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Foreword

MHE object of this work is to present to the future investigator,

under one cover, simply and concisely, what is known relative
the Pythagorean proposition, and to set forth certain established
tts concerning the proofs and the geometric figures pertaining there-

It establishes that:

First, that there are but four kinds of proofs for the Pythago-

proposition, viz: ]

I.—Those based upon Linear Relations (implying the Time
neept) —the Algebraic Proofs.

11.—Those based upon Cemparison of Areas (implying the
ice Concept)—the Geometric Proofs.

I111.—Those based upon Vector Operation (implying the Direc-
' Concept) —the Quarternionic Proofs.

IV.—Those based upon Mass and Velocity (implying the Force

ept)—the Dynamic Proofs.

Second, that the number of Algebraic proofs is limitless.

Third, that there are only ten types of geometric figures from
ch a Geometric Proof can be deduced.

This third fact is not mentioned nor implied by any work con-
fed by the author of this treatise, but which, once established,
omes the basis for the classification of all possible geometric proofs.

Fourth, that the number of geometric proofs is limitless.
 Fifth, that no trigonometric proof is possible.

By consulting the Table of Contents any investigator can de-
mine in what field his proof falls, and then, by reference to the
it, he can find out wherein it differs from what has already been
blished.

With the hope that this simple exposition of this historically
owned and mathematically fundamental proposition, without
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which the science of Trigonometry and all that it implies would be
impossible, may interest many minds and prove helpful and sug-
gestive to the student, the teacher and the future original investi-
gator, to each and to all who are seeking more light, the author,
through the medium of The Masters and Wardens Association of
the 22nd Masonic District of the Most Worshipful Grand Lodge
of Free and Accepted Masons of Ohio, sends it forth.
ELISHA S. LOOMIS.
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of. Am. Sup. = Scientific American Supplement.
i 4 = secant.

Abbreviations and Contractions s
= square.

a-square = square upon the shorter leg. R i

A. R. Colburn = Arthur R. Colburn LL. M., Dist. of Columbia

jg — tangent.
Bar. = therefore.
b-square = square upon the longer leg. — triangle.
const’d = constructed. — triangles.
const, = .canstruct. p. — trapezoid.
€0s = cosine. volume.

Edward’s Geom. — Edward’s Elements of Geometry.
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| eq's = equations.
| Fig. or fig. = figure.
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Jury Whipper = Jury Whipper's “46 Beweise der Pythagoreaischen
Lehrsatzes,” 1880.

Jour. Ed’'n = Journal of Education.

Math. = Mathematical.
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Mo. — Monthly.

No. or no. = number.

Olney’s Geom, = Olney’s Elements of Geometry, University edition.
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like symbol.

p. = page.

pt. = point.

quad, = quadrilateral.
rt. — right.

rt. tri. = right triangle.
rect. = rectangle.
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Freemasonry

REEMASONRY is a very ancient and respectable institution and
embraces as members “men of every rank and condition of life,
‘every nation and clime, and of every religion which acknowledges
Supreme Being and has faith in the immortality of the soul; it stands
minent among the institutions established for the improvement
mankind—as far above other 'secret associations in usefulness as it
beyond them in age.” :
Authentic history holds that the commencement of secret moral
aciations had an origin as ancient as that of the 38 noted Pyramids
Egypt (2100 B. C.). :

‘The triumph of mind over matter came through the constructural
onuments, and there is no speculation in the declaration that these
ilders formed themselves into an association for mutual protection
i improvement at this. early date, and tradition informs us that
his union of scientific men (architects) differed from the Free-
sons of today in little more than in name.”

The triad, architecture, astronomy and geometry, took the first
nk as sciences in early Egyptian times, and here we may look
* the origin of the Masonic society.

As the Masonic author, George S. Blackie, says: Doubtless at

it was a mutual improvement association simply, and those only
ould be admitted whose occupation was subsidiary to the great

[ the architects.” And, “once admitted to the fraternity, they con-
icted the mythology of their country and their metaphysical specu-
itions concerning the nature of God with the exclusively scientific

chings of the builders, thereby producing that combination of
tience and theology which forms such a conspicuous part of the prin-
iples of Freemasonry. . . . The fraternity and priest craft soon
jecame one, imparting their knowledge in symbolic and hieroglyphic

[21]




instruction,
under an oath of secrecy.

Profane history records that this esoteric knowledge of Egypt,
through its secret societies, found a permanent footing in all the
commercial cities throughout the countries on and about the Medi-
terranean sea, and especially in Tyre whose king, in 1019 B. C., aided

King Solomon in the building of the temple of Jerusalem.

And “the Holy Scriptures inform us that Hiram, King of Tyre,
assisted King Solomen in his work with materials and operatives,
and that he sent to superintend the latter a cunning artificer in brass

and iron, Hiram, the son of a widow of Tyre.”

Therefore the ‘opinion that Freemasons—that is members of |
a secret order of scientific architecture—flourished at the building of

King Solomen’s temple, is not so absurd as is often supposed, and

truly these recorded facts relieve Freemasons from the charge of

credulity.’

A careful investigation of the great historic orders, viz: of the
Dionysia, 15th century B. C., of the Eleusinia, 14th century B. C.,
and of the Essenes, Ist century B. C., shows that each bore a striking
similarity with modern Masonry as to tenets and rites; that each
claimed esoteric wisdom and learning—the foundation on
masonry of today rests, :

These facts and the additional fact that all learning and know-
ledge during these early centuries were in the keeping of the priests
of the accepted religion of their times, and as these priests now
controlled these scientific and secret orders, their only school of learn-
ing, making them the foundation of their religious institutions, it
follows that Pythagoras, a leading metaphysician, mathematician and
teacher of his day (569-470 B. C.) being highly educated in all

Egyptian, Zoroastrian and Babylonian lore, must have been initiated |

into these secrets and mysteries, and that therefore he was an ac-
knowledged and accepted Freemason as Freemasons were then known.

Adorned with Virtue, Mercy and Justice, the three great attri-
butes of Freemasonry, he became the founder of the Pythagorean
school of philosophy, mathematics and religion, ‘wherein arose the

[22]

accompanied by particular rites and ceremonies,” and

which Free- .

