Thus suppose for the moment V to be any Euclidean space, h to be a locally finite collection of affine

hyperplanes in V .

A connected component C of the complement of h in V will be called a chamber . IfH is in h thenC will

be contained in exactly one of the two open half­spaces determined by H , since C cannot intersect H .
Call this half space DH(C).

Lemma 2.1. If C is a chamber then[allh]

C =
⋂

H∈h

DH(C) .

Proof. Of course C is contained in the right hand side. On the other hand, suppose that x lies in C and

that y is contained in the right hand side. If H is in h then the closed line segment [x, y] cannot intersect
H , since then C and y would lie on opposite sides. So y lies in C also.

Many of the hyperplanes in h will be far away, and they can be removed from the intersection with­

out harm. Intuitively, only those hyperplanes that hug C closely need be considered, and the next
(elementary) result makes this precise.

A panel of C is a face of C of codimension one, a subset of codimension one in the boundary of C .
The support of a panel will be called a wall . A panel with support H is a connected component of the

complement of the union of the H∗ ∩H as H∗ runs through the other hyperplanes of h. Both chambers
and their faces are convex.

A chamber might very well have an infinite number of panels, for example if h is the set of tangent lines

to the parabola y = x2 at points with integral coordinates.
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Lemma 2.2. Suppose C to be a chamber, H∗ in h, and[wallsfirst]

C∗ =
⋂

H 6=H∗

DH(C) .

If C∗ 6= C then H∗ is a bounding hyperplane of C .

The set C∗ will be the union of two chambers containing a common panel.

Proof. Pick x in C and y in C∗ but not in C . The closed segment [x, y] must meet a hyperplane of h, but
this can only can only be H∗. Let z be the intersection.

z
x

Then on the one hand a small enough neighbourhood of z will not meet any other hyperplane of h, and

on the other the interval [x, z) must lie in C . Therefore H∗ is a panel of C .

Proposition 2.3. A chamber is the intersection of half­spaces determined by its panels.[chambers]

That is to say, there exists a collection of affine functions f such that C is the intersection of the regions

f > 0, and each hyperplane f = 0 for f in this collection is a panel of C .

Proof. Suppose H∗ to be a hyperplane in h that is not a panel of C then by the previous Lemma,

C = ∩H 6=H∗
DH(C). An induction argument shows that if S is any finite set of hyperplanes in h of

which none are walls, then C = ∩H /∈SDH(C).

Suppose that y lies in the intersection of all the ∩HDH(C) as H varies over the walls of C . Choose x in
C . Let T be set of hyperplanes that [x, y] crosses. It is finite, since h is locally finite. It cannot cross any

walls, by choice of y. But then T must be empty and y actually lies in C .
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3. Discrete reflection groups

Much of this section can be found most conveniently in §V.3 of [Bourbaki:1968], but originates with
Coxeter. The motivation for the investigation here is that if Σ is a set of roots in a Euclidean space V , then

there are two associated families of hyperplanes: (1) the linear hyperplanes α = 0 for α in Σ and (2) the

affine hyperplanes α + k = 0 for α in Σ and k an integer. Many of the properties of root systems are a
direct consequence of the geometry of hyperplane arrangements rather than the algebra of roots, and it

is useful to isolate geometrical arguments. Affine configurations play an important role in the structure
of p­adic groups.

For any hyperplane H in a Euclidean space let sH be the orthogonal reflection in H . A Euclidean root
configuration is a locally finite collection h of hyperplanes that’s stable under each of the orthogonal
reflections sH with respect to H in h. The group W generated by these reflections is called the Weyl
group of the configuration. Each hyperplane is defined by an equation λH(v) = fH • v + k = 0 where
fH may be taken to be a unit vector. The vector

����
(λH) = fH is uniquely determined up to scalar

multiplication by ±1. We have the explicit formula

sHv = v − 2λH(v) fH .

The essential dimension of the system is the dimension of the vector space spanned by the gradients fH .

A chamber is one of the connected components of the complement of the hyperplanes in the collection.

All chambers are convex and open.

Two configurations will be considered equivalent if they are the same up to an affine transformation.

Let’s look first at those configurations for which the Weyl group is a dihedral group , one generated by
orthogonal reflections in two hyperplanes. There are two cases, according to whether the hyperplanes

are parallel or not.

H1

H2

τ

The first case is easiest. Let H1 and H2 be the two parallel hyperplanes. The product τ = sH1
sH2

is a
translation, and the hyperplanes τm(H1) and τn(H2) form a Euclidean root configuration. Conversely,

any Euclidean root configuration in which all the hyperplanes are parallel arises in this way. We are

dealing here with an essentially one­dimensional configuration. The group W is the infinite dihedral
group.

Now suppose H1 and H2 to be two hyperplanes intersecting in a space L of codimension 2. The entire
configuration is determined by that induced on the quotient V/L, so we may as well assume V to be of

dimension two. The ‘hyperplanes’ in this case are just lines. The product τ = sH1
sH2

is a rotation, say
through angle θ. The hyperplanes τm(H1) and τn(H2) will form a locally finite collection if and only if

τ has finite order. In this case θ will be a multiple of 2π/m for some m > 0, and replacing one of the

hyperplanes if necessary we may as well assume θ = 2π/m. In this case the angle between H1 and H2

will be π/m. There are m hyperplanes in the whole collection. In the following figure,m = 4.
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α

β

π
mπ

m

Suppose C to be a chamber of the configuration, and let α and β be unit vectors such that C is the region
of all x where α •x > 0 and β •x > 0. As the figure illustrates, α •β = − cos(π/m). Conversely, to each

m > 1 there exists an essentially unique Euclidean root configuration for which W is generated by two

reflections in the walls of a chamber containing an angle of π/m. The group W has order 2m, and is
called the dihedral group of order 2m.

