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When Ian Macdonald’s book Spherical functions on a group of p-adic type first
appeared, it was one of a very small number of publications concerned with repre­

sentations of p­adic groups. At just about that time, however, the subject began to be

widely recognized as indispensable in understanding automorphic forms, and the
literature on the subject started to grow rapidly. Since it has by now grown so huge,

in discussing here the subsequent history of some of Macdonald’s themes I shall
necessarily restrict myself only to things closely related to them. This will be no

serious restriction since, as I hope to explain, some of the most interesting problems

in all of representation theory are concerned with p­adic spherical functions. Along
the way I’ll reformulate from a few different perspectives what his book contains.

I’ll begin, in the next section, with a brief sketch of the main points, postponing most
technical details until later.

Throughout, suppose k to be what I call a p­adic field, which is to say that it is either
a finite extension of some Qp or the field of Laurent polynomials in a single variable

with coefficients in a finite field. Further let

• o = the ring of integers of k;

• p = the maximal ideal of o;

• $ = a generator of p;
• q = |o/p|, so that o/p ∼= Fq.

Let D be a field of characteristic 0, which will play the role of coefficient field in

representations. The minimal requirement on D is that it contain
√
q, but it will in

the long run be convenient to assume that it is algebraically closed. It may usually

be taken to be C, but I want to emphasize that special properties of C are rarely
required.

In writing this note I had one major decision to make about what class of groups
I would work with. What made it difficult was that there were conflicting goals

to take into account. On the one hand, I wanted to be able to explain a few basic
ideas without technical complications. For this reason, I did not want to deal

with arbitrary reductive groups, because even to state results precisely in this case

would have required much distracting effort—effort, moreover, that would have just
duplicated things explained very well in Macdonald’s book. On the other, I wanted
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to illustrate some of the complexities that Macdonald’s book confronts. In the end,

I chose to restrict myself to unramified groups. I will suppose throughout this
account that G is a reductive group defined over k arising by base extension from a
smooth reductive scheme over o. I hope that the arguments I present here are clear

enough that generalization to arbitrary reductive groups will be straightforward
once one understands their fine structure. I also hope that the way things go

with this relatively simple class of groups will motivate the geometric treatment in

Macdonald’s book, which although extremely elegant is somewhat terse and short
of examples. I’ll say something later on in the section on root data about their

structure.

Upon learning that I was going to be writing this essay, Ian Macdonald asked

me to mention that Axiom V in Chapter 2 of his book is somewhat stronger than
the corresponding axiom of Bruhat­Tits, and not valid for the type C–B2 in their

classification. Deligne pointed this out to him, and made the correction:

Axiom V. The commutator group [Uα, Uβ ] for α, β > 0 is contained in the
group generated by the Uγ with γ > 0 and not parallel to α or β.
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Part I. The spherical function for unramified groups

1. Introduction

Let P be a minimal parabolic subgroup of G arising from a minimal parabolic
subgroup of G(o). The group G(o) is a smooth scheme, and like its reduction

modulo p it is quasi­split, which is to say that P is a Borel subgroup. Let

• N = NP , its unipotent radical;

• M = MP , a copy in P of the Levi quotient P/N , which is a torus since P is a

Borel subgroup;
• P = the parabolic subgroup opposite to P , with P ∩ P = M ;

• A = AP , the maximal split torus of M ;
• T = M/M(o), a free Z­module containing the sub­lattice A = A/A(o);

• W = NG(A)/M , the Weyl group of the pair (G,A);

• K = G(o), a compact subgroup of G;
• I = the Iwahori subgroup ofK determined by P , the inverse image inK of the

Borel subgroup of G(o/p) associated to P ;
• δP = |detAdn|, the modulus character of P ;

• Σ = the roots of the pair (G,A), the non­trivial eigencharacters of the adjoint
action of A on the Lie algebra g;

• Σ+ = the subset of positive roots determined by P , so that

n =
⊕

α>0

gα ;

• ∆ = the basis of Σ+, so that every root λ in Σ+ is a sum of roots in ∆;

• Σ∨ = the coroots of the system, contained in the lattice

X∗(A) = Hom(Gm, A) ;

• for each Θ ⊂ ∆
AΘ =

⋂

α∈Θ

ker(α) .

• Γ will be the Galois group of the maximal unramified extension knr/k, gener­

ated topologically by the Frobenius F

Thus A∅ = A itself and A∆ is the maximal split torus in the centre of G. Repre­

sentatives of W may always be chosen in K . The centralizer of AΘ is the reductive

component MΘ of a unique parabolic subgroup PΘ containing P . Let M̃Θ be the

simply connected cover of its derived group. The only case we’ll really care about
is when Θ is a singleton {α}.

A simple example that’s good to keep in mind is that of G = GLn(k), where P is
the Borel subgroup of upper triangular matrices, P the lower triangular matrices,
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W the symmetric group Sn, and K = GLn(o). Here each of the groups M̃{α} is a
copy of SL2.

I recall here some elementary facts about reductive groups over p­adic fields. Such a
group G possesses as basis of open sets at 1 a sequence of compact open subgroups,

which can be taken to be the congruence subgroups

G(pn) = {g ∈ G(o) | g ≡ I (mod pn)} .

SupposeG(o) to be embedded in GLn(o), defined by polynomial equations Pi = 0.
Since

P (I + εX) = P (I) + ε〈dPi(I),X〉 +O(ε2)

the Lie algebra of G(Fq) may be identified with the linear subspace of matrices

X modulo p such that all 〈dPi(I),X〉 vanish. Since G is a smooth group scheme

over o, it follows from Hensel’s Lemma that whenever n ≥ 1 the map taking X to
I +$nX induces an isomorphism of this Lie algebra with G(pn)/G(pn+1).

The spaceC∞(G,D) of smooth functions on Gwith values in D will be made up of

those that are locally constant.

Keep in mind that if S is any algebraic torus, then

X∗(S) = Hom(Gm, S), X∗(S) = Hom(S,Gm)

are both free Z­modules of finite rank, or what I’ll call lattices , canonically dual to

each other through the pairing into Hom(Gm,Gm) ∼= Z—for all x in k×

α(β∨(x)) = q〈α,β∨〉 .

I’ll use additive notation for both lattices, and write xλ for the image of x in Gm

with respect to λ∨ in X∗(S), and xλ for the image of x in S with resprect to λ in
X∗(S).

For a split torus S defined over a p­adic field ` something special occurs—the
group S(k) is isomorphic to (k×)n and the map taking χ∨ to χ∨($) induces an

isomorphism of X∗(S) with S(`)/S(o`).

Another thing that makes the unramified groups simpler than arbitrary ones, as I

have already mentioned, is that the Levi component M of the minimal parabolic

subgroup is a torus. Yet another is this:

1.1. Proposition. The embedding of A into M induces an isomorphism of the[lattices]

lattices A = A/A(o) and T = M/M(o).

Proof. The torus M splits over the maximal unramified extension knr of k. Because

A is the maximal split k­torus in M , inclusion identifies the lattices

X∗(A) = X∗(M)G .
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Therefore
A(k)/A(o) ∼= X∗(A)

∼= X∗(M)G

∼=
(
M(knr)/M(onr)

)G
.

The short exact sequence of G modules

1 −→M(onr) −→M(knr) −→M(knr)/M(onr) −→ 1

leads to a long exact sequence

1 −→M(o) −→M(k) −→
(
M(knr)/M(onr)

)G

−→ H1
(
G,M(onr)

)
−→ . . .

Explicitly, the final map takes m in M(knr) invariant modulo M(o) to mm−F. So

the Proposition follows from this:

1.2. Lemma. If H is any unramified group over k then H1
(
G,H(onr)

)
= 1.[langs]

Proof. Equivalently, it must be shown that the map x 7→ xx−F is surjective on

H(onr). Filter H(onr) by the kernels of the projections

H(onr) −→ H(onr/p
n
nr)

which are surjective by Hensel’s Lemma. Each graded term of this filtration is an

algebraic group defined over the finite field o/p, and the classic result of Serge Lang
([Lang:1956]—see also Proposition 3, VI.4 of [Serre:1959] or [Müller:2003]—implies

that x 7→ xx−F is surjective on the group of its points rational over the algebraic

closure of Fq. An induction argument concludes.

If χ is a character of M with values in D× that’s trivial on M(o), it will induce one

of T . It is said to be an unramified character of M . It also induces a character of P
trivial onN . The representation Ind(χ |P,G) ofG induced by χ is the right regular

representation of G on the space of all smooth functions f : G→ D such that

f(pg) = δ
1/2
P (p)χ(p)f(g)

for all p in P , g in G. The factor δ
1/2
P is a useful normalization, as we’ll see later.

Since G = PK , this induced representation is an admissible representation of G.
Its restriction to K is equal to C∞(K ∩ P\K,D).

Its admissible dual is non­canonically isomorphic to Ind(χ−1 |P,G). With a suitable
choice of invariant measures, the duality sets

〈f, f̃〉 =

∫

K

f(k)f̃(k) dk .
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These representations of G are called the unramified principal series .

1.3. Proposition. The subspace of vectors in Ind(χ) fixed by elements of K has[vK]

dimension one.

Proof. Again since G = PK .

Conversely, if (π, V ) is any irreducible admissible representation ofGwith VK 6= 0,

in which case π is said to be an unramified representation ofG, then π embeds into
some Ind(χ). Let ϕχ be the unique function in Ind(χ) fixed by K with ϕχ(1) = 1.

Unramified representations are important for global arithmetical reasons. If
⊗̂
πv

is a representation of an adèlic group G(A) then for all but a finite number of
valuations v both the group G(kv) and the representation πv will be unramified.

That each unramified πv embeds into an unramified principal series is where the
application of representation theory to automorphic forms begins.

AssignG a Haar measure with meas(K) = 1. The Hecke algebra H(G//K) is that of
all left­ and right­K­invariant functions of compact support onG, with convolution

as its multiplication. If (π, V ) is any admissible representation of G then every

function in this Hecke algebra becomes an operator on VK according to the formula

π(f)v =

∫

G

f(g)π(g)v dg .

Since V K is one­dimensional, they act as scalars. Hence:

1.4. Proposition. If χ is an unramified character of M and π = Ind(χ), there exists[unramifiedchi]

a unique ring homomorphism cχ from H(G//K) to D such that

π(f)ϕχ = cχ(f)ϕχ

for every f in H(G//K).

These operators originated with the classical global Hecke operators T (1, p) and
T (p, p) on automorphic forms on quotients of the upper half­plane by congruence

subgroups of SL2(Z). In the classical environment, the local nature of these oper­
ators was disguised by the fact that Z possesses strong unique factorization. This

confusion extended at first to GLn, but local operators were introduced when the

methods of Tate’s thesis were introduced to division algebras (avoiding until later
the problems in analysis that arise with matrix algebras). The expositions in [Tam­

agawa:1963] and in §3.2 of [Shimura:1971] show some of this development.

For a given f the function cχ(f) is in some sense a polynomial function of χ. The

best way to see this is to look at the ‘generic’ or ‘tautologous’ unramified character
χ of M , which takes m in M to its image modulo M(o) in the group algebra

R = H(M//M(o)). For example, if G = GLn then A ∼= (k×)n and R is isomorphic
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to D[x±1
i ]. This tautologous character induces a representation of G on the space of

locally constant functions on G with values in R such that

f(pg) = δ
1/2
P (p)χ(p)f(g)

for all p in P , g in G. The submodule of functions in this fixed by K is free of rank
one over R, and we get therefore a ring homomorphism S = cχ from H(G//K) to

R. Any character χ of M with values in D× is a specialization of the generic one,

and cχ(f) then a specialization of S(f).

If w is an element of the Weyl group W , then generically Ind(χ) and Ind(wχ) are

isomorphic, which implies that for any f inH(G//K) the image of f inH(M//M(o))
isW ­invariant. Theorems going back to Hecke, Tamagawa, Satake, and Bruhat­Tits,

with contributions from others, assert that this map, which is commonly called the
Satake transform to acknowledge the nice axiomatic treatment in [Satake:1963],

induces an isomorphism of H(G//K) with H(M//M(o))W . When G = GLn, for
example, the ring H(M//M(o)) is D[x±1

1 , . . . , x±1
n ] and tghe Weyl group is Sn,

so every f is mapped onto a polynomial in the variables x±1
i invariant under

permutation of the variables.

Let A−− be the a in A such that |α(a)| ≤ 1 for all ∆, and let T −− be its image in

T . The cone T −− is a fundamental chamber for W in the lattice T . The Cartan
decomposition asserts thatG is the disjoint union of cosetsKtKwhere t ranges over

T −−. The Hecke algebra therefore has as linear basis the characteristic functions
charKtK , t in T −−. When G = GLn the quotient G/K can be interpreted as o­

lattices in kn, since K is the stabilizer of on, and this is just the principal divisor

theorem.