{
famous oppositions of philosophy, known as the 10 antitheses of
Pythagorean teaching, namely: /1, limited and unlimited ; 2, even and
dd ; 3, one and many; 4, right and left; 5, male and female ; 6, rest
nd motion; 7, straight and crooked; 8, light and darkness; 9, good
s d evil ; 10, square and rectangi‘E—IlThese antitheses gave rise to deep
letaphysical speculations in the schools of philosophy of Greece and .
sewhere, (See Plato, e. g, The Republic), and even today their
mplications are the riddles of thinkers,
The Pythagoreans taught that “Deity is the one, the Original
Jnity, the Infinite, out of which all finite things have come.”
As a teacher, after having become proficient in all fields of wis-
m of his epoch, overtopping all like a Galileo, a Newton, Pytha-
oras “laid great stress on the discipline of the will into obedience,
mperance, silence, self-examination, simplicity in personal attire,
id self restraint in all its forms,”—and these are the cardinal virtues
| present day Freemasonry. ‘
In the field of astronomy he anticipated Copernicus by making
e sun the center of the cosmos. In geometry he enunciated and
monstrated the renowned theorem known to us as the 47¢th propo-
ion of the first book of Euclid’s Elements wherein we learn that:
e square described upon the hypotenuse of a right-angled triangle
equal to the sum of the squares described upon the other two sides. i
Without this proposition, it being the only geometric theorem
ferred to in the ritual of all Free and Accepted Masons, the initiate
ould never have heard: “Geometry, the first and noblest of the
jences, is the basis on which the superstructure of Freemasonry is
ected. By geometry we discover how the planets move in their
;, pective orbits, and ‘demonstrate their various revolutions. By it
account for the return of the seasons. By it we discover the
er, wisdom and goodness of the Grand Artificer of the Universe.”
Finally, as stated by that great mason, Thomas Holland: “Prin-
ipalities and powers, monarchies, thrones, diplomacy, and even re-
gious fanaticism never has been, and never will be, able to obliter-
t Freemasonry, and 1 believe it is destined to come to the front
hd perform works of magnitude hitherto unknown.”
[23]




FRATERNITY, EQUALITY AND
HUMAN LIBERTY

- The Pythagorean Proposition

His celebrated proposition is one of the most important theorems
in the whole realm of geometry and is known in history as
he 47th proposition, that being its number in the first baok of Eu-
id’s Elements.
It is also (erroneously) sometimes called the Pons Asinorum.
Ithough the practical application of this theorem was known long
fore the time of Pythagoras he, doubtless, generalized it from an
gyptian rule of thumb (3% 4- 4> = 5%) and first demonstrated it
bout 540 B. C., from which fact it is generally known as the Pytha-
prean Proposition. This famous theorem has always been a favor-
¢ with geometricians.

Many purely geometric demonstrations of this famous theorem
 accessible to the teacher, as well as an unlimited number of proofs

arternions and dynamics furnish a few proofs.

No doubt many other proofs than these now known will be
olved by future investigators, for the possibilities of the algebraic
d geometric relations implied in the theorem are limitless.

This theorem with its many proofs is a striking illustration of
 fact that there is more than one way of establishing the same

But before proceeding to the methods of proof, the following
torical account translated from a monograph by Jury Whipper,
iblished in 1880, and entitled “46 Beweise des Pythagoraischen
ehrsatzes,” may prove both interesting and profitable.

Whipper acknowledges his indebtedness to F. Graap who trans-
ited it out of the Russian. It is as follows: “One of the weightiest
fopositions in geometry if not the weightiest with reference to its
pductions and applications is doubtless the so-called Pythagoreon
foposition.”

[25]
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THE PYTHAGOREAN PROPOSITION THE PYTHAGOREAN PROPOSITION

The Greek text is a8 follows: the form of a dialogue between Tchou-Gun and Schan-Gao. The

3 s 3 ’ YRR -~ I3 ’ , 5 ey .
A Ev rois dpboywrios 15 amd ™s Tiv Spbiy yoviay tle of the book is: Tschaou pi, i. e., the high of Tschao. Here too
2 o] 3 ’ -~ - s . 4 b
vrotawovans whevpas ﬂrpéywvov loov éori Tols dmd Tw re the sides of a triangle already named legs as in the Greek, Latin
g 3 -~ -~ ? .
v opbiy ywviar mepieyovaiv TAEUPEY Terpaydvors. g erman and Russian languages.

The Latin reads: In rectangulis triangulis quadratum, quod a | Here are some paragraphs of the Ist chapter of the work.

latere rectum angulum subtendente describitur, aequale est eis, quae | fschou-Gun once said to Schan-Gao: “I learned, sir, that you know
a lateribus rectum angulum continentibus describuntur. pumbers and their applications, for which reason I would like to ask
German: In den rechtwinkeligen Dreiecken ist das Quadrat, | ow old Fo-chi determined the degrees of the celestial spher.e. There
welches von der dem rechten Winkel gegenuber liegenden Seite besch- | re no steps on which one can climb up to the sky, the chaut and the
richen Wird, den Quadraten, welche von den ihn umschliessenden bulk of the earth are also inapplicable; I would like for this reason,
Seiten beschrieben werden, gleich, to know how he determined the numbers.”
According to the testimony of Proklos the demonstration of Schan-Gao replied: “The art of counting goes back to the circle
this proposition is due to Euclid who adopted it in his elements (I, gid equare,” L
47). The method of the Pythagorean demonstration remains un- If one divides a right triangle into its parts the line which
known to us. It is undecided whether Pythagoras himself discovered inites the ends of the sides when the base = 3, the altitude = 4 is 5.
this characteristic of the right triangle, or learned it from Egyptian Tschou-Gun cried out: “That is indeed excellent.”
priests, or took it from Babylon: regarding this opinions vary. It is to be observed that the relations between China and Baby-
According to that one most widely disseminated Pythagoras more than probably led to the assumption that this characteristic
learned from the Egyptian priests the characteristics of a triangle in ias already known to the Chaldeans. As to the geometrical demon-
which one leg — 3 (designating Osiris), the second — 4 (designating fration it comes doubtless from Pythagoras himself. In busying with
Iris), and the hypotenuse — 5 (designating Horus) : for which he addition of the series he could very naturally go from the triangle
reason the triangle itself is also named the Egyptian or Pythagorean. vith sides 3, 4 and 5, as a single instance to the general characteristics
The characteristics of such a triangle, however, were known if the right triangle.
not to the Egy.ptian priests alone, the Chinese scholars also knew After he observed that addition of the series of odd numbers
them. “In Chinese history,” says Mr. Skatschkow, “great honors | (1 +3=4,1+4 3+ 5=09, etc.) gave a series of squares, Pytha-
are awarded to the brother of the ruler Uwan, Tschou-Gun, who oras formulated the rule for finding, logically, the sides of a right
lived 1100 B. C.: he knew the characteristics of the right triangle riangle: Take an odd number (say 7) which forms the shorter side,
(perfec‘ted) made a map of the stars, discovered the compass and quare it (72 = 49), subtract one (49 — 1 = 48), halve the re-
determined the length of the meridian and the equator. - mainder (48 — 2 = 24) ; this half is the longer side, and this in-
! Another scholar (Cantor) says: this emperor wrote or shared reased by one (24 - 1 = 25), is the hypotenuse.
in the composition of a mathematical treatise in which were discovered The ancients recognized already the significance of the Pytha-
the fundamental features, ground lines, base lines, of mathematics, orean proposition for which fact may serve among others as proof the

[a] | [27]
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account of Diogenes Laertius and Plutarch concerning Pythagoras.
The latter is said to have offered (sacrificed) the Gods an ox in grati-
tude after he learned the notable characteristics of the right triangle.
This story is without doubt a fiction, as sacrifice of animals, 1. e., |
blood-shedding, antagonizes the Pythagorean teaching.