In summary for the dihedral case:

Proposition 3.1. Suppose α and β to be two affine functions, sα and sβ the orthogonal reflections in the[rank-two]

hyperplanes α = 0 and β = 0. If the region in which α ≥ 0 and β ≥ 0 is a fundamental domain for the
group generated by sα and sβ , then

����
(α) •

����
(β) = − cos(π/m)

where m is the order (possibly ∞) of the rotation sαsβ .

Now assume again that h is an arbitrary Euclidean root configuration. Fix a chamber C , and let ∆ be a

set of affine functions α such that α = 0 is a wall of C and α > 0 on C . For each subset Θ ⊆ ∆, let WΘ

be the subgroup of W generated by the sα with α in Θ.

Proposition 3.2. For any distinct α and β in ∆,
����

(α) •
����

(β) ≤ 0.[non-pos]

Proof. The group Wα,β generated by sα and sβ is dihedral. If P and Q are points of the faces defined
by α and β, respectively, the line segment from P to Q crosses no hyperplane of h. The region α •x > 0,

β •x > 0 is therefore a fundamental domain for Wα,β . Apply Proposition 3.1.♣ [rank-two]

SupposeC to be a chamber of the hyperplane partition. According to Proposition 2.3,C is the intersection♣ [chambers]

of the open half­spaces determined by its walls, the affine supports of the parts of its boundary of

codimension one. Reflection in any two of its walls will generate a dihedral group.

Corollary 3.3. The number of panels of a chamber is finite.[walls-finite]

Proof. If V has dimension n, the unit sphere in V is covered by the 2n hemispheres xi > 0, xi < 0. By

Proposition 3.2, each one contains at most one of the
����

(α) in ∆.♣ [non-pos]

Lemma 3.4. If h is a locally finite collection of hyperplanes, the number of H in h separating two[separating-finite]

chambers is finite.

Proof. The closed line segment connecting them can meet only a finite number of H in h.

Proposition 3.5. The group W∆ acts transitively on the set of chambers.[chambers-transitive]

Proof. By induction on the number of root hyperplanes separating two chambers C and C∗, which si

finite by the previous Lemma. If it is 0, then by Proposition 2.3 C = C∗. Otherwise, one of the walls H♣ [chambers]

of C∗ separates them, and the number separating sHC∗ from C will be one less. Apply induction.
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The next several results will tell us that W is generated by the reflections in the walls of C , that the

closure of C is a fundamental domain for W , and (a strong version of this last fact) that if F is a face of

C then the group of w in W fixing such that F ∩w(F ) 6= ∅ then w lies in the subgroup generated by the
reflections in the walls of C containing v, which all in fact fix all points of F . Before I deal with these,

let me point out at the beginning that the basic point on which they all depend is the trivial observation

that if w 6= I in W fixes points on a wall H then it must be the orthogonal reflection sH .

Corollary 3.6. The reflections in S generate the group W .[generate]

Proof. It suffices to show that every sλ lies in W∆.

Suppose F to be a panel in hyperplane λ = 0. According to the Proposition, if this panel bounds C∗ we

can findw inW∆ such thatwC∗ = C , hencew(F ) lies inC , and therefore must equal a panel ofC . Then
w−1sαw fixes the points of this panel and therefore must be sλ.

Given any hyperplane partition, a gallery between two chambers C and C∗ is a chain of chambers
C = C0, C1, . . . , Cn = C∗ in which each two successive chambers share a common face of codimension

1. The integer n is called the length of the gallery. I’ll specify further that any two successive chambers in
a gallery are distinct, or in other words that the gallery is not redundant . The gallery is called minimal if

there exist no shorter galleries between C0 and Cn. The combinatorial distance between two chambers

is the length of a minimal gallery between them.

Expressions w = s1s2 . . . sn with each si in S can be interpreted in terms of galleries. There is in fact

a bijective correspondence between such expressions and galleries linking C to wC . This can be seen
inductively. The trivial expression for 1 in terms of the empty string just comes from the gallery of length

0 containing justC0 = C . A single elementw = s1 of S corresponds to the galleryC0 = C ,C1 = s1C . If

we have constructed the gallery forw = s1 . . . sn−1, we can construct the one for s1 . . . sn in this fashion:
the chambersC and snC share the wall α = 0 where sn = sα, and therefore the chamberswC andwsnC
share the wall wα = 0. The pair Cn−1 = wC , Cn = wsnC continue the gallery from C to wsnC .

This associates to every expression s1 . . . sn a gallery, and the converse construction is straightforward.

Proposition 3.7. If wC = C then w = 1.[fixC]

Proof. I’ll prove that if w = s1 . . . sn with wC = C and n > 0 then there exists some 1 ≤ i ≤ n with

w = s2 . . . si−1si+1 . . . sn. By recursion, this leads to w = 1.

Let H be the hyperplane in which s1 reflects. Let wi = s1 . . . si. The path of chambers w1C , w2C ,

. . . crosses H at the very beginning and must cross back again. Thus for some i we have wi+1C =
wisi+1C = s1wiC . But if y = s2 . . . si we have si+1 = y−1s1y, and wi+1 = y, so w = s1ysi+1 . . . sn =
ysi+2 . . . sn.
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Proposition 3.8. For any w inW and s in S, if 〈αs, wC〉 < 0 then `(sw) < `(w) and if 〈αs, wC〉 > 0 then[ws]

`(sw) > `(w).