The usual proof of the Satake isomorphism, which we’ll see later on, is not construc­

tive since it does not say which element of H(M//M(o))W is the image of charKtK .
Although special cases had been known previously, it was apparently Langlands

and Macdonald who independently came up with a general recipe. Langlands’
version was announced in his 1967 lectures on Euler products (published first as

notes in mimeographed form, later by the Yale Mathematics Department in [Lang­

lands:1971]), in which he applied his result to deduce the convergence of certain
L­functions. His reasoning was valid only for certain non­degenerate asymptotic

values of t and only for Chevalley groups. Unitarity of cusp forms implied that
matrix coefficients of local factor representations were bounded, and his asymp­

totic formula was good enough to allow him to deduce bounds on χ. The first
version announced in [Macdonald:1968] was also valid only for Chevalley groups,

but good for all t. His more precise result was more difficult to prove, but also

more elegant. In his book, Macdonald exhibits a recipe for arbitrary simply con­
nected groups, applying results of Bruhat­Tits on the fine structure ofG. Extending

Macdonald’s formula to all reductive p­adic groups was apparently done first in
[Casselman:1980].



Introduction 9

The first step in explaining Macdonald’s result is a slight reformulation of the

problem. If f = charKtK we can write

π(f)ϕχ =

∫

G

f(g)R(g)ϕχ dg

=
∑

x∈KtK/K

Rxϕχ

=
∑

k∈K/K∩tKt−1

Rktϕχ

and since cχ(f) is π(f)ϕχ evaluated at 1, this leads to

cχ(f) = |KtK/K|
∫

K

ϕχ(kt) dk

= |KtK/K|
∫

K

ϕχ(kt)ϕχ−1(k) dk

= |KtK/K| 〈Rtϕχ, ϕχ−1〉 .

In other words

cχ(f) =
meas(KtK)

meas(K)
Φχ(t)

where Φχ(g) is the spherical function associated to Ind(χ), that is to say the matrix
coefficient

〈Rgϕχ, ϕχ−1〉 =

∫

K

ϕχ(kg) dk .

One merit of working with Φχ, as we’ll see in a moment, is that it has a more uniform
expression than cχ(f). Another is that it introduces the more general question of

how to evaluate matrix coefficients explicitly. But before I exhibit that expression,

I’ll first say something about the volume factor.

We have put on G a Haar measure with meas(K) = 1, but there is another equally

natural way to choose one. According to what is often called the Bruhat decompo-
sition , the group G is covered by disjoint double cosets PwP = PwN as w ranges

over W , and Pw`N is the unique one of these that’s open, where w` is the longest
element of W . If we put on P and N the Haar measures with P (o) and N(o) of

measures 1, then there is a unique Haar measure on G such that the integral of f
over G is ∫

P

d`p

∫

N

f(pw`n) dn

whenever f has support on Pw`N . These two Haar measures on G must be

proportional to each other—there exists a rational constant µG such that

∫

G

f(g) dg = µG

∫

P

dp

∫

N

f(pw`n) dn
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where the integral on the left is with respect to that with meas(K) = 1. It is not

difficult to evaluate this constant explicitly. We start with the following, which will

be useful later on.

1.5. Lemma. (Iwahori factorization) We can factor the Iwahori subgroup as[langs]

I = N(o)M(o)N(p)

where N (p) is the subgroup of elements of N(o) reducing to 1 modulo p.

Proof. This can be found as 2.6.4 in Macdonald’s book, but it’s easy enough to

prove directly for unramified groups. If g lies in I , then modulo p it lies in P (Fq),
and because P (o) is smooth there exists g in P (o) with the same image (Hensel’s

Lemma). From now on we work by induction to prove that g has the factorization
we want. This means we might as well assume g to be in N(o)M(o)N(p) modulo

pn, and try to factor it similarly modulo pn+1. But this follows from the conclusion
of the previous paragraph, and the decomposition

gFq
= nFq

+ mFq
+ nFq

.

As a consequence of the lemma, the coset Iw`I is completely contained in Pw`N ,
so to compare the two measures we can integrate over it. This gives us

µG =
meas(Iw`I)

meas(K)
.

The Bruhat decomposition forG(Fq) tells us thatK is the disjoint union of the cosets
IwI as w ranges over W . For each w in W let q(w) = |IwI/I|. Thus

µG =
q(w`)∑
w q(w)

.

If `(xy) = `(x) + `(y) then q(xy) = q(x)q(y). Hence q(ww`)q(w) = q(w`) and

µG =
1∑

W q(w)q(w`)−1
=

1∑
W q(ww`)−1

=
1∑

W q(w)−1
.

It is not difficult to compute individual q(w), since if w has a reduced expression
w = s1 . . . sn then q(w) = q(s1) . . . q(sn). If G is split, then q(s) = q for all s in

S, and q(w) = q`(w). If G = GLn, the quotient K/I may be identified with a flag
manifold over o/p, and has size

(1 + q)(1 + q + q2) . . . (1 + q + q2 + · · · + qn−1)

giving

µG =
1

(1 + q−1)(1 + q−1 + q−2) . . . (1 + q−1 + q−2 + · · · + q−(n−1))
.
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The analogous problem arises with real reductive groups as well, and was first dealt

with by Harish­Chandra. A formula for µG arises naturally in the context of Tam­

agawa measures, for example in Langlands’ paper [Langlands:1966] at the Boulder
conference. In view of the occurrence of the constant so often in Macdonald’s book,

it is of interest that he wrote later the short paper [Macdonald:1980] on the analogous
question for certain real groups.

This same constant occurs in many contexts, not always for transparent reasons. So
it is here. Suppose t to be an element of T , and let a be an element of A equivalent

to it moduloM(o). The centralizer of a is a reductive group Mt, and if t lies in T −−

this is the Levi component of a parabolic subgroup containing P . For t = 1 this

will be G itself, and for a generic t it will just be T . An equivalent way to classify

elements of T is by the subgroup of W fixing them, which will be the Weyl group
of the group Mt. At any rate, we can partition T −− into subsets T −−

M in this way,

essentially by the walls of the Weyl chamber T −−. The formula for the volume of
KtK depends on which of these sets t belongs to.

1.6. Proposition. For all t in T −−
M[volume]

|KtK/K| =
(
µM

µG

)
δ−1
P (t) .

This is proven in §3.2 of Macdonald’s book for simply connected groups G, but the

same proof is valid in general. The basic idea is to decompose KtK into double
cosets IxI where now x runs through certain elements of an affine Weyl group we’ll

meet later on.

A simple example will make the nature of this result clearer, perhaps. LetG = GL2

and take

t =

[
$r 0
0 1

]

with r > 0. Then
|KtK/K| = |K/K ∩ tKt−1| .

Now K ∩ tKt−1 is the group of matrices

[
a1,1 $ra1,2

a2,1 a2,2

]

with all ai,j integral. The quotientK/K ∩ tKt−1 therefore factors over P1(Fq) with

a fibre of cardinality qk−1, so that in this case

|KtK/K| = qr−1(q + 1) = (1 + q−1) qr ,

which agrees with the Proposition. It is instructive to do a similar calculation for
various t in GL3.
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For each root α, recall that A{α} is the subgroup of a in A with α(a) = 1, M{α} its

centralizer, a reductive group of semi­simple split rank one, and M̃{α} the simply

connected covering of the derived group ofM{α}. The group M̃{α} is an unramified,
simply connected, simple group of split rank one. It is not too difficult to see that

there are very few such groups. Indeed, any of them must be isomorphic to one of

two kinds:

• SL2(F ) where F is an unramified finite extension of k;
• an unramified unitary group SU3(E/F ) of dimension 3 defined over an un­

ramified finite extension F .

Any group over F , of course, determines one over k by restriction of scalars.

In the second case, letE/F be the unramified quadratic extension ofF , and letH be
the Hermitian form x1x3 + x2x2 + x3x1 on F 3, where x is the quadratic conjugate

of x in E. The group I call SU3(E/F ) is the special unitary group of H , that of all

matrices X in GL3(E) of determinant 1 such that

tXJ X = J or J tX−1J = X

where

J =




1
−1

1


 .

The map X 7→ J tX−1J is an involutory automorphism of SL3 taking the group of
upper triangular matrices to itself. If

X =



a

b
c




then

J tX−1J =



c−1

b−1

a−1




so the diagonal matrices in SU3 are the



x

x/x
x−1


 .

If

X =




1 x y
1 z

1



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then

J tX−1J =




1 z xz − y
1 x

1




so the unipotent ones are the 


1 x y
1 x

1




with y + y = xx.

In either case, let α be the unique indivisible positive root, and let aα = α∨($). It

is the image of an element ãα in M̃α, namely

ãα =





[
$

$−1

]
if M̃α = SL2(E)



$

1
$−1


 if M̃α = SU3(E)

For each α in Σ define

cα,χ =





1 − q−1
E χ(aα)

1 − χ(aα)
if M̃α = SL2(E)

(
1− q−2

E χ(aα)
)(

1 + q−1
E χ(aα)

)

1 − χ2(aα)
if M̃α = SU3(E)

and then set

γχ =
∏

α>0

cα,χ−1 .

If w is in W and χ is a character of M , then wχ is the character defined by

wχ(m) = χ(w−1mw) .

A regular or non-singular character is one not fixed by any w in W . Macdonald’s

formula for Φχasserts that

1.7. Proposition. If χ is a regular unramified character of M and t in T −− then[regular]

Φχ(t) = µG δ
1/2
P (t)

∑

w∈W

γwχ wχ(t) .

There is also a version for singular characters, obtained by taking the limit of the
one above. This formula is in some sense the analogue for p­adic groups of the Weyl
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character formula for real reductive groups, and indeed there is a subtle relationship

between the two.

The constant µG is, as we have seen, a ratio of measures on G. The proof of

Macdonald’s formula to be given later will make this role clear.

The proof of the formula for Φχ given in Macdonald’s book has many admirable

features, but I think it is fair to say that subsequent results on admissible repre­

sentations of reductive p­adic groups allow one to understand it better. The proof
I presented in my 1980 paper had the virtue that it extended without trouble to

generic Hecke algebras, in which q becomes simply a variable and the group has
disappeared. This is shown particularly in [Kato:1982], which used also results

from [Matsumoto:1977]. It has become more or less the standard proof; it is the one
presented, for example, in [Haines­Kottwitz­Prasad:2004]. In retrospect, however,

I find this proof unsatisfactory. The trouble with it, as with all the proofs that work

with a generic variable q, is that it doesn’t distinguish between quite different groups
where the value of q is the same. That is to say, SL2(Qp) and SL2(Fp) are equivalent

as far as this technique is concerned. Of course this is a virtue in many ways, but
it doesn’t tell you how to deal with ramified representations. I’d like to think that

the argument I sketch later on in this account is in several ways preferable. It is

based on an idea that first occurs in Langlands’ original exposition, and its relevance
to the present question is more explicitly formulated in [Waldspurger:1989]. The

point of this argument will be to place the formula in a larger context, so that one
understands to what extent such a result holds for arbitrary matrix coefficients on

G, and to what extent the spherical function itself is special.

Example. Let G = SL3(k) and χ = δ
−1/2
P . The spherical function itself in this case

is identically 1. What expression does the formula produce? There are three coroots

α and their coroot images aα are



$

$−1

1


 ,




1
$

$−1


 ,



$

1
$−1




mapped by δ
1/2
P to q, q, and q2. So the formula tells us that

1

1 + 2q−1 + 2q−2 + q3
(1− q−2)(1− q−2)(1− q−3)

(1− q−1)(1− q−1)(1− q−2)

=
(1 + q−1)(1 + q−1 + q−2)

1 + 2q−1 + 2q−2 + q3
= 1 .

For every simply connected split groupG, say of rank n, one obtains a similar result

when χ is δ
−1/2
P . The well known result of [Kostant:1956] implies that

∏

α>0

1 − q−1δ
−1/2
P (aα)

1 − δ
−1/2
P (aα)

=
n∏

i=1

1 − q−mi−1

1 − q−1
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where the mi are the Coxeter exponents of W . That this in turn is equal to∑
w∈W q−`(w) is proven in [Solomon:1966]. This is also related to the computa­

tion of the number of points on the flag manifold in terms of its cohomology and to
the calculation of Tamagawa numbers in [Langlands:1966].

Example. Let G = PGL2(k). Let

ω =

[
$

1

]
modulo the centre, X = χ(ω) .

Here aα = ω2 and
δ
1/2
P (ω) = q−1/2 .

Thus ω generates A−−/A(o), and Macdonald’s formula tells us that

Φχ(ωm) =
δ
1/2
P (ωm)

1 + q−1

[
1− q−1χ−1(aα)

1 − χ−1(aα)
χ(ωm) +

1 − q−1χ(aα)

1 − χ(aα)
χ−1(ωm)

]

=
q−m/2

1 + q−1

[
1− q−1X−2

1 −X−2
Xm +

1 − q−1X2

1 −X2
X−m

]

=
q−m/2

1 + q−1

[(
Xm+1 −X−(m+1)

X −X−1

)
− q−1

(
Xm−1 −X−(m−1)

X −X−1

)]

This leads to a formula for cχ(f), the image of f under the Satake homomorphism.
If m = 0 then

cχ(charKωmK) = cχ(charK) = 1

and otherwise

cχ(charKωmK) = qm/2

[(
Xm+1 −X−(m+1)

X −X−1

)
− q−1

(
Xm−1 −X−(m−1)

X −X−1

)]
.

Following an earlier suggestion, let χ be the tautologous character, with every
element of T mapping to its image in T . In this case X is just the image of ω in T .