During the middle ages this proposition which was also named
inventum hecatombe dignum (in-as-much as it was even believed that
a sacrifice of a hecatomb—100 oxen—was offered) won the honor-
designation Magister matheseos, and the knowledge thereof was some
decades ago still the proof of a solid mathematical training (or edu-
cation). In examinations to obtain the master’s degree this propo-
sition was often given; there was indeed a time, as is maintained,
when from every one who submitted himself to the test as master of
mathematics a new (original) demonstration was required,

This latter circumstance, or rather the great significance of the
proposition under consideration was the reason why numerous demon-
strations of it were thought out.

aveled in business interests; during the year 569 A. C. he came
Tyre; here Pythagoras was born, At eighteen Pythagoras, secret-
, by night, went from (left) Samos, which was in the power of the
rant. Polycrates, to the island Lesbos to his uncle who welcomed
im very hospitably. There for two years he received instruction
om Ferekid who with Anaksimander and Thales had the reputation
if a philosapher,
After Pythagoras had made the religious ideas of his teacher
lis own, he went to Anaksimander and Thales in Miletus (549 A.
.). The latter was then already 90 years old. With these men
thagoras studied chiefly cosmography, i. e., Physics and Mathe-
atics.
Of Thales it is known that he borrowed the solar year from
gypt; he knew how to calculate sun and moon eclipses, and deter-
ine the elevation of a pyramid from its shadow ; to him also are
ributed the discovery of geometrical projections of great import :
2., the characteristic of the angle which is inscribed and rests with
sides on the diameter, as well as the characteristics of the angle at
e base of an (equilateral) isosceles triangle, !
Of Anaksimander it is known that he knew the use of the dial
the determination of the sun’s elevation; he was the first who
ught geography and drew geographical maps on copper, It must.
observed too, that Anaksimander was the first prose writer, as
wn to his day all learned works were written in verse, a procedure
hich continued longest among the East Indians,
Thales directed the eager youth to Egypt as the land where he
uld satisfy his thirst for knowledge. The Phoenician priest college
i Sidon must in some degree serve as preparation for this journey.
ythagoras spent an entire year there and arrived in Egypt 547.
Although Polikrates who had forgiven Pythagoras’s nocturnal

ight addresses to Amasis a letter in which he commended the young
holar, it cost Pythagoras as a foreigner, as one unclean, the most

[29]

The collection of demonstrations which we bring in what fol-
lows,® must, in our opinion, not merely satisfy the simple thirst for
knowledge, but also serve as important aids in the teaching of geo-
mietry. The variety of demonstrations, even when some of them are
finical, must demand in the learners the development of rigidly
logical thinking, must show them how many sidedly an object can
be considered, and spur them on to test their abilities in the discovery
of like demonstrations for the one or the other proposition.”

Brief biographical information concerning Pythagoras.

“The birthplace of Pythagoras was the island of Samos; there
the father of Pythagoras, Mnessarch, abtained citizenship for services
which he had rendered the inhabitants of Samos during a time of'
famine. Accompanied by his wife Pithay, Mnessarch frequently

*Note.—There were but 40 different demonstrations in the monograph by
Jury Whipper, which 46 are among the classified collection found in this work. |

[28]
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| f incredible toil to gain admission to the priest caste which only un-. inmed Pythagoras, a son of Eratokles. This led him to abandon his |
F’ 2y willingly initiated even their own people into their mysteries or hankless land and seek a new home in the highly cultivated cities i
L knowledge. if Magna Graecia (Italy).
ill, | The priests in the temple Heliopolis to whom the king in person [ns‘:S_lE)J Pythagoras came to Kroton. As is known it was a |! 1
r. B il brought Pythagoras declared it impossible to receive him into their urbulent year. Tarquin was forced to Hee from Rome, Hippias [
| midst, and directed him to the oldest priest college at Memphis, this om Athens; in the neighborhood of Kroton, in Sibaris, insurrection ;
commended him to Thebes. Here somewhat severe conditions were oke out. [ I
| laid upon Pythagoras for his reception into the priest caste; but noth- The first appearance of Pythagoras before the peaple of Kroton |
,J | ing could deter him. Pythagoras performed all the rites, and all égan with an oration to the youth wherein he rigorously but at the I
g tests, and his study began under the guidance of the chief priest me time so convincingly set forth the duties of young men that :
R Sonchis. . elders of the city entreated him not to leave them without guid- |
05 i i During his 21 years stay in Egypt Pythagoras succeeded not only ace (counsel). In his second oration he called attention to law |
4

in fathoming and absorbing all the Egyptian but also became sharer |
| in the highest honors of the priest caste.
) In 527 Amasis died; in the following (526) year in the reign
! of Psammenit, son of Amasis, the Persian king Kambis invaded Egypt
| il and loosed all his fury against the priest caste.

Nearly all members thereof fell into captivity, among them |
Pythagoras, to whom as abode Babylon was assigned. Here in the
| center of the world commerce where Bactrians, Indians, Chinese, |
| Jews and other folk came together, Pythagoras had during 12 years
[ | stay opportunity to acquire those learnings in which the Chaldeans *

were so rich. !
\ A singular accident secured Pythagoras liberty in consequence
i of which he returned to his native land in his 56th year. After a
\
|

biding and purity of morals as the butresses of the family. In the
vo following orations he turned to the matrons and children. The
It of the last oration in which he specially condemned luxury
@s that thousands of costly garments were brought to the temple
f Hera, because no matron could make up her mind to appear in
iem on the street.

Pythagoras spoke captivatingly, and it is for this reason not to
wondered at that his orations brought about a change in the morals
if Kroton's inhabitants; crowds of listeners streamed to him. Besides
youth who listened all day long to his teaching some 600 of the
lorthiest men of the city, matrons and maidens, came together at
§ evening entertainments; among them was the young, gifted and
pautiful Theana, who thought it happiness to become the wife of
he 60 year old teacher.

The listeners divided accordingly into disciples, who formed a
0ol in the narrower sense of the word, and into auditors, a school
the broader sense. The former, the so-called mathematicians were
iven the rigorous teaching of Pythagoras as a scientific whole in
bgical succession from the prime concepts of mathematics up to the
lighest abstraction of philosophy; at the same time they learned to

[31]

brief stay on the island Delos where he found his teacher Ferekid
still alive, he spent a half year in a visit to Greece for the purpose
of making himself familiar with the religious, scientific and social |
condition thereof.

The opening of the teaching activity of Pythagoras, on the island
of Samos, was extraordinarily sad; in order not to remain wholly
without pupils he was forced even to pay his sole pupil, who was also

[30]
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regard everything fragmentary in knowledge as more harmful than
ignorance evern. 4

From the mathematicians must be distinguished the auditors
(university extensioners) out of whom subsequently were formed the
Pythagoreans. These took part in the evening lectures only in which
nothing rigorously scientific was taught. The chief themes of these
lectures were: ethics, immortality of the soul, and transmigration—
metempsychology.

About the year 490 when the Pythagorean school reached its
highest splendor—brilliancy—a certain Hypasos who had been ex-
pelled from the school as unworthy put himself at the head of the
democratic party in Kroton and appeared as accuser of his former
colleagues. The school was broken up, the property of Pythagoras
was confiscated and he himself exiled, .