Proof. Suppose 〈αs, wC〉 < 0. Then C and wC are on opposite sides of the hyperplane αs = 0. If
C = C0, . . . , Cn = wC is a minimal gallery from C to wC , then for some i Ci is on the same side of

αs = 0 as C but Ci+1 is on the opposite side. The gallery C0, . . . , Ci, sCi+2, . . . sCn = swC is a gallery
of shorter length from C to swC , so `(sw) < `(w).

If 〈αs, wC〉 > 0 then 〈αs, swC〉 < 0 and hence `(w) = `(ssw) < `(sw).

Proposition 3.9. If v and wv both lie in C , then wv = v and w belongs to the group generated by the[stabilizers]

reflections in S fixing v.

Proof. By induction on `(w). If `(w) = 0 then w = 1 and the result is trivial.

If `(w) > 1 then letx = swwith `(x) = `(w)−1. ThenC andwC are on opposite sides of the hyperplane
αs = 0, by Proposition 3.8. Since v and wv both belong to C , the intersection C ∩wC is contained in the♣ [ws]

hyperplane αs = 0 and wv must be fixed by s. Therefore wv = xv. Apply the induction hypothesis.

If Θ is a subset of ∆ then let CΘ be the face of C where α = 0 for α in Θ, α > 0 for α in ∆ but not in

Θ. If F is a face of any chamber, the Proposition tells u it will be W ­equivalent to a unique Θ ⊆ ∆. The

faces of chambers are therefore canonically labeled by subsets of ∆.

Let
Rw = {λ > 0 | wλ < 0}

Lw = {λ > 0 | w−1λ < 0}

Of course Lw = Rw−1 . According to Lemma 3.4, the set Rw determines the root hyperplanes separating♣ [separating-finite]

C from w−1C , and |Rw| = |Lw| = `(w).

An expression for w as a product of elements of S is reduced if it is of minimal length. The length of w
is the length of a reduced expression for w as products of elements of S. Minimal galleries correspond

to reduced expressions. The two following results are easy deductions:

Proposition 3.10. For x and y inW , `(xy) = `(x) + `(y) if and only ifRxy is the disjoint union of y−1Rx[rw]

and Ry .

Finally, suppose that we are considering a root system, so that there are only a finite number of hyper­

planes in the root configuration, and all pass through the origin. Since −C is then also a chamber:

Proposition 3.11. There exists in W a unique element w` of maximal length, with w`C = −C . For[longest]

w = w`, Rw = Σ+.

This discussion also leads to a simple and useful algorithm to find an expression forw inW as a product

of elements in S. For each v in V ∨ define

vα = 〈α, v〉

for α in ∆. Let ρ̂ be a vector in V ∨ with ρ̂α = 〈α, ρ̂〉 = 1 for all α in ∆. It lies in the chamber C and

u = wρ̂ lies inwC , so `(sβw) < `(w) if and only if 〈β, u〉 < 0. If that occurs, we apply sβ to u, calculating

〈α, sβu〉 = 〈α, u− 〈β, u〉β∨〉 = 〈α, u〉 − 〈β, u〉〈α, β∨〉 = uα − 〈α, β∨〉uβ .

In effect, we replace the original u by this new one. And then we continue, stopping only when uα > 0
for all α.

I had better make clear some of the consequences of this discussion for a set of roots Σ. First of all, the
reflections sλ for λ in a root system preserve the root hyperplanes associated to a root system. If C is a

connected component of the complement of these hyperplanes, then the group W the whole group of
root reflections generate is in fact generated by the set S of elementary reflections in the walls of C .
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Proposition 3.12. If ∆ is the set of roots vanishing on these walls of the chamber C , then every root in Σ[W-transitive]

is in the W ­orbit of ∆.

Proof. This is because W acts transitively on the chambers.

In the older literature one frequently comes across another way of deducing the existence of a base ∆
for positive roots. Suppose V = V (Σ), say of dimension `, and assume it given a coordinate system.
Linearly order V lexicographically : (xi) < (yi) if xi = yi for i < m but xm < ym. Informally, this

is dictionary order . For example, (1, 2, 2) < (1, 2, 3). This order is translation­invariant. [Satake:1951]
remarks that this is the only way to define a linear, translation­invariant order on a real vector space.

Define Σ+ to be the subset of roots in Σ that are positive with respect to the given order. Define α1 to be

the least element of Σ+, and for 1 < k ≤ ` inductively define αk to be the least element of Σ+ that is not
in the linear span of the αi with i < k.

The following seems to be first found in [Satake:1951].

Proposition 3.13. Every root in Σ+ can be expressed as a positive integral combination of the αi.[satake]

Proof. It is easy to see that if ∆ is a basis for Σ+ then it has to be defined as it is above. It is also easy to

see directly that if α < β are distinct elements of ∆ then 〈α, β∨〉 ≤ 0. Because if not, according to Lemma♣ [chains1]

6.1 the difference β − α would also be a root, with β > β − α > 0. But this contradicts the definition of
β as the least element in Σ+ not in the span of smaller basis elements.