It is legitimate then to write the formula above as

S(charKωmK) = qm/2

[(
ωm+1 − ω−(m+1)

ω − ω−1

)
− q−1

(
ωm−1 − ω−(m−1)

ω − ω−1

)]

= qm/2
(
ωm + ωm−2 + · · · + ω−m

)
− qm−2/2

(
ωm−1 + ωm−3 + · · · + ω−(m−1)

)

which makes the connection with H(M//M(o)) inescapable. In any event, this is a

fascinating expression if you are addicted to q­ology, and we’ll look at it again later
on to see if we can understand what it’s trying to tell us.

Example. Let G = SL2,

ω =

[
$

$−1

]
.
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Here aα = ω and

δ
1/2
P (ω) = q−1 .

For m > 0

S(charKωmK) = qm

[(
1 − q−1ω−1

1− ω−1

)
ωm +

(
1 − q−1ω

1 − ω

)
ω−m

]

= qm
(
ωm + ωm−1 + · · · + ω−m

)
− qm−1

(
ωm−1 + ωm−2 + · · · + ω−(m−1)

)
.

Example. Let G = SU3,

ω =



$

1
$−1


 .

Here ω = aα and

δ
1/2
P (ω) = q−2 .

For m > 0

S(charKωmK)

= q2m

[
(1 − q−2ω−1)(1 + q−1ω−1)

1 − ω−2
ωm +

(1 − q−2ω)(1 + q−1ω)

1 − ω2
ω−m

]

= q2m

[
(ω − q−2)(1 + q−1ω−1)

ω − ω−1
ωm − (ω−1 − q−2)(1 + q−1ω)

ω − ω−1
ω−m

]

= q2m

[
ωm+1 − ω−(m+1)

ω − ω−1

]
− q2m−2

[
ωm − ω−m

ω − ω−1

]

+ q2m−1

[
ωm − ω−m

ω − ω−1

]
− q2m−3

[
ωm−1 − ω−(m−1)

ω − ω−1

]
.

This formula is a bit more puzzling than the ones for PGL2 and SL2.

In the next few sections I’ll fill in some details of things I have only sketched here.
The principal aim of these sections will be to sketch proofs of the principal results

concerning unramified representations:

1.8. Theorem. (Satake isomorphism) If χ takes t to its image modulo M(o), then[satakeiso]

the map taking f in the Hecke algebra H(G//K) to cχ(f) induces an isomorphism
of this Hecke algebra with H(M//M(o))W .

1.9. Theorem. Any unramified admissible representation (π, V ) of G embeds into[embeds]

some Ind(χ).

The character χ will generally not be unique, but its W ­orbit will be. In any
case, the subspace V K will consequently have dimension 1, and there exists a ring

homomorphism cπ from H(G//K) to D such that

π(f)v = cπ(f)v
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for all f in H(G//K) and v in V K . I call this the characteristic homomorphism of

π.

1.10. Theorem. If c is any ring homomorphism from H(G//K) to D, there exists[heckemap]

up to isomorphism exactly one irreducible admissible representation (πc, V ) of G
whose characteristic homomorphism is c.

1.11. Theorem. Macdonald’s formula for the spherical function:[macformula]

Φχ(t) = µG δ
1/2
P (t)

∑

w∈W

γwχ wχ(t) .

This discussion will include a very brief introduction to admissible representations.
After these things have been dealt with in this Part I., I’ll take up even more briefly

in Part II. some questions discussed in Macdonald’s book as well as a few more
recent developments concerned with unramified representations that were only

dimly foreshadowed there. Some of these questions are:

• What is the explicit inverse of the Satake transform?
• Which unramified representations are unitary?
• Which unramified representations are expected to occur globally on arithmetic

quotients?
• What are the characters of unramified representations?
• Are unramified representations for different groups related?
• How do things change if G is ramified?
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2. The unramified principal series

There has been one extremely simple but far­reaching change since Macdonald’s

book first appeared in how representations of p­adic groups are dealt with. Real
analysis (should I say instead ‘authentic’ analysis) has largely disappeared from the

subject, to be replaced by algebra. Recall that D is an arbitrary field of character­

istic 0 containing
√
q. An admissible representation π of G over the field D is a

representation of G on a D­vector space V with these two properties:

• (Smoothness) The isotropy group of every v in V is open in G;
• (Admissibility) if K is any compact open subgroup of G, then the subspace of

vectors in V fixed by K has finite dimension.

This elementary innovation was introduced rather casually in the book [Jacquet­

Langlands:1971] and simplified the subject enormously.

If (π, V ) is an admissible representation of G then the space of smooth D­linear

functions on V makes up its admissible dual (π̃, Ṽ ), withG acting contragrediently:

〈v, π̃(g)ṽ〉 = 〈π(g−1)v, ṽ〉 .

The original representation is itself the admissible dual of Ṽ . Asssociated to π is the

D­module of its matrix coefficients , the smooth functions in C∞(G,D) of the form

〈π(g)v, ṽ〉 for v in V , ṽ in Ṽ .

The simplest way to construct admissible representations is by parabolic induction .

Here, we’ll look only at induction from the minimal parabolic subgroup P . If

χ: M → D×

is a smooth multiplicative character of M , it induces a character of P trivial on N .

The representation of G induced by χ from P is the right regular representation of

G on

Ind(χ |P,G)

= {f ∈ C∞(G,D) | f(pg) = δ
1/2
P (p)χ(p)f(g) for all p ∈ P, g ∈ G} .

This is an admissible representation of G since P\G is compact.

If χ = δ
−1/2
P then Ind(χ) is just C∞(P\G). If χ = δ

1/2
P then Ind(χ) will be the

space of smooth one-densities on P\G. Let me explain.

The group G is unimodular, but the parabolic subgroup P is not. This implies

that there is no G­invariant measure on the quotient P\G. Instead, we have the
following situation. Fix a Haar measure dg on G such that meas(K) = 1, and fix a
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left­invariant Haar measure d`p onP such that meas(P ∩K) = 1. BecauseG = PK
and G and K are both unimodular

∫

G

f(g) dg =

∫

P

d`p

∫

K

f(pk) dk .

The function

f(x) =

∫

P

f(px) d`p

satisfies

f(p0x) =

∫

P

f(pp0x) d`p

=

∫

P

f(px) d`pp
−1
0

= δP (p0)

∫

P

f(px) d`p

= δP (p0)f(x) ,

or in other words lies in Ind(δ
1/2
P ). The integral formula just above therefore implies

that integration ∫

K

f(k) dk

defines on Ind(δ
1/2
P ) a G­invariant functional, which I’ll write as integration

∫

P\G

f(x) dx .

The pairing

〈f, f〉P\G =

∫

P\G

f(x)f(x) dx

identifies Ind(δ
1/2
P ) with the smooth dual of Ind(δ

−1/2
P ) = C∞(P\G), which is why

it is called the space of one­densities on P\G.

For explicit calculation it is useful to know that

∫

P

f(p) d`p =

∫

M

δ−1
P (m) dm

∫

N

f(nm) dn .

If f lies in Ind(χ) and f̃ in Ind(χ−1) then the product f · f̃ lies in Ind
(
δ
1/2
P

)
, and

the pairing that can be formally expressed as

〈f, f̃〉 =

∫

P\G

f(x)f̃(x) dx
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defines an isomorphism of Ind(χ−1)with the admissible dual of Ind(χ)—this simple

formulation of duality is the one of the principal reasons for normalization by the

factor δ
−1/2
P . (There are others we shall see later.) If D = C and χ is unitary, then

χ−1 = χ and Ind(χ) is therefore a unitary representation of G.

If χ is trivial on K ∩ P or equivalently on M ∩K = M(o) it is called unramified .

SinceM/M(o) ∼= Zn, the unramified characters ofM are in bijection with a product
of n copies of D×. These are the D­rational points on a split torus defined over D.

This peculiar fact is not an unimportant accident, as we shall see.

When χ is unramified, since G = PK the subspace of elements fixed by K has

dimension one over D. Letϕχ be the unique element of this module withϕχ(1) = 1.
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3. The Iwahori Hecke algebra

There are two particular Hecke algebras of importance to the theory of spherical

functions. The first is H(G,G(o))—the one the Satake isomorphism is concerned
with—and the second is the Iwahori Hecke algebra H(G, I). It is the second that

we’ll be concerned with in this section. Macdonald explains its structure when G is
simply connected, and the general case derives from that.

Let W be the quotient NG(A)/M(o). It fits into an exact sequence

1 −→ T −→ W −→W −→ 1

sinceW = NG(A)/M andT = M/M(o). This sequence splits, since the intersection

K ∩ NG(A) contains representatives of W and K ∩ NG(A)/K ∩ M(o) projects
isomorphically onto W . But this is not the only interesting description of W .

Let G̃ be the simply connected cover of the derived group of G. Its image in G is

normal, and contains W . Let Ã be the inverse image in G̃ of A, T̃ the image of that

in T . The image of X∗(Ã) in X∗(A) is spanned by the coroots α∨, so T̃ is spanned

by the aα = α∨($). Let Ω be the quotient of T by T̃ , which may be identified with

the quotient of W by the subgroup W̃ generated by T̃ and W , which is normal in

W :
1 −→ T̃ −→ T −→ Ω −→ 1

↓ ↓ ‖
1 −→ W̃ −→ W −→ Ω −→ 1

As Macdonald explains, the group W̃ is an affine Weyl group. Let me recall here
what that means. The group X∗(A) is a lattice in the real vector space X∗(A) ⊗ R.

The roots in Σ are linear functions in the dual lattice X∗(A). To each α in Σ is

associated a coroot α∨ in X∗(A), and reflection sα in the root hyperplane α = 0 is
specified by the formula

sαv = v − 〈α, v〉α∨ .

The sublatticeX∗(Ã) has theα∨ in ∆∨ as basis, and both lattices are stable underW .

The partition of X∗(A) ⊗ R by the affine root hyperplanes α = k is also W­stable.

If α̃ is the dominant root, the region

A = {v ∈ X∗(A) ⊗ R | 〈α, v〉 > 0 for all α ∈ ∆, 〈α̃, v〉 < 1}

is the interior of a fundamental domain for the group W̃ generated by X∗(Ã) and
W . (Recall that T andX∗(A) may be identified.) The walls of this alcove are labeled

by

∆̃ = ∆ ∪ {−α̃+ 1} ,
the affine roots vanishing on its boundary. Let

Aλ = A ∩ {λ = 0} ,
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the wall labelled by λ. If S̃ is the set of affine reflections sλ for λ in ∆̃, then (W̃ , S̃)

is a Coxeter system. In particular S̃ generates W̃ .

The alcoves in X∗(A) ⊗ R are the connected components of the partition by affine

root hyperplanes. The group W̃ acts transitively on them. The following is standard
in the theory of Coxeter groups:

3.1. Lemma. Suppose that w lies in W̃ . If wAλ ∩ A 6= ∅ then w = sλ.[dual]

Every wall of an alcove is therefore W̃ ­equivalent to a unique wall of A. This fails
for the larger group W . Any w be in W transforms A into some other alcove, and

there exists w̃ in W̃ transforming this in turn back to A. But the composite w̃−1w
will in general permute the walls, and in a well determined way.

3.2. Proposition. The subgroup of T which takes A into itself projects isomorphi­[subgroup]

cally onto Ω, so the exact sequences

1 −→ T̃ −→ T −→ Ω −→ 1
↓ ↓ ‖

1 −→ W̃ −→ W −→ Ω −→ 1

split.

I’ll identify Ω with this subgroup.

It would be a good idea, I think, to look at one example in detail. Suppose G to

be PGL3(k), so that G̃ = SL3(k). The Weyl group is S3. The group T may be

identified with that of all diagonal matrices

t = $m =



$m1

$m2

$m3


 ,

(
m = (m1,m2,m3)

)
.

modulo the scalar matrices with m1 = m2 = m3. The subgroup T̃ is that of $m

with m1 +m2 +m3 = 0, which embeds into PGL3. The roots are, in multiplicative

notation, the characters $mi/$mj with i 6= j. The positive roots are, in additive

notation:
α1 = m1 −m2

α2 = m2 −m3

α̃ = α1 + α2 = m1 −m3

The group T has as basis the matrices

ε1 =



$

1
1


 , ε2 =



$

$
1



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and the coroot vectors are

α∨

1 =



$

$−1

1


 , α∨

2 =




1
$

$−1


 , α̃∨ =



$

1
$−1


 .

These are shown in the following figures:

Figure 1. Coroots Figure 2. Weights

The generators of W̃ in S̃ are

s1 =




−1
1

1


 , s2 =




1
−1

1


 , s3 =




−$−1

1
$


 .

In the figures on the left are the alcoves siC :

Figure 3. The si(A) Figure 4. ε1 changes labels.

The index of T̃ in T is 3, so Ω is the cyclic group of order 3, which in its action on

the walls of A just permutes them cyclically. The figure above on the right shows

immediately that ε1(A) = s3s1(A) and Ω is generated by s1s3ε1.
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To return to the general discussion—any ω in Ω normalizes the Iwahori subgroup
I . The group G is the disjoint union of the cosets IwI with w in W , and if w = ωw̃
then IwI = IωI · Iw̃I . The subalgebra of H(G, I) generated by the IsI with s in

S̃ is isomorphic to H(G̃, Ĩ), that described by Macdonald. For s in S̃, τs = charIsI

satisfies a relation

(τs − qs)(τs + 1) = 0

for some positive integer constant qs and is hence invertible. The length `(w) of

w in W is the length of its minimal expression as a product of elements of S; if
`(xy) = `(x) + `(y) then IxyI = IxI · IyI . The operators IωI with ω in Ω are

trivially invertible since ω normalizes I . Hence:

3.3. Lemma. If I is an Iwahori subgroup of G then each of its basis elements[iwahori]

τx = charIxI is invertible.