The subsequent 16 years Pythagoras lived in Tarentum, but
even here the democratic party gained the upper hand in 474 and
Pythagoras a 95 year old man must flee again to Metapontus where
he dragged out his poverty-stricken existerce 4 vears more. Finally
democracy triumphed there also; the house in which was the school
was burned, many disciples died a death of torture and Pythagoras
himself with dlﬁlculty having escaped the flames died soon after in
his 99th year,”*

*Note.—The above translation is that of Dy, Theodore H, Johuston, Prin-
cipal (1007) of the West High School, {‘leva]and 0,

[32]

Come and take choice of all my Library.
—Titus Andronicus.

“Behold!”

Viam Inveniam aut Faciam.

[33]




Méthids & Progt

The type and form of a figure necessarily determiqe the possible
argument of a derived proof ; hence, as an aid for reference, an order
of arrangement of the [proofs is of great importance.

The order of arr: t herein is, only in part, my own, being
‘a modification and e ion of the classification of the 100 proofs
given by Prof. B. F, nhey, A. M., of Wooster University, Waoos-
ter, O., and Prof. j. A. Calderhead, B. Sc., of Curry University,
Pittsburg, Pa., as publisiied in The American Mathematical Month-
ly, Vol's I11-VI, 18969, and of other published proofs.

In this exposition of some proofs of the Pythagorean theorem
the aim has been to classify and arrange them as to method of proof
d type of figure used; to give the name, in case it has one, by which
fhe demonstration is known ; to give the name and page of the jour-
al, magazine or text wherein the proof may be found, if known;
nd occasionally to give other interesting data relative to certain
IT00 fs.

It is assumed that the person using this work will know the
undamentals of plane geometry, and that, having the figure before
him, he will readily supply the “reasons why” for the steps taken as,
often from the figure, the proof is obvious; therefore only such state-
ments of construction and demonstration are set forth in the text
5 is necessary to establish the argument of the particular proof.

L
GEBRAIC PROOFS THROUGH LINEAR RELATIONS
A.—Similar Right Triangles.
From linear relations of similar right triangles it may be proven
that, The square of the hypotenuse of a right iriangle is equal to the

sum of the squares of the other two sides.
And since the algebraic square is the measure of the geometric

[35]
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y y '
square, the trufh of the proposition as just stated involves the truth
of the proposition as stated under Geometric Proofs through com-
parison of are.z, A few algebraic proofs are the following:

One

In the right triangle ABH, Fig. 1, draw a
perp. from H to AB; and call its foot C. The
triangles ABH, HAC and BHC are similar,
And since, from thr\?.miléf and related tri-

F"g 1 angles, there are possib! nine simple proportions,
these proportions and their resulting equdtions are:
(1) : } <3 ah 2 aye—bx
(2) 1 1o dlia =i
(3) = ix. x2=hy —y.
(4) g ey 2, “ab =i
(3) 3 sl At
(6) g : T ae—=ihyt
(7) - :b.. B*=h® — hy.
(8) 3 via Ly ab==ths
Li(iEry :x=>b:a.. ah —ay=bx
Since equations (1) and (9) are identical, also (2) and (6),
and (4) and (8), there remain but six different equations, and the
problem becomes, how may these six equations be combined so as

to give the desired relation h® = a® -~ b?, which geometrically inter-

preted is AB* — BH? | HA®

!

In this proof One, and in every case hereafter, as in proof Sewventeen, etc,, §

the symbol AB2, or a like symbol, signifies ABZ

Ist.—Legendre’s Solution.

‘2. From no single equation of the above nine can the desired
mﬁﬁm be determined, and there is but one combination of two
s which will give it; viz., (5) and (7). Adding these gives

o+ b,

ALGEBRAIC PROOFS

b. See Davies Legendre, p. 112,

Journal of Education, 1888, V. XXV, p. 404, fig. V.
Heath’s Math. Monograph, No. 1, p. 19, proof II1.
or any late text on geometry.

c. Since equations (5) and (7) are implied in the principle that ,
homologous sides of similar triangles are proportional it follows that
the truth of this important proposition is but a corollary to the more
general law of similarity.
2nd.—Other Solutions.

a. By the law of combinations there are possible 20 sets of three
equations out of the six different equations. Rejecting all sets con-
taining (5) and (7), and all sets containing dependent equations,
there are remaining 13 sets from which the elimination of x and y
may be accomplished in 44 different ways, each giving a distinct proof
for the relation h? = a? -} b2

b. See the American Math. Monthly, V. III, p. 66.

or Edward’s Geometry, p. 157, fig. 15.
.c. W. W. Rouse Ball, of Trinity College, Cambridge, Eng.,
seems to think Pythagoras knew ofethis proof.

Two

Produce AH to C so that CB will be
perpendicular to AB.

The triangless ABH, CAB and BCH
are similar. See Fig. 2.

From the continued proportion, b : h :
a==a :x :y==h : by :x nine different
simple proportions are possible, viz:
k1) bhizth=a :x (5) b:a=h:x
(2) b:a=a:y. (6) h:a=b+y:x
i3) hica=xy: (7) arx=h:b4y.
(4) b:h=h:b+y. (8) amy=hix

371
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THE PYTHAGOREAN PROPOSITION ' ALGEBRAIC PROOFS
(9) x :b 4y =y :x from which six different equations are Four
possible as in One above. :
15st—=Solutions From Sets of Two Equations.
a. As in Oune, there is but one set of two equations, which will
give the relation h® = a* 4- b

In Fig. 4 extend AB to C making

BC = BH, and draw CD perp. to

AC. Produce AH to D, forming the o
two similar tri's ABH and ADC. A

=N

7

——— —

b. See Math. Mo., V. LII, p. 66. a. From the continued proportion A
2nd—S8olution From Sets of Three Equations. b:h + SRy ity . Fl.?’l x

a. As in 2nd under proof One, fig. 1, there are 13 sets of three! :eq{:ations el po;sible giving i |
eq’s, giving 44 distinct proofs that give h* = a* -+ b% ‘_3’ chron proats i i e d

b. See Math. Mo. V. III, p. 66.
¢. Therefore from three similar rt. tri’s so related that any two
have one side in common there are 90 ways of proving that h® = a*

-+ b2

b. See Math. Mo., V. III, p. 67.
Five
Draw AC the bisector of the angle HAB,

,H' and CD perp. to AB, forming the similar
g tri's ABH and BCD. Then CB = a — x and
7 ok 2 DB=h—b.

a. From the continued proportion h :a —
— a :h — b : x three equations are possible giving, as in fig. 3,
ree proofs for h? = a* | b®
b. Original with the author, Feb. 23, 1926.

Six

Three

; In Fig. 3 take on BA, BD = BH, and CD
perp. to AB, forming the two similar tri's ABH

_and CAD. ,

. a. From the continued proportion a : x =

b:h—a=Hh :b— x the simple proportions

and their resulting eq’s are:

(1) a:x=0Db :h—a.. ah—a®=bx

(2) a:x=h:b—x..ab— ax = hx

(3) b:h—a=h:b—x." b® — bx = h® — ah.

As there are but three equations and as each equation contains
the unknown x in the 1st degree, there are possible but three solutions.
giving h* = a® 4 b% i

b. See Math. Mo., V. 111, p. 66.