The proof of the Proposition goes by induction on `. For ` = 1 there is nothing to prove. Assume true for
`− 1. Let Σ∗ be the intersection of the span of the αi with i ≤ `, itself a root system. We want to show

that every λ in the linear span of Σ is a positive integral combination of the αi. If λ is in Σ∗ induction

gives this, and it is also true for λ = α`. Otherwise λ > α`. Consider all the λ−αi with i ≤ `. It suffices
to show that one of them is a root, by an induction argument on order. If not, then all 〈λ, αi〉 ≤ 0. This

leads to a contradiction of Proposition 7.4, to be proven later (no circular reasoning, I promise).♣ [roots-inverse]

I learned the following from [Chevalley:1955].

Corollary 3.14. Suppose ∆ to be a basis of positive roots in Σ. If λ and µ are a linearly independent[two-roots]

pair of roots, then there exists w in W such that wα lies in ∆, and wµ is a linear combination of α and a
second element in ∆.

Proof. Make up an ordered basis of V with λ and µ its first and second elements. Apply the Proposition

to get a basis ∆∗ of positive roots. Then λ is the first element of ∆. If ν is the second, then µ must be a

positive linear combination of λ and ν/. We can find w in W taking ∆∗ to ∆.

4. Root systems of rank one

The simplest system is that containing just a vector and its negative. There is one other system of rank

one, however:

Throughout this section and the next I exhibit root systems by Euclidean diagrams, implicitly leaving it

as an exercise to verify the conditions of the definition.

That these are the only ones, up to scale, follows from this:

Lemma 4.1. If λ and cλ are both roots, then |c| = 1/2, 1, or 2.[non-reduced]

Proof. On the one hand (cλ)∨ = c−1λ∨, and on the other 〈λ, (cλ)∨〉 must be an integer. Therefore 2c−1

must be an integer, and similarly 2c must be an integer.
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5. Root systems of rank two

The simplest way to get a system of rank two is to build the orthogonal sum of two systems of rank one.
For example:

But more interesting are the irreducible systems, those which cannot be expressed as the direct product

of smaller systems.

If α and β are two linearly independent roots, the matrices of the corresponding reflections with respect

to the basis (α, β) are

sα =

[
−1 −〈β, α∨〉

0 1

]
, sβ =

[
1 0

−〈α, β∨〉 −1

]

and that of their product is

sαsβ =

[
−1 −〈β, α∨〉

0 1

][
1 0

−〈α, β∨〉 −1

]
=

[
−1 + 〈α, β∨〉〈β, α∨〉 〈β, α∨〉

−〈α, β∨〉 −1

]
.

This product must be a non­trivial Euclidean rotation, and hence its trace τ = −2+ 〈α, β∨〉〈β, α∨〉 must

satisfy the inequality
−2 ≤ τ < 2

which imposes the condition

0 ≤ nα,β = 〈α, β∨〉〈β, α∨〉 < 4 .

But nα,β must also be an integer. Therefore it can only be 0, 1, 2, or 3. It will be 0 if and only if sα and sβ

commute, which means reducibility.

Recall the picture:

α

β

π
mπ

m

Assuming that the root system is irreducible, α •β will actually be negative. By switching α and β if

necessary, we may assume that one of these cases is at hand:
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• 〈α, β∨〉 = −1, 〈β, α∨〉 = −1
• 〈α, β∨〉 = −2, 〈β, α∨〉 = −1
• 〈α, β∨〉 = −3, 〈β, α∨〉 = −1

Taking the possibility of non­reduced roots into account, we get four possible irreducible systems:

A2 B2 = C2

G2 BC2

The first three are reduced.

6. Chains

If λ and µ are roots, the µ­chain through λ is the set of all roots of the form λ + nµ. We already know
that both µ and rλµ are in this chain. So is everything in between, as we shall see. The basic result is:

Lemma 6.1. Suppose λ and µ to be roots.[chains1]

(a) If 〈µ, λ∨〉 > 0 then µ− λ is a root unless λ = µ.
(b) If 〈µ, λ∨〉 < 0 then µ+ λ is a root unless λ = −µ.

Proof. If λ and µ are proportional, the claims are immediate. Suppose they are not. If 〈µ, λ∨〉 > 0 then

either it is 1 or 〈λ, µ∨〉 = 1. In the first case

sλµ = µ− 〈µ, λ∨〉λ = µ− λ
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so that µ− λ is a root, and in the second sµλ = λ − µ is a root and consequently µ− λ also. The other

claim is dealt with by swapping −λ for λ.

Hence:

Proposition 6.2. If µ and ν are left and right end­points of a segment in a λ­chain, then 〈µ, λ∨〉 ≤ 0 and[chain-ends]

〈ν, λ∨〉 ≥ 0.

Proposition 6.3. Suppose λ and µ to be roots. If µ− pλ and µ+ qλ are roots then so is every µ+nλ with[chains2]

−p ≤ n ≤ q.

Proof. Since〈µ + nλ, λ∨〉 is an increasing function of n, the existence of a gap between two segments

would contradict the Corollary.

7. The Cartan matrix

If h is the union in V ∨
R

of the root hyperplanes λ = 0, the connected components of its complement in

V ∨
R

are called Weyl chambers . According to Proposition 3.5 and Proposition 3.7, these form a principal♣ [chambers-transitive]♣ [fixC]

homogeneous space under the action of W .

Fix a chamber C . A root λ is called positive if 〈λ,C〉 > 0, negative if 〈λ,C〉 < 0. All roots are either

positive or negative, since by definition no root hyperplanes meetC . Let ∆ be the set of indivisible roots
αwith α = 0 defining a panel of C with α > 0 on C , and let S be the set of reflections sα for α in ∆. The

Weyl group W is generated by S.