We know that I possesses a factorization I = N(o)M(o)N(p). For m in M−−

mN(o)m−1 ⊆ N(o), N (p) ⊆ mN (p)m−1 .

In these circumstances

δP (m) =
1∣∣N(o)/mN(o)m−1

∣∣ .

3.4. Proposition. For m in M−−, v in V I
[anym]

π(τm)v = π(m)
∑

m−1N(o)m/N(o)

π(n)v .

Proof. Essentially by definition

π(τm)v =
∑

y∈ImI/I

π(y)v .

The maps taking x to xmI induces a bijection of I/I ∩mIm−1 with ImI/I . So we

can write
π(m)v =

∑

x∈I/I∩mIm−1

π(xm)v .

Because of the Iwahori factorization, inclusion induces a bijection of the quotient

N(o)/mN(o)m−1 with I/I ∩mIm−1. We can again rewrite

π(τm)v =
∑

N(o)/mN(o)m−1

π(n)π(m)v ,

which leads to the Proposition in one step.
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From this follows immediately:

3.5. Lemma. For m1, m2 in M−−
[jacquet]

τm1
τm2

= τm1m2
.

From these Lemmas, at least a rough version of Macdonald’s formula follows.

3.6. Proposition. The function Φχ restricted to M−− is M ­finite.[function]

That is to say that it is contained in a finite­dimensional M ­stable space of functions

on M .

Proof. Suppose m to be in M−−. Let v = ϕχ, ṽ = ϕχ−1 . Then

〈π(τm)v, ṽ〉 =
∑

y∈ImI/I

π(y)v

=
∑

x∈I/I∩mIm−1

π(x)π(m)v

〈π(m)v, ṽ〉 =
1

|ImI/I| 〈π(τm)v, ṽ〉 .

Let V = Ind(χ). Because τm is an invertible operator and M−− generates M , the

representation of the operators τm extends to one of M on V I . At any rate, this
proves the Proposition.

The next step is to determine precisely whichM ­finite functions occur in the formula
for Φχ. We shall do this by interpreting the representation of M on V I more

satisfactorily.
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4. Jacquet modules

Suppose (π, V ) to be any smooth representation of the unipotent subgroup N with

unipotent radical N . I define the subspace V (N) to be that spanned by all vectors
u of the form π(n)v − v for v in V , n in N . The quotient VN = V/V (N) is the

maximal quotient on which N acts trivially, and an N ­covariant linear map from V
to any otherN ­trivial module will factor through it. Now assume that V is a smooth
module over the parabolic subgroup P . The reductive group M = P/N acts on

the space VN , defining the Jacquet module of π associated to P . As with parabolic
induction, it is convenient to normalize this construction, so the Jacquet module is

the canonical representation of M on V/V (N) twisted by δ
−1/2
P . Explicitly, if u in

V has image v in VN then πN (m)v is the image of δ
−1/2
P (m)π(m)u.

4.1. Lemma. A vector in V lies in V (N) if and only if[ggg]

∫

U

π(u)v du = 0

for one or, equivalently, any large compact open subgroup U of N .

Proof. This is easy enough to see, since N has arbitrarily large compact open

subgroups U . If v = π(n)u− u we can find U containing n, and for any such U the
integral vanishes. Conversely, if the integral vanishes we can express v as a sum of

π(n)u− u with n in U .

4.2. Proposition. If[aaa]

0 −→ A −→ B −→ C −→ 0

is an exact sequence of smooth representations of P then

0 −→ AN −→ BN −→ CN −→ 0

is exact as well.

This follows immediately from the Lemma.

The map Ω1 taking f in the space Ind(χ) of teh induced representation to f(1)
satisfies

〈Ω1, Rpf〉 = δ
1/2
P χ(p)〈Ω1, f〉 .

If F : V −→ Ind(χ) is G­covariant, then

〈Ω1, F (π(p)v)〉 = δ
1/2
P χ(p)〈Ω1, F (v)〉 ,

so that composition with Ω1 hence induces an M ­covariant map from VN to Dχ.

This leads easily to:
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4.3. Proposition. (Frobenius reciprocity) If (π, V ) is an arbitrary admissible repre­[bbb]

sentation of G then composition with Ω1 induces a canonical isomorphism

HomG(V, Ind(χ)) ∼= HomM (VN , χ) .

Explicitly, if Ω is a P ­covariant map from VN to Dχ then v 7→ 〈Ω, Rgv〉 maps V to

Ind(χ).

It was principally to simplify the formulation of this Proposition that the normalizing

factor δ
1/2
P (p) was incorporated into the definition of πN .

For any admissible representation (π, V ), there is an intimate relationship between

the space of vectors in V fixed by the Iwahori subgroup I and the subspace of

vectors fixed byM(o) in the Jacquet module VN . Recall that τm = charImI for m in
M−−.

4.4. Proposition. If v in V I has image u in VN , then for m in M−− the image of[ccc]

π(τm)v in VN is equal to

δ
−1/2
P (m)πN(m)u .

Proof. From an earlier calculation

π(τm)v = π(m)
∑

m−1N(o)m/N(o)

π(n)v

which has image δ
−1/2
P (m)πN(m)u in VN .

4.5. Proposition. If V is any admissible representation of G then the canonical[ddd]

projection from V I to V
M(o)
N is an isomorphism.

Proof. First to be shown that it is an injection. From the previous calculation

π(τm)v = π(m)
∑

m−1N(o)m/N(o)

π(n)v

for m in M−−. On the other hand, v lies in V (N) if and only if

∑

U/U∩I

π(u)v = 0

for some large subgroup U ofN . Choosem inM−− so that U ⊆ m−1N(o)m. Since

τm is invertible, v lies in V (N) only if v = 0.

Next that it is a surjection. Suppose u in V
M(o)
N , and choose v in VM(o) whose image

in VN is u. Suppose that v is fixed by a (possibly very small) compact open subgroup
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N∗ of N . Choose a in A−− such that N(p) ⊆ aN∗a
−1. Then v∗ = δ−1

P (a)π(a)v is

fixed by M(o)N(p) and has image δ
−1/2
P (a)πN (a)u in VN . The average of π(n)v∗

over n in N(o) is the same as the average of the π(x)v∗ over x in I . This average

v∗∗ lies in V I and has image δ
−1/2
P (a)πN (a)u in VN . But τa is invertible on V I . The

image of π(τa)−1v∗∗ in VN is u.

One immediate consequence:

4.6. Corollary. Any irreducible unramified representation of G embeds into some[fff]

Ind(χ), and in particular its subspace of vectors fixed by K has dimension one.

This is because of Frobenius reciprocity for representations induced from P .

These clever arguments originated with Jacquet, and were first presented in his

Montecatini lectures [Jacquet:1971]. They can be extended to prove that the Jacquet
module VN is an admissible representation of M and furthermore that the Jacquet

module controls the asymptotic behaviour of matrix coefficients of admissible rep­
resentations. The best way to formulate this is:

4.7. Theorem. Suppose (π, V ) to be any admissible representation of G. Let P be a[jacquetmoduke]

parabolic subgroup ofGwith unipotent radicalN ,P a parabolic subgroup opposite

to P . There exists a canonical isomorphism of the admissible dual of VN with ṼN

characterized by the property that for every v in V with image u in VN and, ṽ in Ṽ

with image ũ in ṼN there exists ε > 0

〈π(a)v, ṽ〉 = δ
1/2
P (a)〈πN(a)u, ũ〉can

whenever a in A−− satisfies the condition that |α(a)| < ε for all α in Σ+
P .

A proof can be found in [Casselman:1974].

This result says that any matrix coefficient is asymptotically equal to an A­finite

expression. The special thing about the spherical function is that this ‘asymptotic’
expression is valid for all a in A−−, as it is for all vectors fixed by the Iwahori

subgroup I . What really distinguishes these, as we have seen, is that the operators

τa are invertible on V I . In general, if K is an open compact subgroup with an
Iwahori factorization, then π(τa) for a in A−− will be invertible on a well­placed

subspace of V K , the image of the π(τn
a ) for large n. It is this subspace which embeds

into the Jacquet module.

We now know that the M ­finite expression for Φχ is related to the structure of the
Jacquet module of Ind(χ). In the next section I’ll describe that Jacquet module,

but in the rest of this one I’ll put in a short digression about unramified admissible
representations.

It follows from the Corollary above that if (π, V ) is an irreducible unramified repre­
sentation then VK has dimension 1. Recall that the characteristic homomorphism

cπ from H(G//K) to D is then well defined. It turns out that this distinguishes π.
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4.8. Proposition. Given any ring homomorphism c from H(G//K) to D, there exists[eee]

up to isomorphism at most one irreducible, unramified, admissible representation
whose characteristic homomorphism is c.

Proof. The point is that the representation can be constructed directly from its
characteristic homomorphism. Suppose (π, V ) to be irreducible and unramified, c

its characteristic homomorphism. Both VK and Ṽ K are one­dimensional. Fix ṽ 6= 0

in Ṽ .

The map taking v to the function

Φv = 〈π(g)v, ṽ〉

embeds V into the space C∞(K\G). For any f in H(G//K) the operator

Lf =

∫

G

f(g)Lg dg

acts on C∞(K\G), commuting with the right regular representation R of G. Ex­
plicitly, for v in V

LfΦv =

∫

G

f(g)LgΦv dg

and

LfΦv(x) =

∫

G

f(g)LgΦv(x) dg

=

∫

G

f(g)〈π(g−1x)v, ṽ〉 dg

=

∫

G

f(g)〈π(x)v, π̃(g)ṽ〉 dg

= 〈π(x)v, π̃(f)ṽ〉
= cπ̃(f)〈π(x)v, ṽ〉
= cπ̃(f)Φv(x) .

Note that since

π(f)v = cπ(f)v =

∫

G

f(g)π(g)v dg

for all f in the Hecke algebra,

〈v, π̃(f)ṽ〉 =

∫

G

f(g)〈v, π̃(g)ṽ〉 dg =

∫

G

f(g−1)〈π̃(g)v, ṽ〉 dg

and cπ̃(f) = cπ(f∨) where f∨(g) = f(g−1).

Define Lc̃ to be the space of all smooth functions Φ on K\G such that

LfΦ = cπ̃(f)Φ
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for all f in the Hecke algebra.

I claim now that the image of V is the unique irreducible G­stable subspace of Lc̃.

To see this: • every G­stable subspace of C∞(K\G) contains a function fixed by

K ; • the space of functions in Lc̃ fixed by K has dimension 1. I leave these both as
exercises.



The Jacquet module of Ind(χ) 31

5. The Jacquet module of Ind(χ)

The group G possesses a decomposition into disjoint double cosets PwP indexed
by elements of the Weyl group W . There is a single one of these which is an open

subset of G, the one with w = w`, the longest element of W . There is exactly one

which is closed in G, that with w = 1, where PwP = P itself. The closure of a
coset PwP is the union of cosets PxP where x ≤ w in what is frequently called the

Bruhat order on the Weyl group W . The union of the subsets PxP with w ≤ x is
then an open neighbourhood of PwP in G.

The Bruhat order has a combinatorial description—if w has the reduced decompo-
sition w = s1 . . . sn as a minimal product of elementary reflections, then x ≤ w if

and only if x can be expressed as a product of a subsequence of the si in the same

order.

The Bruhat order on W induces a P ­stable filtration on I = Ind(χ). For each w
in the Weyl group W , define the space Iw to be that of f in I with support on the
union of the PxP with w−1 ≤ x. Thus I = I1, for example, and Iw`

is contained

in all others. Each space Iw is stable under P . If f lies in Iw then its restriction
to Pw−1P is smooth and of compact support modulo the left factor P . It satisfies

the equation f(px) = δ
1/2
P (p)χ(p)f(x) for all x in Pw−1P . The space of all such

restrictions is as a representation of N isomorphic to C∞
c (N ∩ wNw−1\N). For f

in Iw, the integral

〈Ωw, f〉 =

∫

N∩wNw−1\N

f(w−1n) dn

is hence a finite sum, defining an N ­invariant linear functional on Iw. An easy

calculation shows that in addition

〈Ωw, Rmf〉 = δ
1/2
P (m)χ(w−1mw) 〈Ωw, f〉 = δ

1/2
P (m)wχ(m) 〈Ωw, f〉

for all m in M , so that Ωw induces anM ­covariant map from the Jacquet module of
Iw with respect to N to Dwχ. Let

Jw = Iw

/ ∑

w−1<x

Ix ,

also a representation of P . If f lies in one of the Ix with x > w−1 then 〈Ωw, f〉 = 0,

so Ωw factors through Jw.

5.1. Lemma. The linear functional Ωw induces an isomorphism of Dwχ and the[hhh]

Jacquet module of Jw with respect to N .

This is because the integral is, up to scalar multiples, the onlyN ­invariant functional

on C∞
c (N,D).

Because the functor V  VN is exact:
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5.2. Theorem. The Bruhat filtration of Ind(χ) induces a filtration of its Jacquet[filtration]

module. The graded module associated to this filtration is the direct sum of the
Dwχ.