Through D, any pt. in either leg of the
rt, triangle ABH, draw DC perp. to AB and
extend it to E a pt. in the other leg produced,
thus forming the four similar rt. tri’s ABH,
BEC, ACD and EHD. From the continued
‘proportion (AB = h) : (BE = a 4 x) :
(ED=v) : (DA=b—y) = (BH =a) :
(BC=h—2z) : (DH=y) : (DC=w) = (HA=b}) : (CE
— v --w) : (HE =x) : (CA = z), eighteen simple proportions
and eighteen different equations are possible.

[38] [39]
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From no single equation nor from any set of two eg’s can the
relation h? — a* - b* be found but from combination of eq's invalv-
ing three, four or five of the unknown elements u, w, x, v, z, solutions
may be obtained.

c. As the pt. E approaches the pt. B, fig. 7, approached fig. 2,
above, and becomes fig. 2, when E falls on B.

d. Suppose E falls on AB so that CE cuts HB between H and
B; then we will have 4 similar rt. tri’s involving 6 unknowns. How

1st—Proofs From Sets Involving Three Unknown Elements. Rany prooks will result?

a. It has been shown that there is possible but one combination

of equations involving but three of the unknown elements, viz., x, ¥ Eight
and z which will give h? == a* - b2, ; .
- k —_ “\ L A
b. See Math. Mo. V. IIL, p. IIL. In fig. 8 produce BH to D, making BD Da)

BA, and E, the middle pt. of AD, draw EC /v \i’
parallel to AH, and join BE, forming the 7
similar rt. triangles AHD, ECD, BED, BEA, ¥
BCE, BHF and AEF, but six of which need :
consideration, since tri's BED and BEA are E
ongruent and, in symbolization, identical.

2nd.—Proofs From Sets Involving Four Unknown Elements.

a. There are possible 114 combinations involving but four of the
unknown elements each of which will give h* = a* - b2,

See Math. Mo., V. III, p. II1.
3rd.—Proofs From Sets Involving A1l Five Unknown Elements.

a. Similarly, there are 4749 combinations involving all five of the
unknowns, from each of which h* = a* -~ b? can be obtained.

b. See Math. Mo., V. II1, p. 112.

c. Therefore the total no. of proofs from the relations involved

in fig. 6 is 4864.

/

From these 6 different rt. triangles, sets of 2 tri's may be selected
in 15 different ways, sets of 3 tri’s may be selected in 20 different
Wways, sets of 4 tri's may be selected in 15 different ways, sets of 5
tri's may be selected in 6 different ways, and sets of 6 tri's may be
selected in 1 way, giving, in all, 57 different ways in which the 6
triangles may be combined.

Seven

Produce AB to E, fig. 7, and
through E draw, perp. to AE, the line
CED meeting AH produced in C and
HB produced in D, forming the four
similar rt. tri's ABH, DBE, CAE
and CDH.

a. As in fig. 6, eighteen different
equations are possible from which °
there are also 4864 praofs.

But as all the proofs derivable from the sets of 2, 3, 4, or 5 tri’s
are also found among the proofs from the set of 6 triangles, an investi-
gation of this set will suffice for all.

In the 6 similar rt. tri’s, let AB—h, BH — a, HA =1, DE =

EA = x, BE =y, FH = z and BF = v, whence EC 2%, DH

E-h—a DC=h —*2 EF=y—v, BE:]J#, AD =%

and AF = b — z, and from these data the continued proportion is
b. Therefore the total no. of b:b/2:y:(ht+a)/2:a:x

ways of proving that h? = a* - b* —h—a:(h—a)/2:x:b/2 :2:y—v

from 4 similar rt. tri’s related as in fig's 6 and 7 is 9728. — 2x :x:h:y:v:b—z.
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From this continued proportion there result 45 simple proportions| b/2 tx=x : b — 2z whence 2x* — b? — bz, Eq. 112,
which give 28 different equations, and, as ground-work for determi (h—a)/2 1y —v=x:b— z, whence 2(y — v)x =
ing the number of proofs possible, they are here tabulated, (h—a) (b—2z). Eq.122

(1) b:b2=h—a: (h—a)/2 whence | = 1. Eq 1. v i )/2=x : b2, whence (h+ a)x=by. Eq. 6"
(2) b:b/2=2x :x, whence 1 — 1. Eq. 1. v:(h+4a)2=h :y, whence 2y> — h? + ah. Eq. 13,
(3) h—a:(h—a)/2=2x :x, whence ] — 1, Eq. 13, ) x :b/2=h :y, whence 2xy = bh. Eq. 3.
(4) b:y=h—a :x, whence bx = (h— a)y. Eq 2. yia=x:z, whence wx =yz. Eq. 14.
(5) b :y=2x :h, whence 2xy — bh, Eq. 3. y:a=h:v,whence vy = ah. Eq. 15.
(6) h—a :x=2x:h, whence 2x* — h2 ah. Eq 4. x iz=h : v, whence vx = hz. Eq, 16.
(7 Eh e e :b/2, whence b* — h? _ g2, Eq. 5. Y :iX=x :y—v, whence X =y(y — v). Eq. 17.
(8), b ka2 =2x oy whence (h + a)x = by. Eq. 6. | yix=h :b— 2z whence hx =y(b—z). Eq 18.
(9) h—a:b/2=2x:Y.whcncebx=(h——8)y. Eq.2. @& X:i¥y—v=h:b— z whence (b— 2z)x = h(y — v).
(10) b :a=h—a : 2, whence bz — (h —a)a. Eq. 7. Eq. 19.
(11) b :a=2x :v, whence 2ax — by, Eq. 8. 3 (h-+a)/2 :a=1b/2 : 2, whence (h+ a)z =ab. Eq.20.
(12) h—a : 2z == 2x : v, whence 2xz — (h —a)v. Eq. 9 i (h +2)/2 :a=y :v, whence by = (h+a)v. Eq.21.
(3) b:x=h—a :y — v, whence (h —a)x = b(y — v), ) b/2 :2 =y : v, whence 2yz — by, Eq. 22.
Eq. 10. ; . { (h+a}[2:x=bg’2:y—v,whencebx::(h-[—a) (y —
(14) b :x=2x :b—z, whence 2 = b* — bs. Eq, 11. v). Eaq 23
(15)h—-a.‘y——v:Zx:h——-z,whenceZ(y—v)z:(h 4 3 (h-i—a)/?:x:y:b—z,whence2xy:(h—[—a) (b —
a) (b—z). Eq 12, z). Eq 24.
(16) b/2:y:(h—a)/2:x,whencebx——-(hﬁa)y. Eq. 2, b/2 1y —v==y :b— 2, whence 2y (y —v) =b*— bz
(17) b/2 : y =x : h, whence 2xy — bh, Eq. 3. Eq. 25.
(18) (h—a)/2 : x = x : h, whence 2x® — h® — ah, Eq. 42 diX=2z:y—v, whence xz=a(y — v). Eq.26.
(19) b/2 : (h 4 2)/2 == (h —a) /2 i b/2, whence b® = h? __ 4 3 :1x=v:b—z whence vx = a(b — z). Eq. 27.
Eq. 52 Ji D) 2 iY—v=y:b— z whence v(y — v) — (b — z)z.
(20) b/2 : (h4 a)/2 =x :y, whence (h +a)x =by. Eq. 6. Eq. 28.
(21) (h—a)/2 :b/2=1x :y, whence bx — (h —a)y. Eq. 24, The symbol 24, see (21), means that equation 2 may be derived
(22) bf2 :a = (h —a)/2 : 2, whence bz — (h —a)a. Eq 72 from 4 different proportions. Similarly for 62, etc.