The matrix 〈α, β∨〉 for α, β in ∆ is called the Cartan matrix of the system. Since 〈α, α|vee〉 = 2 for all

roots α, its diagonal entries are all 2. According to the discussion of rank two systems, its off­diagonal
entries

〈α, β∨〉 = 2

(
α •β

β •β

)

are all non­positive. Furthermore, one of these off­diagonal entries is 0 if and only if its transpose entry
is.

If D is the diagonal matrix with entries 2/α •α then

A = DM

whereM is the matrix (α •β). This is a positive semi­definite matrix, and according to Proposition 3.1 its♣ [rank-two]

off­diagonal entries are non­positive. The proofs of the results in this section all depend on understanding
the Gauss elimination process applied toM . It suffices just to look at one step, reducing all but one entry

in the first row and column to 0. Since α1 •α1 > 0, it replaces each vector αi with i > 1 by its projection

onto the space perpendicular to α1:

αi 7−→ α⊥
i = αi −

αi •α1

α1 •α1

(i > 1) .

If I set α⊥
1 = α1, the new matrix M⊥ has entries α⊥

i •α⊥
j . We have the matrix equation

LM tL = M⊥, M−1 = tL (M⊥)−1 L

with L a unipotent lower triangular matrix

L =

[
1 `
t` I

]
`i = −

α1 •αi

α1 •α1

≥ 0 .

This argument and induction proves immediately:
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Lemma 7.1. Suppose A = (ai,j) to be a matrix such that ai,i > 0, ai,j ≤ 0 for i 6= j. Assume D−1A[lummox]

to be a positive definite matrix for some diagonal matrix D with positive entries. Then A−1 has only
non­negative entries.

Lemma 7.2. Suppose ∆ to be a set of vectors in a Euclidean space V such that α •β ≤ 0 for α 6= β in ∆.[titsA]

If there exists v such that α • v > 0 for all α in ∆ then the vectors in ∆ are linearly independent.

Proof. By induction on the size of ∆. The case |∆| = 1 is trivial. But the argument just before this

handles the induction step, since if v •α > 0 then so is v •α⊥.

Proposition 7.3. The set ∆ is a basis of V (Σ).[tits]

That is to say, a Weyl chamber is a simplicial cone. Its extremal edges are spanned by the columns $i in
the inverse of the Cartan matrix, which therefore have positive coordinates with respect to ∆. Hence:

Proposition 7.4. Suppose ∆ to be a set of linearly independent vectors such that α •β ≤ 0 for all α 6= β[roots-inverse]

in ∆. If D is the cone spanned by ∆ then the cone dual to D is contained in D.

Proof. Let
$ =

∑
cαα

be in the cone dual to D. Then for each β in ∆

$ •β =
∑

cα (α •β) .

If A is the matrix (α •β), then it satisfies the hypothesis of the Lemma. If u is the vector (cα) and v is the
vector ($ •α), then by assumption the second has non­negative entries and

u = A−1v

so that u also must have non­negative entries.

Proposition 7.5. Each positive root may be expressed as
∑

α∈∆
cαα where each cα is a non­negative[base]

integer.

Proof. Each root is of the form wα for some w in W , α in ∆. This gives such an expression with cα
integral. A root λ is positive if and only if λ •$i ≥ 0 for all i. But λ •$i is the i­th coordinate of λ.

One consequence of all this is that the roots generate a full lattice in V (Σ). By duality, the coroots

generate a lattice in V ∨(Σ∨), which according to the definition of root systems is contained in the lattice
of V ∨(Σ∨) dual to the root lattice of V (Σ).

Another consequence is a simple algorithm that starts with a given root λ and produces a product w of
elementary reflections with w−1λ ∈ ∆.

If λ < 0, record this fact and swap −λ for λ. Now

λ =
∑

∆

nαα

with all nα ≥ 0 and one nα > 0. The proof proceeds by induction on the height |λ| =
∑
nα of λ.

If |λ| = 1, then λ lies in ∆, and there is no problem. Since the positive chamber C is contained in
the cone spanned by the positive roots, no positive root is contained in the closure ofC . Therefore
λ, α∨ >> 0 for some α in ∆. Then

rαλ = λ− 〈λ, α∨〉α

has smaller height than λ, and we can apply the induction hypothesis.
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If the original λ was negative, this gives us w with w−1λ in ∆, and just one more elementary
reflection has to be applied.

This has as consequence:

Proposition 7.6. Every positive root can be connected to ∆ by a chain of links λ 7→ λ+ α.[chain-to-Delta]

We now know that each root system gives rise to an integral Cartan matrixA = (〈α, β∨〉) with rows and

columns indexed by ∆. We know that it has these properties:

(a) Aα,α = 2;

(b) Aα,β ≤ 0 for α 6= β;

(c) Aα,β = 0 if and only if Aβ,α = 0;

but it has another implicit property as well. We know that there exists aW ­invariant Euclidean norm with

respect to which the reflections are invariant. This implies the formula we have already encountered:

〈α, β∨〉 = 2

(
α •β

β •β

)
.

Construct a graph from A whose nodes are elements of ∆ and with edge between α and β if and only

if 〈α, β〉 6= 0. For each connected component of this graph, chose an arbitrary node α and arbitrarily

assign a positive rational value to α •α. Assign values for all β • γ according to the rules

β • γ =
1

2
〈β, γ∨〉γ • γ

β •β = 2
β • γ

〈γ, β∨〉
.

which allow us to go from node to node in any component. This defines an inner product, and the extra
condition on the Cartan matrix is that this inner product must be positive definite, or equivalently

(d) The matrix (α •β) must be positive definite.