If χ is regular, which is to say wχ 6= χ for all w in W , then all the extensions
occurring in this filtration must split, and the Jacquet module of Ind(χ) is itself the

direct sum of the Dwχ. In other words, in these circumstances Ωw extends to define

a P ­covariant map from all of Ind(χ) to D
δ
1/2

P
wχ

.

To summarize, we now know that

Φχ(m) = δ
1/2
P (m)

∑

w∈W

αw(χ)wχ(m)

for m in M−− and regular χ. It is also easy to see that dealing with non­regular χ
is a matter of applying an algebraic version of l’Hôpital’s rule. The task remaining
is to calculate the coefficients αw .
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6. The operators Tw

Finding a formula for the the αw(χ) comes down to doing this for just one of them.

More precisely, we’ll see that αw(χ) = α1(wχ).

According to Frobenius reciprocity for Ind(χ), the linear functional Ωw corresponds

to a G­covariant map

Tw: Ind(χ) −→ Ind(wχ), f 7−→ 〈Ωw, Rgf〉 .

6.1. Proposition. If `(xy) = `(x) + `(y) then[tw]

TxTy = Txy

Proof. The length `(w) of w is the length of a reduced expression for it, in terms of
elementary reflections. It is also the cardinality of the root set

Λw = {α > 0 | w−1α < 0} .

If x and y are two elements of W with `(xy) = `(x) + `(y) then Λxy is the disjoint
union of xΛy and Λx.

The decomposition of

n =
∑

α>0

nα =
∑

α>0,w−1α>0

nα +
∑

α>0,w−1α<0

nα

corresponds to the factorization

N = (wNw−1 ∩N)(wNw−1 ∩N) = N+
wN

−
w

so that

N+
w \N ∼= N−

w .

When `(xy) = `(x) + `(y) the decomposition Λxy = xΛy ∪ Λy corresponds to a

direct sum decomposition

n−
xy = Ad(x) n−

y + n−
x

and a factorization

N−
xy = xN−

y x
−1 ·N−

x .
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Thus

TxTyf(g) =

∫

N−

x

Tyf(x−1nxg) dnx

=

∫

N−

x

∫

N−

y

f(y−1nyx
−1nxg) dny dnx

=

∫

N−

x

∫

N−

y

f(y−1x−1xnyx
−1nxg) dny dnx

=

∫

N−

xy

f(y−1x−1nxyg) dnxy

since (ny, nx) −→ xnyx
−1nx is a measure­preserving bijection between N−

y ×N−
x

and N−
xy .

Since the subspace of Ind(χ) of vectors fixed by K has dimension one,

Twϕχ = ζw(χ)ϕwχ

for some scalar ζw(χ). The Proposition leads to a product formula for ζw(χ) that it
is not yet convenient to display. But at any rate it should be clear that in principle

the problem of evaluating it for an arbitrary w reduces to evaluating it in the special

case when w is an elementary reflection s. This will be done in the next section,
in a self­contained calculation. One consequence of that computation is that Tw is

generically an isomorphism. Because of this:

• As a function of χ, the spherical function is W ­invariant: Φwχ = Φχ;

• The Satake transform has its image in H(M//M(o))W ;
• For regular χ, αw(χ) = α1(wχ).

The calculation in the next section will also show that ζs(χ) is of the formC
(
χ(aα)

)

where C(X) is an explicitly calculated rational function ofX . Here s is the elemen­

tary reflection corresponding to the root α in ∆P . The Proposition in this section

then leads to the product formula

Twϕχ =
∏

α>0,w−1α<0

C
(
χ(aα)

)
ϕwχ.

This allows us also to evaluate the functionals 〈Ωw, ϕχ〉. And this in turn, as I shall

next explain, will give us Macdonald’s formula at last.
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7. Asymptotics

I recall that for all m in M−− and regular χ

Φχ(m) = δ
1/2
P (m)

∑

w

α1(wχ)wχ(m) = δ
1/2
P (m)

∑

w

αw`
(w−1

` wχ)wχ(m) .

Macdonald’s formula follows directly from this:

7.1. Proposition. We have[asymptotics]

αw`
(χ) = µG 〈Ωw`

, ϕχ〉 = µG

∏

α>0

C
(
χ(aα)

)
.

The proof of this will require still one more digression. We have defined the linear
functionals Ωw on Ind(χ), at least formally, by the integral

〈Ωw, f〉 =

∫

N∩wNw−1\N

f(w−1n) dn .

The rigourous interpretation of this is that the integral is well defined on Iw and
extends uniquely to a P ­covariant map onto D

δ
1/2

P
wχ

.

The Bruhat decomposition G =
⋃
PwP gives rise to the decomposition

G =
⋃

w

PwPw` =
⋃

w

Pww` w
−1
` Pw` =

⋃

w

Pww` P .

The filtration on Ind(χ−1) produced by this will also be indexed byW , but according
to the order opposite to the Bruhat order. Thus PP = Pw`Pw` is the largest (and

open) coset, Pw`P = Pw` the smallest. For regular χ the linear functionals

〈Ω̃w, f̃ 〉 =

∫

N∩wNw−1\N

f(w−1n) dn

identify the Jacquet module of Ind(χ−1) with the direct sum
⊕

Dwχ−1 . In particular

〈Ω̃w`
, f̃〉 = f(w`) .

From the general result about asymptotic behaviour of matrix coefficients we deduce

that for suitable constants βw

〈Raf, f̃〉 = δ
1/2
P (a)

∑

w

βw wχ(a) 〈Ωw, f〉 〈Ω̃w, f̃〉
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for all f in Ind(χ), f̃ in Ind(χ−1) and a ‘small enough’. The real point here is that

the coefficients βw are independent of f and f̃ . Therefore in order to know what

αw`
is, we have now to consider the asymptotic behaviour just for a particular f

and f̃ .

Choose f and f̃ with support in the open set Pw`N . Then

〈Raf, f̃〉 = µG

∫

N

f(w`na)f̃(w`n) dn

as we have seen in defining µG. We can rewrite the integral as

∫

N

f(w`aw
−1
` w` a

−1na)f̃(w`n) dn

= δ
−1/2
P (a)w`χ(a)

∫

N

f(w` a
−1na)f̃(w`n) dn

= δ
1/2
P (a)w`χ(a)

∫

N

f(w`n)f̃(w`ana
−1 dn

= δ
1/2
P (a)w`χ(a) f̃(w`)

∫

N

f(w`n) dn

if a is ‘small enough’. Hence βw`
= µG. From this it follows that βw = µG for all w.
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8. Rank one groups

Corresponding to each simple positive root α is a parabolic subgroup P{α} whose

Levi factor M{α} has semi­simple rank one. The group M{α} contains M , and the
image of P modulo the unipotent radical of P{α} is a minimal parabolic subgroup

ofM{α}. The representation Ind(χ) ofG is equal to a representation induced in two

steps, from P to P{α} and thence from P{α} to G. The intertwining operator Tsα

is likewise induced from an operator between representations of M{α}. The factor

csα
(χ) for G is the same as that for M{α}.

So now, for the moment, we are reduced to the following question: Suppose G to

be a reductive group over k of semi­simple rank one, w the non­trivial element in
the Weyl group. Suppose χ to be a regular unramified character of M . We know

that Twϕχ = ζw(χ)ϕwχ. What is ζw(χ)? Equivalently, what is 〈Ωw, ϕχ〉?
The calculation reduces immediately to one on the simply connected cover of G,

so we may as well assume G to be simply connected, hence of the form SL2(E) or
SU3(E). I may as well assume E = k, too.

In both cases, we want to evaluate 〈Ωw, ϕχ〉, where ϕχ is defined by the formula

ϕχ(nmk) = δ
1/2
P (m)χ(m) .

In the published literature, the coefficient field D is always C, and the usual cal­

culation proceeds in two stages: (i) calculation of a convergent series in the region
where the integral defining Ωw converges and (ii) analytic continuation. With our

self­imposed handicap, this is not an allowable option. It is not difficult to think

up a way to deal with this problem, however. For any m in M , the function

ψ =
(
Rm − δ

1/2
P (m)χ(m)

)
ϕχ is 0 at 1 and has support on the coset PwP . Hence

〈Ωw, ψ〉 can be evaluated as a finite sum, which we shall calculate separately in each

case. On the other hand

〈Ωw, ψ〉 = 〈Ωw,
(
Rm − δ

1/2
P (m)χ(m)

)
ϕχ〉

= 〈Ωw, Rmϕχ〉 − δ
1/2
P (m)χ(m)〈Ωw, ϕχ〉

= δ
1/2
P (m)χ−1(m)〈Ωw, ϕχ〉 − δ

1/2
P (m)χ(m)〈Ωw, ϕχ〉

= δ
1/2
P (m)

(
χ−1(m) − χ(m)

)
〈Ωw, ϕχ〉

〈Ωw, ϕχ〉 =
δ
−1/2
P (m)

χ−1(m)− χ(m)
〈Ωw, ψ〉 .

• Let G = SL2(k), K = SL2(o), P be the group of upper triangular invertible
matrices, M = A be the group of diagonal invertible matrices. Further let

w =

[
−1

1

]
, w−1 =

[
1

−1

]
,
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which represents the single non­trivial element in the Weyl group. Let

χ:

[
x

x−1

]
7−→ |x|s

be an unramified character of A, and let

ω =

[
$

$−1

]
so that δ

1/2
P (ω) = q−1, χ(ω) = q−s .

What we find here is that

〈Ωw, ϕχ〉 =
δ
−1/2
P (ω)

χ−1(ω)− χ(ω)
〈Ωw, ψ〉

=
q

qs − q−s
〈Ωw, ψ〉

=
q1−s

(1 − q−s)(1 + q−s)
〈Ωw, ψ〉

=
q1−s

(1 − q−s)(1 + q−s)

∫

N

ψ(w−1n) dn

=
q1−s

(1 − q−s)(1 + q−s)

∫

k

ψ

([
1

−1

] [
1 x

1

])
dx

where meas(o) = 1. The first step in evaluating the integral is to find a formula for

ψ(w−1n) = ψ

([
1

−1

] [
1 x

1

])
.

By definition

ψ(w−1n) =
(
Rω − δ

1/2
P (ω)χ(ω)

)
ϕχ(w−1n)

= ϕ(w−1nω) − δ
1/2
P (ω)χ(ω)ϕχ(w−1n) .

For an arbitrary n in N we have

ϕχ(w−1nω) = ϕχ(w−1ωw · w−1 · ω−1nt) = δ
−1/2
P (ω)χ−1(ω)ϕχ(w−1 · ω−1nω)

so that we must next find a formula for ϕχ(w−1n) for an arbitrary n =

[
1 x

1

]
in

N .

If x lies in o then wn lies in K and ϕχ(wn) = 1. Otherwise, we must factor the
matrix [

1
−1

] [
1 x

1

]
=

[
1

−1 −x

]
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according to G = NAK . I could just write out the factorization directly, but it is
probably a good idea to show where it comes from. First I note that it suffices to

find such a factorization for

w−1nw =

[
1

−1

] [
1 x

1

] [
−1

1

]
=

[
1

−x 1

]

since w lies in K . Now the matrix
[

1
−x 1

]

lies in N −{1}, and we know that it can be factored as n1awn2 according to 2.6.6 of
Macdonald’s book, at least in principle. But this factorization is practical in the sense

that it can be found by applying a mild variant of the familiar Gauss elimination

algorithm. We obtain

[
1

−x 1

]
=

[
1 −x−1

1

] [
x−1

x

] [
1

−1

] [
1 −x−1

1

]

But as long as x doesn’t lie in o, its inverse x−1 will, so the last two factors lie in K .

In fact, x−1 will lie in o as long as x doesn’t lie in p, so:

8.1. Lemma. We have[eval]

ϕχ

([
1

−1 −x

])
=

{
1 if x ∈ p

|x|−1−s otherwise

Therefore

ψ

([
1

−1 −x

])

= δ
−1/2
P (ω)χ−1(ω)ϕχ

([
1

−1 −$−2x

])
− δ

1/2
P (ω)χ(ω)ϕχ

([
1

−1 −x

])

= q1+sϕχ

([
1

−1 −$−2x

])
− q−1−sϕχ

([
1

−1 −x

])

so that

ψ

([
1

−1 −x

])
=




q1+s − q−1−s if x ∈ p2

1 − q−1−s if x ∈ p − p2

0 if x /∈ p .

Then
∫

k

ψ

([
1

−1 −x

])
dx = q−2(q1+s − q−1−s) + (q−1 − q−2)(1− q−1−s)

= q−1(1 + qs)(1− q−1−s) .
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Finally

〈Ωw, ϕχ〉 =
q1−s

(1− q−s)(1 + q−s)
〈Ωw, ψ〉

=
q1−s

(1− q−s)(1 + q−s)
q−1(1 + qs)(1− q−1−s)

=
1 − q−1−s

1 − q−s

=
1 − q−1χ(ω)

1 − χ(ω)
.

• Now let `/k be an unramified quadratic extension, and letG be the unitary group

of the Hermitian form x1x3 + x2x2 + x1x3 with matrix

J =




1
−1

1




In other words, G is the group of all X in GL3(`) such that

tX J X = J or X = J tX−1 J .

Let
P = upper triangular matrices in G

M = diagonal matrices in G

w =




1
−1

1




ω =



$

1
$−1




Thus a typical element in M looks like



z

z/z
z−1




and one in N looks like




1 x y
1 x

1


 , y + y = xx .
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The element w represents the non­trivial element in the Weyl group, and

δ
1/2
P (ω) = q−2 .