(23) b/2 : a = x : v, whence 2ax = by. Eq. 82

(24) (h—a)/2 : 2 =x :v, whence 2xz — (h—a)v. Eq. 92

(250 b= (h a)/2 : y — v, whence (h—a)x = bh(y
v). Eq. 102

Since a definite no. of sets of dependent equations, three equations
in each set, is derivable from a given continued proportion and since
these sets must be known and dealt with in establishing the no. of
possible proofs for h? — a2 + b?, it becomes necessary to determine -
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the no. of such sets. In any continued proportion the symbolization i, 7o lf), 10;1,6,6;2,7, 14; 2, 10, 17; 5, 7, 20; 5, 10, 23; 7,

10, 26; 6, 14, 20; 6, 17, 23; 14, 17, 26; 20, 23, 26; 1,3, 3; 1, 8, 8;

; 2 S b it i 1,11, 11; 3, 8, 15; 3, 11, 18; 6, 8, 21; 6, 11, 24; 8, 11, 27; 13, 15,

in which n signifies the no. of simple ratios in a member of the 21: 13, 18 24+ 15, 18, 27: 21, 24,27; 1. 4, 451, 9, 9: 1, 12, 12;

continued prop’'n. Hence for the above continued proportion there 4 ,; 1%_ _1_' l2’ 19’, 2 :;, 22', 2’ 12’ 25.19’ Ié 2’8',3 .!6| 2'2. 3‘ 19’

are derivable 75 such sets of dependent equations. They are: ] 2,5"16 19'23: 22’2-%' 2,8. i e e TR S B B e

(1), (2), 3); (4), (5), (6); (7), (8), (9); (10), (11), (12) 35 } Si,nce ,eq. ; is ;n identity and eq. 5 gives, at once, h? = a® - b?,

(13), (14), (15); (16), (17), (18); (19), (20), (21); (22}, there are remaining 26 equations involving the 4 unknowns x, y, z

(23), (24); (25), (26), (27); (28), (29), (30); (31)’ (32),° and v, and proofs may be possible from sets of equations involving x

(33); (34), (35), (36); (37), (38), (39); (40), (41), (42)§ and y, x and z, x and v, y and z, y and v, z and v, X, y and 2, X, ¥

(43), (44), (45) 5 (1), (#), (16); (1), (7), (19); (1) (10)y and v, x, zand v, v, z and v, and x, y, z and v.

(ﬁ); (314?, (1;)' (fg) : (?’ (7), (28) ;3(4)‘ (10), (31); (418 1st—Proofs From Sets Involving Two Unknowns

543;’; Em;: ((19))' ﬁZO;" ((lg,, ((272))’ 81;,, ((i?)’ ((212))' ((3143_))f a. The two unknowns, x and y, occur in the following five

(19), (22), (37); (I9): (25), (40’) : (Zé) (25') (43)' : (28)' quations, viz., 2, 3, 4, 6 and 13, from which but one set of tw;, viz.,
. ; ’ Al E 2 and 6, will give h? &+ a* = b?, and as eq. 2 may be derived from

8(1]%: ((::z:,)}: ((228)): Eg;’}’ ((147?));' ((g;‘)! (é??),(zm(:ﬂ()z,)’ Eﬁi: 4 different proportions a_nd equation 6 from 3 different proportions,

(23); (2), (14), (26): (5), (8), (29); (5), (11), (32); the no. of proof_s from this set are‘lz.

(5), (14), (35); (8), (1), (38); (8), (14), (41); (1), (14); [ S s of age e st

(44); (17), (20), (29); (17), (23), (32); (1), (26), (35)3 E 1 o Lodapes

(20, (23), (38); (20), (26), (41); (23), (26), (#4); (29), B Suifion fepsient o0 beond

(32), (38); (29), (35), (41); (32), (35), (#4); (38), (41), B 4510 giving § other proots;

(#4); (3), (6), (18); (3), (9), (21); (3), (12), (243 P 2 aonanci s o oy

(3}, (15); «(27); (6), (9); (30); (BY. A12), (33); ] 32,43, 6 giving 18 other proofs;

(o e oo o0 sy 003 (R 1 g6 e i

4 . . > 5 . ) y VIT .

E;?g: ((;f)),‘ ((3291)); E;?;: ((21;?: ((4-_;)): gig,' ((_7]'?)): ((_357))1 ((33%)) : Therefore there are 62 proofs from sets involving x and y.

(33), (39); (30), (36), (42) ; (33), 36), (45); (39), (42), (45). b. Similarly, from sets involving x and z there are 8 proofs, the
] equations for which are 4, 7, 11, and 20.

These 75 sets expressed in the symbolization of the 28 equations. c. Sets involving x and v give no additional proofs.
give but 49 sets as follows: d. Sets involving y and z give 2 proofs, but the equations were
1,1,1;2,3,4;2,5 6;7,8,9; 10, 11, 12; 6, 13, 3; 14, 15, 163 used in a and b, hence cannot be counted again, they are 7, 13 and 20.
17,18,.19;20, 21, 22; 23, 24, 25; 26, 27, 28; 1,2, 2; 1, 5,.5; 1} e. Sets involving y and v give no proofs.

[44] [45]

for the no. of such sets, three equations in each set, is n"'(n—z—}—l)_,
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, 4, 13, for which 6 other sets must be rejected ;
, 4, 6, for which 7 other sets must be rejected;
6
4

f. Sets involving z and v give same results as d. 2
3
4, 6, 13 for which 6 other sets must be rejected ;
3
4

Therefore the no. of proofs from sets involving two unknowns is
70, making, in all 72 proofs so far, since h* = a? —+ b® is obtained
directly from two different prop’s. 4, 13, for which 6 other sets must be rejected ;
4, 7, 11, for which 7 other sets must be rejected ; and
4, 11, 20, for which 7 other sets must be rejected ;

for all of which 117 sets must be rejected.

2nd.—Proofs From Sets Invelving Three Unknowns.

a. The three unknowns x, ¥ and z occur in the following 11
equations, viz,, 2, 3, 4, 6, 7, 11, 13, 14, 18, 20 and 24, and from |
these 11 equations sets of four can be selected in 11—1]0_498
= 330 ways, each of which will give one or more proofs for h* =
a® 4 b But as the 330 sets, of four equations each, include certain
sub-sets heretofore used, certain dependent sets of three equations each
found among those in the above 75 sets, and certain sets of four |
dependent equations, all these must be determined and rejected ; the
proofs from the remaining sets will be proofs additional to the 72.
already determined.

Similarly the dependent sets of three, which are 2, 3, 4; 3, 6, 13;
2,7,14;6,14,20; 3,11, 18; 6, 11, 24; and 13, 18, 24 ; cause a rejec-
tion of 6 4 6 4+ 6 + 6 + 8 4 7 - 8, or 47 more sets.