This can be tested by Gauss elimination in rational arithmetic, as suggested by the discussion at the

beginning of this section.

If these conditions are all satisfied, then we can construct the root system by the algorithm mentioned

earlier.

8. Dynkin diagrams

The Dynkin diagram of a reduced system with base ∆ is a labeled graph whose nodes are elements of

∆, and an edge between α and β when
∣∣〈α, β∨〉

∣∣ ≥
∣∣〈β, α∨〉

∣∣ > 0 .

This edge is labeled by the value of
∣∣〈α, β∨〉

∣∣, and this is usually indicated by an oriented multiple link.

Here are the Dynkin diagrams of all the reduced rank two systems:

A2

B2 = C2

G2

α2 α1

The Dynkin diagram determines the Cartan matrix of a reduced system. The complete classification
of irreducible, reduced systems is known, and is explained by the following array of diagrams. The

numbering is arbitrary, even inconsistent as n varies, but follows the convention of Bourbaki. Note also

that although systems B2 and C2 are isomorphic, the conventional numbering is different for each of
them.
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An (n ≥ 1)
α1 α2 αn−1 αn

Bn (n ≥ 2)
α1 α2 αn−1 αn

Cn (n ≥ 2)
α1 α2 αn−1 αn

Dn (n ≥ 4)
α1 α2 αn−2

αn−1

αn

E6

α1 α2 α4

α3

α5 α6

E7

α1 α2 α4

α3

α5 α6 α7

E8

α1 α2 α4

α3

α5 α6 α7 α8

F4

α1 α2 α3 α4

In addition there is a series of non­reduced systems of typeBCn obtained by superimposing the diagrams

for Bn and Cn.

9. Subsystems

If Θ is a subset of ∆, let ΣΘ be the roots which are integral linear combinations of elements of Θ. These,
along with V , V ∨ and their image in Σ∨ form a root system. Its Weyl group is the subsetWΘ generated

by the reflections sα for α in Θ. Recall that to each subset Θ ⊆ ∆ corresponds the face CΘ of C where
λ = 0 for λ ∈ Θ, λ > 0 for λ ∈ ∆ − Θ. According to Proposition 3.9, an element of W fixes a point in♣ [stabilizers]

CΘ if and only if it lies in WΘ.

The region in V ∨ where α > 0 for α in Θ is a fundamental domain for WΘ. For any w in W there exists
y in WΘ such that xC = y−1wC is contained in this region. But then x−1α > 0 for all α in Θ. In fact, x
will be the unique element in WΘw with this property. Hence:

Proposition 9.1. In each cosetWΘ\W there exists a unique representativex of least length. This element[cosets]

is the unique one in its coset such that x−1Θ > 0. For any y in WΘ we have `(yx) = `(y) + `(x).

Let [WΘ\W ] be the set of these distinguished representatives, [W/WΘ] those for right cosets. These

distinguished representatives can be found easily. Start with x = w, t = 1, and as long as there exists s
in S = SΘ such that sx < x replace x by sx, t by ts. At every moment we have w = tx with t in WΘ

and `(w) = `(t) + `(x). At the end we have sx > x for all s in S.

Similarly, in every double coset WΘ\W/WΦ there exists a unique element w of least length such that
w−1Θ > 0, wΦ > 0. Let these distinguished representatives be expressed as [WΘ\W/WΦ].
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Suppose g to be a reductive Lie algebra, b a maximal solvable (‘Borel’) subalgebra, ∆ the associated basis

of positive roots.

If p is a Lie subalgebra containing b, there will exist a subset Θ of ∆ such that p is the sum of b and the
direct sum of root spaces gλ for λ in Σ−

Θ
. The roots occurring are those in Σ+∪Σ−

Θ
. This set is a parabolic

subset —(a) it contains all positive roots and (b) it is closed in the sense that if λ and µ are in it so is λ+µ.
Conversely:

Proposition 9.2. Suppose Ξ to be a parabolic subset, and set Θ = ∆ ∩ −Ξ. Then Ξ = Σ+ + Σ−
Θ.[parabolic-set]

Proof. We need to show (a) if ξ is in Ξ ∩ Σ− then ξ is in Σ−
Θ

and (b) if ξ is in Σ−
Θ

then ξ is in Ξ.

Suppose ξ in Σ−
Θ, say ξ = −

∑
α cαα. The proof goes by induction on h(ξ) =

∑
cα. Since −Θ ⊆ Ξ, ξ is

in Ξ if h(ξ) = 1. Otherwise ξ = ξ∗ − α with ξ∗ also in Σ−
X . By induction ξ∗ is in Ξ, and since Ξ is closed

so is ξ in Ξ.

Suppose ξ in Ξ ∩ Σ−. If h(ξ) = 1 then ξ is in −∆ ∩ Ξ = −Θ. Otherwise, ξ = ξ∗ − α with α in ∆. Then
ξ∗ = ξ + α also lies in Ξ since Ξ contains all positive roots and it is closed. Similarly −α = ξ − ξ∗ lies in

Ξ, hence in Θ. By induction ξ∗ lies Σ−
Θ, but then so does ξ.