We want to calculate 〈Ωχ, ϕχ〉, and as before the crucial step is to evaluateϕχ(w−1n)
where n lies in N . It again comes down to finding the NMwN factorization of
w−1nw, which is easy to do:

n =




1 x y
1 x

1




w−1nw =




1
−x 1
y −x 1




=




1 x/y 1/y
1 −x/y

1






1/y
y/y

y






1
−1

1






1 x/y 1/y
1 −x/y

1


 .

If y ∈ p then since xx = −y + y, x will also be in p and n will lie in K . Otherwise,

x/y will lie in o and the matrix



1 x/y 1/y
1 −x/y

1




will lie in K .

Let χ be the character of M taking ω to q−s. From the calculations above, we have

ϕχ(w−1n) =





1 if y ∈ p

|y|−2−s otherwise

A calculation only slightly more complicated than the one for SL2 shows that

〈Ωw, ϕχ〉 =
δ
−1/2
P (ω)

χ−1(t)− χ(ω)
〈Ωw, ψ〉

=
q2

qs − q−s
〈Ωw, ψ〉

=
q2−s

1 − q−2s
〈Ωw, ψ〉

=
(1 − q−2−s)(1 + q−1−s)

1− q−2s

=

(
1 − q−2χ(ω)

)(
1 + q−1χ(ω)

)

1 − χ(ω)2
.

This concludes the proof of Macdonald’s formula for the spherical function.
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9. The character

This section follows [van Dijk:1972].

The full Hecke algebra H(G) associated to G is the space of all smooth, compactly
supported functions onG (with values in D). Multiplication is by convolution. This

algebra acts on the space of any admissible representation of G, and indeed admis­
sible representations of G are easily seen to be equivalent to admissible modules

over H(G).

If (π, V ) is an admissible representation of G its character is a linear functional

on H(G), taking f to traceπ(f). It can in fact be represented by integration of a
function on an open subset of G, and in this section I’ll derive its formula when

π = Ind(χ). This formula and some of the results leading to it will play a role in

the discussion of the Satake isomorphism in the next section, and other parts of this
section will play a role in the later discussion of endoscopy.

If f lies in H(G) then for any ϕ in Ind(χ)

Rfϕ(x) =

∫

G

f(g)ϕ(xg) dg

=

∫

G

f(x−1g)ϕ(g) dg

=

∫

K

dk

∫

M

δ−1
P (m) dm

∫

N

ϕ(nmk)f(x−1nmk) dn

=

∫

K

ϕ(k) dk

∫

M

χ(m)δ
−1/2
P (m) dm

∫

N

f(x−1nmk) dn .

The space Ind(χ) may be identified as a linear space and even as a K­space with
Ind(χ |K ∩ P,K), and acting on this space Rf has the kernel

Kf (k, `) =

∫

M

χ(m)δ
−1/2
P (m) dm

∫

N

f(`−1nmk) dn .

The trace of Rf on Ind(χ) is therefore

∫

K

dk

∫

M

χ(m)δ
−1/2
P (m) dm

∫

N

f(k−1nmk) dn .

For any f in H(G) define

f(x) =

∫

K

f(k−1xk) dk ,

that is to say the projection of f onto the functions invariant with respect to conju­
gation byK . This lies again in H(G) since if f is right invariant under the subgroup
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K• of K and u lies in
⋂

k∈K kK• k
−1 (a finite intersection, hence an open, compact

subgroup) then for any k in K we have uk = k · k−1uk with k−1uk ∈ K• and

f(xu) =

∫

K

f(k−1xuk) dk

=

∫

K

f(k−1xk · k−1uk) dk

=

∫

K

f(k−1xk) dk

= f(x) .

Also for any f in H(G) define

fP (m) = δ
−1/2
P (m)

∫

N

f(nm) dn ,

which will be a function in H(M). The calculation of the trace of Rf can now be

formulated like this:

9.1. Proposition. For any f in H(G), the trace of Rf acting on Ind(χ |P,G) is[trace]

∫

M

χ(m)fP (m) dm .

If f lies in H(G//K) then f = f , the trace of Rf is just cχ(f), and the integral
is a simple sum. We recover a formula to be found in Satake’s book on spherical

functions:

9.2. Corollary. For any f in H(G//K)[satakeint]

cχ(f) =
∑

M/M(o)

χ(m)fP (m) .

If T is any maximal torus in G (not necessarily maximally split) then the adjoint ac­
tion of T on g/t (over the algebraic closure k of k) is a direct sum of one­dimensional

subspaces on which T acts by characters called its roots . For any t in T let

D(t) = det(Adg/t(t)− I) .

This function can also be defined for any semi­simple element of G, independently

of a torus containing it, according to the recipe

det(Adg(t) − I + λ) = D(t)λr + higher powers of λ
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where r is the rank of G over k. The element t is called regular if D(t) 6= 0, or

equivalently if the connected component of the centralizer of t is T . Let Greg be the

regular elements of G.

The function D(t) is important because of this elementary formula:

9.3. Lemma. The conjugation map from G × T to G taking taking (g, t) to gtg−1
[conjugationmap]

has differential

g ⊕ t: (x, y) 7−→ Ad(g)
(
Ad(t−1) − I)x+ y

)
.

As a consequence, the mapG/T ×T reg → G taking (g, t) to gtg−1 has open image,
the regular elements of G that are conjugate to an element of T , and we have this

fundamental integral formula:

9.4. Lemma. For any f in H(G) with support in the open set Greg
[orbitalint]

∫

G

f(g) dg =
∑

T

1

WT

∫

T

|D(t)| dt
∫

G/T

f(xtx−1) dx

where WT is the finite quotient of NG(T ) by T .

For T = M , we have

|D(t)| =
∣∣∣
∏

Σ

det(Adnα
(t)− I)

∣∣∣

=
∣∣∣
∏

α>0

det(Adnα
(t)− I) det(Adnα

(t−1) − I)
∣∣∣

= δ−1
P (t)

∣∣∣
∏

α>0

det(Adnα
(t)− I)

∣∣∣
2

∣∣∣
∏

α>0

det(Adnα
(t)− I)

∣∣∣ = |D(t)|1/2δ
1/2
P (m) .

The following originates in Harish­Chandra’s work on real groups.

9.5. Proposition. Harish­Chandra’s Lemma) For regular t in M the map N → N[hcl]

taking n to n · tn−1t−1 is a bijection with modulus

|det(Adn(t) − I)| .

Proof. The group N possesses a filtration by normal subgroups with graded groups
equal to theNα. The modulus on each of these is easily seen to be det(Adnα

(t)−I).
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9.6. Proposition. For any t in M and f in H(G)[fbar]

fP (t) = |D(t)|1/2

∫

G/M

f(xtx−1) dx .

The curious feature of this formula is that although the orbital integral∫

G/M

f(xtx−1) dx

may be badly behaved as t approaches the singular elements ofG, the product of the
orbital integral by the normalizing factor |D(t)|1/2 is nicely behaved, since fP (t) is.

Proof. By Harish­Chandra’s Lemma

D(t)1/2

∫

G/M

f(xtx−1) dx = D(t)1/2

∫

N

dn

∫

K

f(kntn−1k−1) dk

= D(t)1/2

∫

N

f(ntn−1 dn

= D(t)1/2

∫

N

f(nmn−1t−1 ·m) dn

= δ
−1/2
P (t)

∫

N

f(nt) dn .

For any unramified character of M let Θπχ
be the unique function defined on the

conjugates of regular elements of M by

Θπχ
(gtg−1) =

1

|W |

∑
W wχ(t)

D(t)1/2
.

and extend it to all of Greg by setting it equal to 0 off the conjugation of M .

Finally:

9.7. Theorem. For any function f in H(G)[charcater]

traceπχ(f) =

∫

G

f(g)Θπχ
(g) dg

Proof. Since D(t) is invariant under W , the two previous Propositions imply that∫

M

fP (t)χ(t) dt =

∫

M

χ(t)|D(t)|1/2 dt

∫

G/M

f(gtg−1) dg

=
1

|W |
∑

W

∫

M

wχ(t)|D(t)|1/2 dt

∫

G/M

f(gtg−1) dg

=

∫

M

1

|W |
∑

W

wχ(t)

|D(t)|1/2
|D(t)| dt

∫

G/M

f(gtg−1) dg

=

∫

G

f(g)Θπχ
(g) dg .
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10. The Satake transform

I want to emphasize here several features of the Satake isomorphism, and for that

reason I’ll sketch its proof. In this section let D = Q[q±1/2].

10.1. Proposition. For any unramified character χ and w in W , cwχ = cχ.[unram]

Proof. From the Corollary to the first Proposition in the previous section, since the
normalization factor D(m) is W ­invariant.

In a moment I’ll prove that the Satake transform is an isomorphism. The proof can
be motivated by a simple example, that of PGL2(k). Let

ω =

[
$

1

]
modulo the centre .

If m = 0 then

S(charKωmK) = cχ(charK) = 1

and otherwise

S(charKωmK) = qm/2

[(
ωm+1 − ω−(m+1)

ω − ω−1

)
− q−1

(
ωm−1 − ω−(m−1)

ω − ω−1

)]

= Qm −Qm−2

where

Qm = qm/2
(
ωm + ωm−2 + · · · + ω−(m−2) + ω−m

)
.

Thus in this case S(charKωmK) = δ
−1/2
P (ωm)ωm modulo terms of lower degree.

This is a general phenomenon, and the basis for the proof.

On the lattice T define x ≤ y to mean that (in additive notation)

x = y −
∑

α∈∆

nαα
∨($) (nα ≥ 0) .

This order on T induces one on T −− and filtrations on both Hecke algebras

H(G//K) and H(M//M(o))W . For t in T −− define

H(G//K)t =
{ ∑

u∈T −−,u≤t

fu charKuK

}

H(M//M(o))t =
{∑

u≤t

fuu
}

H(M//M(o))W
t = H(M//M(o))W ∩H(M//M(o))t
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For t in T −− and w in W , wt ≤ t. This implies that the associated graded ring for

both H(G//K) and H(M//M(o))W is just D[T −−], with the ring structure arising

from the monoid structure of T −−.

10.2. Proposition. The Satake transform is compatible with these filtrations, and[sattrans]

induces multiplication by δ
−1/2
P (t) on the t­component of the associated graded

module.

Proof. This follows immediately from the calculation of the Satake transform in

terms of fP (m) and this:

10.3. Lemma. (a) Ifm1 andm2 are elements ofM−− and Km1K ∩Nm2 6= ∅, then[minus]

m2 ≤ m1; (b) for m ∈M−− and n in N , nm ∈ KmK if and only if n ∈ N(o).

This is essentially 2.6.11(3)–(4) in the book of Macdonald when G is simply con­

nected, but the general case follows from that one.

For an example, supposeG to beGLn(k). ThenG/K can be identified witho­ lattices

of rank n in kn. The group T may be identified with all diagonal matrices with
entries of the form$m, andT −− is the subset of those withm1 ≥ m2 ≥ ... . . . ≥ mn.

That

G =
⋃

t∈T −−

KtK

is elementary divisor theory. A matrix g lies in the double coset of

t = $m =




$m1

$m2

$mn


 , where m = (m1, . . . ,mm)

with m1 ≥ . . . ≥ mn if and only if for each r the g.c.d. εr(g) of all r × r minor

determinants of g is that of t, which is

εr(t) = $mn−r+1+···+mn .

In particular, the integer mn is the least m with the property that all entries in g are

of the form x$m with x in o. It can be proven easily by induction that for ν in N

εr(ν$
m) ≥ εr($

m), εn(ν$m) = εn($m)

and that εr(ν$
m) = εr($

m) for all r only when ν lies in N(o).
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11. Root data and group structure

In this section I’ll summarize in a bit more detail than I have so far the structure

of reductive groups. The principal references I am aware of for this section are

[Demazure­Grothendieck:1970] and [Springer:1979]. The standard reference for
root systems is [Bourbaki:1968].

For the moment, let F be an arbitrary field.

Suppose G to be a connected split reductive group defined over F . A Borel pair
of G is a pair B = (B,T ) with B a Borel subgroup of G and T a maximal torus
in B. If B = (B,T ) is a Borel pair, then the adjoint action of T on the nilpotent

radical of b decomposes into a direct sum of one­dimensional root spaces . If ΣB is
the set of all characters arising in this decomposition, there exists a unique subset

∆ = ∆B with the property that every λ in ΣB can be expressed as λ =
∑

α∈∆ nαα
with non­negative integers nα. It is called the basis of ΣB. The adjoint action of T
on all of g decomposes into the direct sum of t and the one­dimensional root spaces

gα where α ranges over ΣB and −ΣB.

Inner automorphisms act transitively on Borel pairs. A Borel subgroup is its own

normalizer and the stabilizer of a maximal torus within one is that torus. Therefore
if g conjugates B1 = (B1, T1) to B2 = (B2, T2) the induced isomorphism X∗(g) of

X∗(T1) with X∗(T2) depends only on the pair and not specifically on g. Similarly
for the coweight lattices X∗(Ti). We can therefore define the canonical root lattice
LG and its dualL∨

G associated toG. An element of this lattice may be identified with

the collection of all triples (B,T, λ) where λ lies in X∗(T ) and the λ for different
Borel pairs correspond under the canonical identification. Since the various ΣB,T

and ∆B,T also correspond under the canonical identifications, we may in fact define
a canonical quadruple

RG = (LG,∆G, L
∨
G,∆

∨
G) .