Also the dependent sets of four, and not already rejected, which
lare, 2, 4,11, 18; 3, 4, 7, 14; 3, 6, 18, 24; 3, 13, 14, 20; 3, 11,713,
24;6, 11, 13, 18; and 11, 14, 20, 24, cause a rejection of 7 more sets.
'The dependent sets of fours are discovered as follows: take any two
‘dependent sets of threes having a common term as 2, 3, 4, and 3, 11,
18; drop the common term 3, and write the set 2, 4, 11, 18; a little
study will disclose the 7 sets named, as well as other sets already
rejected; e. g., 2,4, 6, 13. Rejecting the 117 -} 49 4 7 = 171 sets
there remain 159 sets, each of which will give one or more proofs,
\determined as follows. Write down the 330 sets, a thing easily done,
strike out the 171 sets which must be rejected, and, taking the remain-
ing sets one by one, determine how many proofs each will give; e. z.,
take the set 2, 3, 7, 11; write it thus 2%, 3% 72, 112, the exponents
denoting the different proportions from which the respective equations
may be derived ; the product of the exponents, 4 X 3 K 2¥X2=48,
is the number of proofs possible for that set. The set 67, 112, 18%
20" gives 6 proofs, the set 141, 181, 201, 241 gives but 1 proof; etc.

The 159 sets, by investigation, give 1231 proofs.

Now, of 11 consecutive things arranged in sets of 4 each, any

10. 9. 8. 9.8
[3

one will occur in or 120 of the 330 sets, any #wo in -J_Z—' ;

or 36 of the 330, and any three in % or 8 of the 330 sets. Thert;;rc

any sub-set of two equations will be found in 36, and any of three
equations in 8, of the 330 sets.

But some one or more of the 8 may be some one or more of the
36 sets; hence a sub-set of two and a sub-set of three will not neces-
sarily cause a rejection of 36 -+ 8 = 44 of the 330 sets.

The sub-sets which gave the 70 proofs are:
2, 6, for which 36 sets must be rejected ;
7, 20, for which 35 sets must be rejected, since
7, 20, is found in one of the 36 sets above ;
2, 3, 13, for which 7 other sets must be rejected, since
2, 3, 13 is found in one of the 36 sets above ;

[46]

b. The three unknowns x, y and v occur in the following twelve
equations, —2, 3, 4, 6, 8, 10, 11, 13, 15, 17, 21 and 23, which give
495 different sets of 4 equations each, many of which must be rejected

[47]
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for same reasons as in a. Having established a method in a, we leave three triangles AHD, BEA, and BCE proportions (4) and (8)

details to the one interested. follow, and from the three triangles AHD, BHE and BCE propor-
c. Similarly for proofs from the eight equations containing x, z tions (10) and (37) give at once h* = a* + b2

and v, and the seven eq’s containing y, z and v. See Math. Mo., V. 111, p. 169-70.

3rd.—Proofs From Sets Involving The Four Unknowns x, y, z and v.. Nine

In fig. 9, produce AB to any pt.
D, from D draw a perp. DE to AH
produced, and from E drop the perp.
EC, thus forming the 4 similar rt.
tri's ABH, AED, ECD and ACE.

From the homologous sides of
these similar triangles the following
continued proportion results:

(AH=0D0) : (AE=b+4v) : (EC=w) : (AC=h -} x)
= (BH=24a) : (DE=y) : (CD=2) : (EC=w)
l:— (AB="h) : (AD=h+x+2) : (DE=y) : (AE =

b 4 v).

a. From this continued prop'n 18 simple proportions are possible,
giving, as in fig. 6, several thousand proofs.

b. See Math. Mo., V. 111, p. 171.

a. The four unknowns occur in 26 equations; hence there are
26,2528 .28.22_
(=57
Rejecting all sets containing sets heretofore used and also all remain-
ing sets of five dependent equations of which 2, 3, 9, 19, 28, is a
type, the remaining sets will give us many additional proofs, the deter-
mination of which involves a vast amount of time and labor if the
method given in the preceeding pages is followed. If there be a
shorter method, I am unable, as yet, to discover it; neither am I abl&

to find anything by any other investigator.

= 65780 different sets of 5 equations each.’

4th.—S8pecial Solutions.

a. By an inspection of the 45 simple proportions given above, it is
found that certain proportions are worthy of special consideration as
they give equations from which very simple solutions follow.

From proportions (7) and (19) h* = a® 4 b* follows immedi-
ately. Also from the pairs (4) and (18), and (10) and (37), solu-
tions are readily obtained. !

b. Hoffman’s solution.

Joh. Jos. Ign. Hoffman made a collection of over 30 proofs,
publishing the same in “Der Pythagoraische Lehrsatz,” 2nd edition
Mainz, 1821, of which the solution from (7) is one. He selects the’

Ten
a. In fig. 10 are three similar rt.
tri's, ABH, EAC and DEF, from which
the continued proportion

(HA=1b) : (AC=h + v) :

two triangles, (see fiz. 8), AHD and BCE, from which (DF = DC = x)
b:(h<a)/2=h—a :b/2 follows, giving at once h® = a? 4 b*, = (HB=.3a) : (CE=y) : (FE=
See Jury Whipper's 46 proofs, 1880, p. 40, fig. 41. z)

— (AB=h) : (AE=h-+|v-+}z):
(DE = y — x) follows giv-

[491

c. Similarly from the two triangles BCE and ECD b/2
(h+a)/2= (h —a)/2 :b/2, h* == a® + b%. Also from the

[48]
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ing 9 simple proportions from which many more proofs for h? = a? -
b? may be obtained.

b. See Math, Mo. V., 111, p. 171.

equations result. From these 12 equations several proofs for h? =
a? - b? are obtainable,

b. In fig. 9, when C falls on B it is obvious that the graph be-
come that of fig. 12, Therefore the solution of fig. 12, is only a
particular case of fig. 9; also note that several of the proofs of case
12 are identical with those of case 1, proof One.

Eleven

a. In fig. 11, four similar rt. triangles are
obvious; they are: ABH, ACD, CDE and
DAE, from which the continued proportion

(BH=a) : (CD=DH =v) : (EC =

y) : (DE =x)
= (HA=b) : (DA=b—v) : (DE =x) : (AE = 2)
= (AB=h) : (AC=z+4y) : (CD=1v) : (AD=0b —v)
follows; 18 simple proportions are possible from which many more
proofs for h* = a® |- b? result.

By an inspection of the 18 proportions it is evident that they
give no simple equations from which casy solutions follow, as was
found in the investigation of fig. 8, as in « under proof Eight.

See Math. Mo, V. I1I, p. 171.

c. The above is an original method of proof by the author of
this work.