In the rest of this section, assume for convenience thatV = V (Σ) (i.e. that the root system is semi­simple),

and also that the root system is reduced. The material to be covered is important in understanding the

decomposition of certain representations of reductive groups. I learned it from Jim Arthur, but it appears
in Lemma 2.13 of [Langlands:1976], and presumably goes back to earlier work of Harish­Chandra.

Fix the chamber C with associated ∆. For each Θ ⊆ ∆ let

VΘ =
⋂

α∈Θ

ker(α) .

The set of roots which vanish identically onVΘ are those in ΣΘ. The spaceVΘ is partitioned into chambers
by the hyperplanes λ = 0 for λ in Σ+−Σ+

Θ
. One of these is the faceCΘ of the fundamental Weyl chamber

C = C∅. If Θ = ∅ we know that the connected components of the complement of root hyperplanes are

a principal homogeneous set with respect to the full Weyl group. In general, the chambers of VΘ are the
facettes of full chambers, and in particular we know that each is the Weyl transform of a unique facette

of a fixed positive chamber C . But we can make this more precise.

Proposition 9.3. Suppose Θ and Φ to be subsets of ∆. The following are equivalent:[associates]

(a) there exists w in W taking VΦ to VΘ;
(b) there exists w in W taking Φ to Θ.

In these circumstances, Θ and Φ are said to be associates . LetW (Θ,Φ) be the set of all w taking Φ to Θ.

Proof. That (b) implies (a) is immediate. Thus suppose wVΦ = VΘ. This implies that wΣΦ = ΣΘ. Let

w∗ be of least length in the double coset WΘwWΦ, so that w∗Σ
+
Φ = Σ+

Θ. Since Φ and Θ are bases of Σ+
Φ

and Σ+
Θ, this means that w∗Φ = Θ.

Corollary 9.4. For each w inW (Θ,Φ) the chamber wCΦ is a chamber of VΘ. Conversely, every chamber[associate-chambers]

of VΘ is of the form wCΦ for a unique associate Φ of Θ and w in W (Θ,Φ).

Proof. The first assertion is trivial. Any chamber of VΘ will be of the form wCΦ for some w in W and

some unique Φ ⊆ ∆. But then wVΦ = VΘ.

We’ll see in a moment how to find w and Φ by an explicit geometric construction.

One of the chambers in VΘ is −CΘ. How does that fit into the classification? For any subset Θ of ∆, let
W`,Θ be the longest element in the Weyl groupWΘ generated by reflections corresponding to roots in Θ.

The element w`,Θ takes Θ to −Θ and permutes Σ+\Σ+
Θ. The longest element w` = w`,∆ takes −Θ back

to a subset Θ of Σ+ called its conjugate in ∆.
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Proposition 9.5. If Φ = Θ and w = w`w`,Θ then −CΘ = w−1CΦ.[opposite-cell]

Proof. By definition of the conjugate, wVΘ = VΦ and hence w−1VΦ = VΘ. The chamber −CΘ is the set

of vectors v such that α • v = 0 for α in Θ and α • v < 0 for α in ∆\Θ. Analogously for CΦ.

Lemma 9.6. If Θ is a maximal proper subset of ∆ then its only associate in ∆ is Θ.[only]

Proof. In this case VΘ is a line, and its chambers are the two half­lines CΘ and its complement.

If Ω = Θ ∪ {α} for a single α in ∆ − Θ then the Weyl element w`,Ωw`,Θ is called an elementary
conjugation .

Lemma 9.7. Suppose that Ω = Θ ∪ {α} with α in ∆ − Θ. Then the chamber and sharing the panel CΩ[elementary-conjugation]

with CΘ is sCΦ where Φ is the conjugate of Θ in Ω and s = w`,Ωw`,Φ.

Proof. Let C∗ = wCΦ be the neighbouring chamber with sΦ = Θ. Then s fixes the panel shared by CΘ

and C∗, so must lie in WΩ. But then Φ must be an associate of Θ in Ω. Apply Lemma 9.6.♣ [only]

A gallery in VΘ is a sequence of chambers C0, C1, . . . , Cn where Ci−1 and Ci share a panel. To each

Ci we associate according to Corollary 9.4 a subset Θi and an element wi of W (Θ,Θi). Since Ci−1 and♣ [associate-chambers]

Ci share a panel, so do w−1
i−1Ci−1 and wi−1Ci. But wi−1Ci−1 is CΘi−1

, so to this we may apply the

preceding Lemma to see that Θi1 and Θi are conjugates in their union Ωi, and that si = w−1
i−1wi is equal

to the corresponding conjugation. The gallery therefore corresponds to an expressionw = s1 . . . sn

where each si is an elementary conjugation. In summary:

Proposition 9.8. Every element of W (Θ,Φ) can be expressed as a product of elementary conjugations.[conjugates]

Each such expression corresponds to a gallery from CΘ to wCΦ.

For w in W (Θ,Φ) its relative length is the length of a minimal gallery in VΘ leading from CΘ to wCΦ.

For w inW (Θ,Φ), let ψw be the set of hyperplanes in VΘ separating CΘ from wCΦ. Then it is easy to see
that `rel(xy) = `rel(x) + `rel(y) if and only if ψy ∪ yψx ⊆ ψxy .

Lemma 9.9. Suppose w in W (Θ,Φ). Then[relative-separates]

(a) If λ is in Σ+\Σ+
Θ

separates CΘ from wCΦ, λ separates wC∅ from C∅;
(b) If λ > 0 separates wC∅ from C∅, either λ ∈ Σ+

Θ or λ ∈ Σ+\Σ+
Θ.