It is usually referred to in English as the canonical based root datum of G. (Some

linguistic confusion is certainly possible here, since a root datum is an array of

data. The use of the singular goes back to [Demazure­Grothendieck:1970], who
first defined “une donnée radicielle”.) The literature also defines the canonical root
datum (L,Σ, L∨,Σ∨), but in these notes this will not occur. In summary:

11.1. Proposition. For each Borel pair B there exists a canonical isomorphism[borelpair]

κB: X∗(T ) −→ LG

taking ∆∨ to ∆∨
G, and likewise for the dual objects. For any inner automorphism γ

this diagram commutes:

X∗(T )
X∗(γ)−→ X∗(γ(T ))

κB↘ ↙ κγB

LG
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The assignment of RG to G is to some extent functorial. We’ll not need to know the
most general case.

11.2. Corollary. If γ is any automorphism of G, the automorphism[gamma]

LG(γ) = κγBX∗(γ)κ
−1
B : LG −→ LG

of LG depends only on the class of γ modulo inner automorphism.

Or, in other words, the map γ 7→ LG(γ) depends only on the image of γ in the
quotient of outer automorphisms

Outer(G) = Aut(G)/Int(G) .

It induces a canonical map from this quotient to the group Aut(RG) of automor­
phisms of the based root datum.

The relationship between automorphisms of G and automorphisms of RG can be
made more precise. An épinglage E of G is made up of (1) a Borel pair (B,T )
and (2) an array (Xα) of elements of the root spaces bα for α ∈ ∆B,T . Each Xα

determines as well an embedding of the additive group Ga intoBα. Automorphisms

of G transport épinglages in an obvious way. In general, it will interchange the

elements of the array (Xα) so as to be compatible with the action on ∆B. Thus an
automorphism takes Xα to Xβ where β = L∨

G(γ−1)α. (There seems to be no good

English equivalent for the French word ‘épinglage’. The word ‘épingler’ means ‘to
pin’, and the image that comes to mind most appropriately is that of a mounted

butterfly specimen. [Kottwitz:1984] uses ‘splitting’ for what most call ‘épinglage’,
but this is not compatible with the common use of ‘deploiement’, the usual French

term for ‘splitting’.) Ian Macdonald, among others, has suggested that retaining the

French word épinglage in these notes is a mistake, and that it should be replaced
by the usual translation ‘pinning.’ This criticism is quite reasonable, but I rejected

it as leading to non­colloquial English. The words ‘pinning’ as noun and ‘pinned’
as adjective are commonly used only to refer to an item of clothing worn by infants,

and it just didn’t sound right.

The following is the simplest case of one of the principal results (XXIII.4.1) of

[Demazure­Grothendieck:1970] (also discussed by [Springer:1979]).

11.3. Proposition. IfE = (B,T, (Xα)) andE′ = (B′, T ′, (X ′
α′)) are two épinglages[bpconjugate]

then any automorphism of RG lifts to a unique automorphism ofG taking E to E′.

If E′ = E this leads to:

11.4. Corollary. The canonical projection from Outer(G) to Aut(RG) is an isomor­[canproj]

phism. Épinglages give rise to splittings of the sequence

1 −→ Int(G) −→ Aut(G) −→ Outer(G) −→ 1 .
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Conversely, we can start with a datum R = L,∆, L∨,∆∨) and construct a group
G with RG isomorphic to R. The first thing to be decided is what conditions to

impose on the datum.

Suppose ∆ to be a finite set, embedded as a basis into a lattice L∆, which is in turn

embedded in a lattice L. Suppose also given a map α 7→ α∨ from ∆ to a set ∆∨ of

linearly independent elements in the dual lattice L∨ = Hom(L,Z), and that

• for α in ∆, 〈α,α∨〉 = 2;

• for α 6= β in ∆, 〈α, β∨〉 ≤ 0;
• 〈α, β∨〉 = 0 if and only if 〈β, α∨〉 = 0.

These are the conditions that the matrix (Cα,β) with Cα,β = 〈α, β∨〉 be an integral
Cartan matrix . With the first assumption, the linear transformation

sα: v 7−→ v − 〈v, α∨〉α

is a reflection in L—that is to say it fixes points in the hyperplane 〈v, α∨〉 = 0 and
takes α to −α. So is its contragredient sα∨ = s∨α in L∨. These reflections generate

a Coxeter group in the vector space L ⊗ R—i.e. one defined by certain simple
generators and relations. It is called the Weyl group of the system. In general, it will

be the Weyl group of a Kac­Moody algebra, so the last condition on a root datum,
at least in this article, is that this Weyl group be finite:

• the sα generate a finite group.

Associated to the Cartan matrix is the Dynkin graph of the matrix, whose nodes are

elements of ∆, with an edge from α to a distinct node β if 〈α, β∨〉 6= 0. This edge is
oriented if

nα,β = 〈α, β∨〉〈β, α∨〉 < 4 ,

and assigned a multiplicity indicated graphically according to the following dia­
grams:

α β 〈α, β∨〉 = 〈β, α∨〉 = −1

〈α, β∨〉 = −2, 〈β, α∨〉 = −1

〈α, β∨〉 = −3, 〈β, α∨〉 = −1

The condition on finiteness is in practice usually verified by checking that each of

the connected components of the Dynkin graph belong to one of the known list
of graphs of a given rank giving rise to a finite Weyl group, which are given, for

example, in [Bourbaki:1968].

In these circumstances, let Σ be the (finite) orbit of ∆ underW , Σ∨ that of ∆∨. This

pair forms a root system , for which ∆ forms a basis. In particular, if Σ+ is the subset
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of positive roots, those of the form
∑

∆ nαα with all the nα non­negative integers,
then

Σ = Σ+ ∪ −Σ+ .

The complete set (L,∆, L∨,∆∨) is a based root datum . (In [Grothendieck­Demazure:1970]

it is called ‘une donnée radicielle épinglée’, thus emphasizing usefully the parallel
with the term ‘groupes épinglée’. I see no way to do this in colloquial English.)

Since the Weyl group is finite, there exists an invariant positive definite inner product
• on L. Since the root reflection sα is an orthogonal reflection,

〈α, β∨〉 = 2

(
α•β

α•α

)

for all α and β in ∆. This implies the matrix equation 2(α•β) = DC where C is

the Cartan matrix and D the diagonal matrix with entries α•α. This in turn implies

that the Cartan matrix is non­singular.

A root datum is called semi-simple if the lattice L∆ in L spanned by ∆ has finite

index inL. Since the Cartan matrix is non­singular, this is equivalent to the condition
that (L∨)∆∨ have finite index in L∨. In general, let L∨

der be the λ in L∨ such that

some non­zero integral multiple nλ lies in L∆.

11.5. Proposition. If L = (L,∆, L∨,∆∨) is a root datum then the quadruple[quadruple]

Lder =
(
(L∨

der)
∨,∆, L∨

der,∆
∨
)

is also one. If L is the root datum of a reductive group G then Lder is that of the
derived group Gder.

Because L∨
der is saturated in L∨, the short exact sequence

0 −→ L∨
der −→ L∨ −→ L∨/L∨

der −→ 0

is a sequence of lattices, which therefore splits (albeit non­canonically). Every root
datum is therefore obtained from a semi­simple one by adding on a lattice summand.

If one is given a based root datum (L,∆, L∨,∆∨) then, according to a theorem
originally due to Chevalley, there exists an essentially unique split reductive group

G defined over F giving rise to it. Accounts of this can be found in [Chevalley:1961]
and [Demazure­Grothendieck:1970]. The group is determined only up to isomor­

phism, but the standard proof constructs the group together with an épinglage,

which rigidifies the construction. The passage from the root datum to the group
of rational points is entirely constructive. Results of R. Steinberg, extended some­

what in [Demazure­Grothendieck:1970] and discussed clearly in the recent account
[Cohen­Taylor:2002] tell how to describe explicitly the group of rational points by

generators and relations. The paper by Cohen et al. goes on to give reasonable

algorithms for group operations, representing elements of the group in terms of
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the Bruhat decomposition. The algorithms they describe have been implemented
in the computer program �����. Slightly more explicitly, if T is the torus whose

character group is L and E/F a field extension, its group of E­rational elements
may be identified with L∨ ⊗ E×. The group G is defined as an algebraic group,

and G(E) turns out to be the group generated by symbols s(t) for t in T (E) and
eα(x) for α in ∆ or −∆ and x in E. The group G(E) is that generated by the s(t)
and eα(x) subject to certain relations laid out in the paper by [Cohen et al.:2002].

In principle the root datum tells everything about the group. If Gder is the derived

group of G and Tder the intersection of Gder with the torus T , the lattice L∨
der is

the image of X∗(Tder) in L∨ = X∗(T ). The group Gder will be simply connected
precisely when this is equal toL∨

∆∨ , and equal to the adjoint group when it is (L∆)∨.

The quotient L∨/L∨
der is isomorphic to the co­character group of the torus G/Gder.

The lattice L∨/L∨
der is the coroot lattice of the quotient of G by Gder.

The centre ZG of G won’t in general be connected, but it will be a multiplicative
group, hence determined by its character group X∗(ZG). The group of its rational

points, for example, may be identified with

ZG(F ) = Hom(X∗(ZG), F×) .

If RG = (L,∆, L∨,∆∨) then

X∗(ZG) = L/L∆ .
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12. Root data for quasi-split groups

SupposeE/F to be a Galois extension with group G, and G a connected quasi­split

group defined over F that splits over E. Let B = (B,T ) be a Borel pair defined
over F . Any element of G gives rise to an automorphism of X∗(T ) that preserves

∆B, hence an automorphism of the root datum R = (L,∆, L∨,∆∨) associated to
G over E.

Conversely, a result from the previous section shows that any homomorphism from
G to the Aut(R) lifts to a homomorphism from G to Outer(G), hence by Galois

descent to a quasi­split reductive group obtained from the split form of G over F .

We have a bijection between homomorphisms ϕ from G to the automorphism group
of G and quasi­split groups defined over F that are isomorphic over E to the split

group G determined by R. If γ 7→ ϕγ is the homomorphism then the group of
F ­rational points on Gϕ is

Gϕ(F ) = {g ∈ G(E) |ϕγ(g) = γ−1(g) for all γ ∈ G} .

In the cases we care about, F will be a p­adic field and E an unramified extension,
therefore G a cyclic group. In this case, the homomorphism from G to Aut(G) is

determined by the image of the Frobenius F.

For example, let E be a quadratic extension of F ,G = SL3(F ), ϕσ the involution

X 7−→ J tC−1J

ofG, where σ is the conjugation ofE/F . The corresponding quasi­split group is the
special unitary group SU3(E/F ), which becomes isomorphic to SL3(E) over E.

Here

xα1
(y) =




1 y 0
1 0

1




xα2
(y) =




1 0 0
1 y

1




xα3
(y) =




1 0 y
1 0

1




The image of conjugation ofE/F swaps xα1
and xα2

, hence takes xα3
to −xα3

since

[dxα1
, dxα2

] = dxα3
.

Any automorphism of L determines one of its Dynkin diagram as well. If the

extensionE/F is cyclic, the action on this diagram is completely specified by giving
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the orbit of each of the nodes. This is usually indicated by Tits diagrams . Here is
the one for SU3:

which indicates that conjugation swaps the nodes. Here are all of the Tits diagrams

for the absolutely simple groups, along with their conventional designations taken

from [Tits:1979]:

2A′
2n

2A′
2n−1

2Dn

3D4

2E6

One important thing to notice is that the connected component of each orbit has only

one or two nodes in it, and even that it has two only in the case of 2A′
2n. This can

easily be proven directly. This also implies that every simply connected unramified
quasi­split group of rational rank one is either SL2(F ) or SU3(E/F ) where F is

some unramified extension of k.
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13. The L-group

To get a quick idea of what’s coming, let G = GLn. The unramified characters of

A/A(o) are parametrized by n­tuples (x1, . . . , xn) with each xi in C×. Different

n­tuples give rise to the same homomorphism from H(G//K) to C× if and only
if one is a permutation of the other—i.e. the homomorphisms are parametrized by

invertible diagonal n×nmatrices up to permutation, or in other words semi­simple
conjugacy classes in GLn(C). This apparent coincidence is the simplest case—

simple enough to be deceptive—of something first pointed out by Langlands. It has

proven extraordinarily fruitful in understanding the nature of automorphic forms.

Throughout this section, suppose that G be as usual an unramified, connected,

reductive group defined over k.

• Suppose at first G to be in fact split over k.

Up to isomorphism, the structure of G is completely determined by its root datum
R = (L,∆, L∨,∆∨). The dual R∨ = (L∨,∆∨, L,∆) of R is also a root datum.

Associated to it is a connected reductive group Ĝ defined over C, and in this I choose

a Borel pair (B̂, T̂ ) where (B,T ) is a Borel pair in G. I’ll often confound Ĝ and

Ĝ(C).

If G = GLn(k), for example, then Ĝ = GLn(C). If F is semi­simple and simply

connected, the Ĝ is teh adjoint form of the dual root system. For example, the dual

of Cn is Bn, and hence if G = SLn(k) then Ĝ = PGLn(C), and if G = Sp(2n) then

Ĝ = SO(2n+ 1).

The dual group of A = T is a complex torus Â. The group of rational homomor­
phisms

Hom(A/A(o),C×) = Hom(X∗(A),C×) = Hom(X∗(Â),C×)

is that of unramified characters of A, but it is also by definition the group of points

of Â. Different complex characters give rise to the same homomorphism from
H(G//K) to C if and only if they are W ­conjugates of each other, which is to say

if and only if the corresponding points of Â(C) lie in the same conjugacy class in

Ĝ(C). In summary:

• If G is split, the irreducible unramified representations of G are parametrized

by semi­simple conjugacy classes in Ĝ.

This will have a remarkable generalization to the case when G is not necessarily

split.

Any function in the Hecke algebra H(G//K) is associated by the Satake transform

to a function on the characters of A/A(o), namely χ 7→ cχ(f). This is invariant

under W , and hence determines a function on the conjugacy class of χ when it is
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identified with an element of Â (still assuming G to be split). What functions arise

in this way? Each t in T −− corresponds to a weight of the complex torus T̂ . Its

Weyl orbit forms the extremal weights of a unique irreducible representation ρt of

Ĝ whose highest weight is among these. Let χ(ρt) be its character.

As is already implicit in the proof of the Satake isomorphism, every function in the

integral Hecke algebra made up of Z­linear combinations of the charKtK is mapped
under the Satake transform to a Z­linear combination of conjugation invariant func­

tions δ
−1/2
P (t)χ(ρt), and conversely every such linear combination lies in the image

of the Satake transform.

• If G is split, the integral Hecke algebra H(G//K) is isomorphic to the ring of

conjugation­invariant functions onĜ generated by the functions δ
−1/2
P (t)χ(ρt)

as t ranges over T −−.

Let me point out one interesting place where Ĝ illuminates the theory of spherical

functions. Recall that for G = PGL2(k)

S(charKωmK) =

{ 1 m = 0
Q1 m = 1
Qm −Qm−2 m ≥ 2

where

Qm = qm/2
(
ωm + ωm−2 + · · · + ω−(m−2) + ω−m

)
.

The element ω is a generator of A/A(o), which may be identified with a generator

ofX∗(Â(C)). In terms of this identification, Qm is equal to qm/2 times the character

of the irreducible representation of Ĝ = SL2(C) of dimension m + 1 and highest
weight ωm. For general groups we expect to meet the Weyl character formula in

similar circumstances.

• Now I drop the assumption that G be split.

Recall that Γ is the Galois group of knr/k. In this case, the isomorphism class ofG is
determined by its root datum R = (L,∆, L∨,∆∨) together with a homomorphism

ϕ from Γ to Aut(R), hence determined by the image of F. As before, we define Ĝ
be a connected reductive group defined over C together with an isomorphism of its
root datum with R∨.

If we are given an épinglage, it determines a lifting from Aut(R∨) to Aut(Ĝ), hence

a homomorphism from Γ to Aut(Ĝ). Since the image fixes an épinglage, it is what

[Kottiwtz:1984] calls an L­action .

Following [Kottwitz:1984], I say that a dual group forG is a reductive groupĜ over

the complex numbers C together with an L­action of Γ and a Γ­isomorphism of the

based root datum of Ĝwith R∨. The corresponding unramified L-group LG of G is

the semi­firect product of Wnr, the cyclic group generated by the Frobenius, and Ĝ.
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• In rest of this section, because the role of the Levi component of P is predomi­
nantly as a maximal torus, I shall write it as T , not M .

When G is split, the L­group is just the direct product of Wnr and Ĝ, and the
Frobenius in the L­group plays no important role. For arbitrary unramified groups,

one has to take it into account. The way to parametrize unramified representations
in general is based on a remarkable observation of Langlands:

13.1. Theorem. Every semi­simple LG conjugacy class in Ĝ×F contains an element[lconj]

t̃ × F with t̃ in T̂ . The image of t̃ in Â/W depends only on the original conjugacy

class, and induces a bijection between semi­simple conjugacy classes in Ĝ× F and

Â/W .

There are few places in the literature where this is proven, and indeed the L­group
of an arbitrary unramified group seems to be something of a neglected animal, suf­

fering by comparison with the simpler split groups. But, amazingly, the arbitrary

case was dealt with by Langlands right from the beginning. The original construc­
tion of the L­group is in the letter [Langlands:1967] to Weil that introduced it along

with several conjectures about automorphic forms. Other accounts are in [Lang­
lands:1971] and [Borel:1978]. In the survey [Casselman:1998] I sketched a proof of

this Proposition that incorporated a suggestion of Kottwitz, but it was perhaps a bit

too condensed as well as full of typographical errors to be completely satisfactory,
and I’ll expand it here. Most of what I say is taken from Borel’s Corvallis exposition,

but even there can be found a few minor errors.

The proof starts with a simple calculation.

13.2. Lemma. In Ĝ× F ⊆ LG, Ĝ­conjugacy is the same as LG­conjugacy.[sameas]

Proof. If g and x lie in Ĝ then

g · x× F · g−1 = gxg−F × F .

On the other hand

F · x× F · F−1 = FxF−1 × F = xF × F = x−1xxF × F

= x−1 · x× F · x .

The equivalence x ∼ gxg−F is called twisted conjugacy . So what this result says is

that g1 × F and g2 × F are conjugate under either Ĝ or LG if and only if g1 and g2
are twisted conjugates.

In order to make Langlands’ Theorem at least plausible, let’s look first at the case
whenG is the torus T itself. The injection ofX∗(A) into X∗(T ) induces a surjection

T̂ = Hom(X∗(T ),C×) 7−→ Â = Hom(X∗(A),C×) .
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The following result asserts precisely that the fibres of this projection are the twisted

conjugacy classes in T̂ .

13.3. Lemma. An element t̂ of T̂ has trivial image in Â if and only if it is of the form[trivialimage]

uu−F for some u in T̂ .

Proof. The image of X∗(A) in X∗(T ) is the submodule of Galois invariants. The

quotient in the short exact sequence

0 −→ X∗(A) −→ X∗(T ) −→ L = X∗(T )/X∗(A) −→ 0

therefore has no torsion, and the short exact sequence therefore splits. Thus the

kernel of the projection from T̂ to Â is a connected torus Hom(L,C×). This kernel

contains the image of u 7→ uu−F. The Lie algebra of T̂ decomposes into a direct
sum of the F­invariants and the image of F − I . The first is isomorphic to the Lie

algebra of Â and the second to the Lie algebra of the kernel. Since F− I is invertible
on its image, the Lemma follows, since exponentiation maps a Lie algebra onto its

torus.

Step 1 . Every semi­simple conjugacy class in Ĝ× F contains an element t̂× F with

t̂ in T̂ .

Suppose x× F to be a semi­simple element of Ĝ× F. We want to find g in Ĝ such

that

g · x× F · g−1 = gxg−F × F = y × F

with y in T̂ . Equivalently, we want to find g such that y = gxg−F satisfies

yT̂ y−1 = T̂ , yB̂y−1 = B̂ .

because the first places y in the normalizer of T̂ , and the second then places it in T̂
itself.

Now if H = T̂ or B̂, then since HF = H , yHy−1 = H means that

yHy−1 = gxg−F ·H · gFx−1g−1 = H

g−1Hg = x · (g−1Hg)F · x−1

= (x× F) g−1Hg (x× F)−1

In other words, we are looking for g such that gHg−1 is fixed under conjugation by

x× F. Theorem 7.5 of [Steinberg:1968] asserts that there exists a Borel subgroup B∗

and a maximal torus T∗ contained inB∗ fixed by x×F, and the pair (B∗, T∗) will be

conjugate to (B̂, T̂ ). (Some define a semi­simple element of a possibly disconnected
group to be one which stabilizes a pair T ⊂ B.) (This argument is taken from

[Kottwitz­Shelstad:1999].)
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Step 2 . For this next step, letWnr be the Weyl group ofGwith respect to T , over knr.
The restricted Weyl group W is, according to a very general result about reductive

groups, the quotient of the stabilizer in Wnr by its subgroup of elements that act
trivially on X∗(A). But since X∗(A) is the fixed submodule of the Galois group in

X∗(T ) and the Galois group stabilizes the fundamental chamber, X∗(A) contains
points in the interior of the fundamental chamber. Hence any w in the stabilizer

of A acting trivially on it must be itself trivial. Thus W may be identified with the

stabilizer ofX∗(A) inWnr. The k­roots ofG are the restrictions toA of the roots Σnr,
and correspond bijectively to the orbits of the Frobenius on Σnr. The restrictions of

the basic roots are the restrictions of a basis for Σ+
nr. The elements ofW may also be

identified with the elements of Wnr fixed by the Galois group. Better than that:

13.4. Lemma. Every element of the restricted Weyl group can be represented by an[restrictedweyl]

element of N
Ĝ

(T̂ ) fixed by the Frobenius automorphism.

I follow the argument of [Borel:1978]. According to the proof of Theorem 5.3 of

[Borel­Tits:1965], the restricted Weyl group is generated by reflections corresponding
to the roots in the basis ∆nr. More precisely, if α lies in ∆nr, letA{α} be the kernel of

α in A. The restricted reflection is the unique element s of order two in Wnr fixing

X∗(A) and trivial on X∗(A{α}). It suffices to prove the claim for such an s, say
corresponding to the orbit D in ∆nr.

By the construction of the group Ĝ from the root datum, we can find a family of
elements e±α in g±α for each α in ∆, permuted among each other by F. For each α
the element [eα, e−α] = hα 6= 0 lies in t̂, and hFα = Fhα. The elements

h =
∑

α∈D

hα, e+ =
∑

α∈D

eα, e− =
∑

α∈D

e−α

are all fixed by F, and since the sum of a positive and a negative root is never a root

[e+, e−] = h

and

[h, e+] =
∑

α,β∈D

〈α, β∨〉eβ .

The number

dβ =
∑

α

〈α, β∨〉

is independent of β. The number of roots in any connected component of D can be
only 1 or 2, since the Galois group acts transitively on it, and the component must

be the Dynkin graph of typeA1 orA2 (as I have already pointed out in the previous

section), so that dβ must in fact be 1 or 2. Thus h, e± span a three dimensional Lie
algebra fixed element­wise by F, whose corresponding three­dimensional subgroup

in Ĝ is also fixed point­wise by F. Pick in it an elementw representing the non­trivial

Weyl element.
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Step 3 . It follows from Step 1 that the map

T̂ × F −→ Ĝ× F/Int(Ĝ)

is a surjection. If N is defined to be the inverse image of W with respect to the

projection from N
Ĝ

(T̂ ) to Wnr, it follows from Step 2 that every element of N can

be written as a product of w with wF = w and t̂ in T̂ . If n = ûw then

n · t̂× F · n−1 = û · wt̂w−1 · û−F × F

so that N conjugates T̂ × F to itself.

13.5. Proposition. The map[inclusion]

T̂ × F/N −→ Ĝ× F/Int(Ĝ)

induced by inclusion is an injection as well as a surjection.

Proof. The following argument is attributed in [Borel:1978] to T. Springer. Suppose
that

gt1g
−F = t2 .

Suppose g to have the Bruhat factorization g = n1t̂wn2 with w fixed by F. Thus

n1t̂wn2 · t1 · n−F
2 w−1 t̂−Fn−F

2 = t2

n1 · t̂wt1w−1 · w · t−1
1 n2t

−1
1 = t2n

F
1 · t̂F · w · nF

2

= t2n
F
1 t

−1
2 · t2t̂F · w · nF

2

which implies that

t2t̂
F = t̂wt1w

−1, t2 = t̂w · t1 · w−1 t̂−F .

Step 4 . Langlands’ Theorem now follows from:

13.6. Proposition. Projection from T̂ to Â is equivariant with respect to the projec­[yyy]

tion from N to W . The induced map

T̂ × F/N −→ Â/W

is a bijection.

Proof. Surjectivity follows from the surjectivity of the projection from T̂ (C) to Â(C).

Equivariance and injectivity both follow immediately from the fact that any w inW

has a representative in N
Ĝ

(T̂ ) which is fixed by F.
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This concludes the proof of Langlands’ Theorem. In combination with Satake’s
Theorem, it says that the unramified principal series are parametrized by semi­

simple conjugacy classes in the coset Ĝ × F of LG, the inverse image in LG of the
Frobenius automorphism in Wnr. Another way to phrase this is to say that they are

parametrized by semi­simple splittings of the canonical projection from LG to Wnr.

Or, equivalently, they are parametrized by diagrams

Wnr −→ LG
↘ ↙

Wnr

where the arrow from Wnr to itself is the identity. Homomorphisms from Wnr to
LG fitting into this diagram are called L-homomorphisms .

• From now on, if π is an irreducible unramified representation of G, let Fπ be

the corresponding conjugacy class in Ĝ× F.

The most immediate gain from introducing the L­group is the association of L
functions to automorphic forms. If π is an unramified representation of G and ρ a

finite dimensional representation of LG then Langlands defines

L(s, π, ρ) =
1

det
(
I − ρ(Fπ)q−s

) .

Of course this is well defined since it depends only on the conjugacy class of Fπ.

Since a unitary representation has to have bounded matriz coefficients, Macdonald’s
formula implies a bound on s that guarantees convergence for this function in a

right half­plane. It is precisely these L functions which should play the role in

automorphic forms that the Artin L­functions do in number theory.