Proposition 9.10. If w lies in W (Θ,Φ) then[longest-relative]

`rel(w`wΦ) = `rel(w`w`,Φw
−1) + `rel(w) .

Proposition 9.11. Suppose x in W (Θ3,Θ2), y in W (Θ2,Θ1). If the relative length of xy is the sum of[relative-lengths]

the relative lengths of x and y, then `(xy) = `(x) + `(y).

Proof. By induction on relative length.

If C0, C1, . . . , Cn is a gallery in VΘ, it is called primitive if Θi−1 is never the same as Θi.

Proposition 9.12. Every W (Θ,Φ) has at least one element with a primitive representation.[primitive]

Proof. If w = s1 . . . si−1si . . . sn and Θi−1 = Θi then s1 . . . ŝi . . . sn is also in W (Θ,Φ).
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10. Dominant roots

A positive root α̃ is called dominant if every other root is of the form

α̃−
∑

α∈∆

cαα

with all cα in N.

Proposition 10.1. If Σ is an irreducible root system, then there exists a unique dominant root.[dominant]

Proof. We can even describe an algorithm to calculate it. Start with any positive root λ, for example one

in ∆, and as long as some λ + α with α in ∆ is a root, replace λ by λ + α. According to Lemma 6.1, at♣ [chains1]

the end we have 〈λ, α∨〉 ≥ 0 for all α in ∆. We then also have 〈α, λ∨〉 ≥ 0 for all α, and at least one of

these must actually be > 0.

Suppose λ =
∑
nαα. Let X be the α with nα 6= 0 and Y its complement in ∆. If Y isn’t empty, then

because of irreducibility there exists α inX and β in Y with 〈α, β∨〉 < 0. Hence we get the contradiction

0 ≤ 〈λ, β∨〉 =
∑

α∈X

nα〈α, β
∨〉 < 0

So nα > 0 for all α.

If there were a root ν not of the form
λ−

∑

α∈∆

cαα

then there would exist a second rootµ, constructed from ν by the same procedure, with the same property.
Then

〈λ, µ∨〉 = nα

∑
〈α, µ∨〉 > 0 .

According to Lemma 6.1, λ − µ is a root. But this implies that either λ > µ or λ < µ, contradicting♣ [chains1]

maximality.

The proof shows that the dominant root is the unique one in the closure of the positive Weyl chamber. It
can be shown moreover that 〈α, α̃〉 = 0 or 1, but this will not be needed.

11. Affine root systems

Assume a reduced semi­simple root system.

According to Proposition 7.5, the roots are contained in a lattice—in fact, in the free Z­moduleR spanned♣ [base]

by ∆. The coroots then span a latticeR∨ contained in the dual lattice Hom(R,Z). In general the inclusion

will be proper. The roots will in turn then be contained in the dual Hom(R∨,Z) of R∨.

Define Waff to be the group of affine transformations generated by W and translations by elements of

R∨, Ŵ the larger group generated by W and Hom(R,Z). Both groups preserve the system of affine

hyperplanes λ + k = 0, where λ is a root, consequently permuting the connected components of the
complement, called alcoves .

Proposition 11.1. The region Caff where α > 0 for all α in ∆, α̃ < 1 is an alcove.[alcoves]

Proof. It has to be shown that for any root α and integer k, the region Caff lies completely on one side or

the other of the hyperplane α •x− k = 0. If k = 0 this is clear. If k < 0 we can change α to −α and k to
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−k, so we may assume that k > 0. Since 0 lies in the closure of Caff , it must be shown that α+ k < 0 on

all of Caff . But by Proposition 10.1 we can write α = α̃−
∑

∆
cββ with all cβ ≥ 0, so for any x in Caff♣ [dominant]

α •x = α̃ •x−
∑

∆

cβ(β •x) < 1 ≤ k .

Let ∆̃ be the union of ∆ and −α̃+ 1. For any pair α, β in ∆̃

−4 < 〈α, β∨〉 ≤ 0

The affine Dynkin diagram is a graph whose nodes are elements of ∆̃ with edges labelled and oriented

according to the values of 〈α, β∨〉 and 〈β, α∨〉. Let s̃ be the affine reflection in the hyperplane α̃ = 1, S̃
the union of S and s̃.

Corollary 11.2. The group Waff is generated by the involutions in S̃.[affines]

According to Proposition 3.9, every face of an alcove is the transform by an element of Waff of a unique♣ [stabilizers]

face of the alcove Caff . Elements of the larger group W̃ also permute alcoves, but do not necessarily

preserve this labelling. If w is an element of W̃ and α an element of ∆̃, then the face wFα of wCaff will

be the transform xFβ for some unique β in ∆̃. Let ι(w) be the map from ∆̃ to itself taking α to β.

Proposition 11.3. The map from w 7→ ι(w) induces an isomorphism of W̃/Waff with the group of[automorphism]

automorphisms of the affine Dynkin diagram.

Affine A2 Affine C2

Affine G2
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An (n ≥ 1)
α1 α2 αn−1 αn

µ

Bn (n ≥ 3)
α1

α2 αn−1 αn

µ

Cn (n ≥ 2)
µ α1 α2 αn−1 αn

Dn (n ≥ 4)

α1

α2 αn−2

αn−1

αn

µ

E6

α1

α2

α3

α4

α5

α6

µ

E7

α1 α2 α4

α3

α5 α6 α7µ

E8

α1 α2 α4

α3

α5 α6 α7 α8 µ

F4

µ α1 α2 α3 α4

G2

α2 α1µ
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