T hirteen

In fig. 13, calling the vertex of the rt. angle
H, complete the parallelogram HE and draw
HF perp. to, and EF par. with' AB, respectively,
forming the six similar rt. tri’s, BHA, HCA,
BCH, AEB, DCB and DFE, from which 45
simple proportions are obtainable, resulting in
several thousand more possible proof for h? =
a® 4+ b% only one of which we mention,

a. (1) From tri’'s DBH and BHA,
DB : (BH =a) = (BH=a) : (HA=0D);.. DB = ih!—
and (2) HD : (AB=h) = (BH =a) : (HA=1});.". HD

Twelve

a. The construction of fig. 12 gives five
g similar rt. triangles, which are: ABH, AHD,
HBD, ACB and BCH, from which the con-
tinued prop’n i
(BH=a) : (HD =x) : (BD =1y) :
aﬂ
(CB :T) : (CH — -:l)

x) : (BA=h) : (HB = a)

= (AB=h) : (AH =b) : (HB = a) : (AC=b |} 2Y)
x
(BC = £
follows, giving 30 simple proportions from which only 12 different

[50]

(3) From tri's DFE and BHA,

DF : (EB — DB) = (BH —a) : (AB = h).

br DF {b? — 'f_a :h;.". DF = a(® = a%

(4) Tri. ABH = }/;,: par. HE — }/2 AB X HC = 5/5 ab

— ¥ [AB (£“5—CF)] =3 [AB (HDEDE)) — 3
ah b — a®
(@ 4 o X —ty)
[51]

1
oz
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a. From the two simple proportions
(1) a:y=h:aand
(2)b:h—y=h : b we get easily h* = a* - b2,

b. This solution is original with the author, but, like cases 11
and 12, it is subordinate to case 1.

c. As the number of ways in which three or more similar right
triangles may be constructed so as to contain related linear relations
with but few unknowns involved is unlimited, so the number of
possible proofs therefrom must be unlimited.

2%4_%"_53% S (5) % ab =_£h’_+72|;_’—_ai#, whence
(6) h* = a* 4 b2,

b. This particular proof was produced by Prof. D. A. Lehman,
Prof. of Math. at Baldwin University, Berea, O., Dec. 1899,

c. Also see Math. Mo., V. VII, No. 10, p. 228.

Fourteen

Construction. In the rt. tri.
ABC, take AD = AH = AC, and
draw HD and HC. 1

Proof. Tri's CAH and HAD
are isosceles. Angle CHD is a rt.
angle, since A is equidistant from C, D and H. ‘

Angle HDB = angle CHD -+ angle DCH.

== angle AHD -+ 2 angle CHA — angle CHB. ‘

" tri's HDB and CHB are similar, having angle DBH in
common and angle DHB = angle ACH,

-+ CB:BH=BH :DB. orh-b:a—a:h—}

Whence h? = a® 4 b2,

a. See Math. Teacher, Dec., 1925. Credited to Alvin Knoer,
a Milwaukee High School pupil,

Sixteen

The two following proofs, differing so much, in method, from
those preceding, are certainly worthy of a place among selected
proofs, :

1st—This proof rest on the axiom, “The
whole is equal to the sum of its parts.”
a. Let AB—=h, BH = a and HA = b,
in the rt. tri. ABH, and let HC, C being the pt.
where the perp. from H intersects the line AB,
be perp to AB. Suppose h* = a* |- b2 If h? — a? —+ b®, then
a*=x"+ y*and b2 ==x* 4 (h-—y)",orh’:x“—{—y’-ﬁ-xz-}—
(h —y?)

=y 42+ (h—y)?=y" 42 (h—y) + (h—y)? =
[y + (h—y)]2

Soh=y+4 (h—y),i e, AB=BC 4 CA, which is true

.". the supposition is true, or h? — a? -+ b2

b. This proof is one of Joh. Hoffmann’s 30 proofs. See Jury
Whipper, 1880, p. 38, fig. 37.

Fifteen

In fig. 15 the const’s is obvious giving four

similar right triangles ABH, AHE, HBE and
HCD, from which the continued proportion e
(BH=12) : (HE=x) : (BE=y) : (CD 4 410 K

=y/2) 2nd.—This proof is the “Reductio ad Absurdum” proof.
= (HA=b) : (EA=h—y) : (EH =x) : (DH =x/2) a h® <, = or > (a® 4 b%). Suppose it is less. Then, since
= (AB=h) : (AH =b) : (HB=a) : (HC = a/2) follows, b =[(h—y) +yP=[(h—7vy) +x*+ (h —y)]* and
‘giving 18 simple proportions, i b = [ax <= (h — y)1% then [(h — y) + x* +— (h — y]?

[52] [s531
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< [ax -+ (h —y)]* 4 2
Jo[x* 4 (h—1v¥)?)% < a® [x* 4 (h— ).
. a* > x* + (h — y)? which is absurd. For, if the supposition
be true, we must have a® < x* 4 (h — y)? as is easily shown.
Similarly, the supposition that h* > a* 4 b% will be prove
false. 1
Therefore it follows that h* = a* - b2 i
b. See Math. Mo., V. III, p. 170. !

B.—THE MEAN PROPORTIONAL PRINCIPLE

The mean proportional principle, leading to equivalency of areas
of triangles and parallelograms, is very prolific in proofs.

By rejecting all similar right triangles other than those obtained
by dropping a perpendicular from the vertex of the right angle to
the hypotenuse of a right triangle and omitting all equations result-
ing from the three similar right triangles thus formed, save only
equations (3), (5) and (7), as given in proof One, we will have
limited our field greatly. But in this limited field the proofs possible
are many, of which a few very interesting ones will now be given.

In every figure under B we will let h= the hypotenuse, a =

the shorter leg, and b = the longer leg of the given right triangle
ABC.

Seventeen

Join AC forming the tri. ABC.

One square constructed outwardly
on leg a. Through C, fig. 17, draw CD
par. to AB, meeting the perp. AD at D,
Join AC forming the tri. ABC.

Tri. ABC = ¥4 sq. BG = ¥ rect. BD.
.". BG = a* = rect. BD =sq, EF
rect. ED

[54]

b= a? b

ALGEBRAIC PROOFS

= sq. EF + (EA X EB = HE? =sq. EF -|- HE%
But tri’s HBE and ABH are similar.
., if in tri. HBE, HB?* — BE? - HE? then in its similar, the
tri. ABH, AB* — BH* 4 HA2

Coht=a® b2

a. See Scientific American Supplement, V. 70, p. 382, Dec. 10,
1910, fig. 7,—one of the proofs of Arthur E. Colburn, LL. M., of
Dist. of Columbia Bar.

Eighteen

Two squares constructed outwardly.
Draw HD perp. to AB, join A and C,
H and E, and complete the sq. BF.
Rect. BD = 2 tri. EBH = 2 tri. ABC
— sq. HC = sq. BF } (rect. FE =

GE X GB
—= AK KB — HK*) = sq. BF
ﬁw' ) =sq. BF + Pl

But tri's HBK and ABH are similar.
Then as in fig. 17, we have, at once,

a. See Sci. Am. Sup., V. 70, p. 359,
Dec. 3, 1910. Credited to A. E. Colburn.

[55]
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Nineteen ]
g Two squares, one on AH const'd
i 'y outwardly, the other on HB overlapping
Vi the given triangle. :
Take HD = HB and cons't rt. f
tri. CDG. Then tri's CDH and ABH
are equal. Draw GE par. to AB meet-
B ing GKA produced at E. !
\ “f,’ 7 Rect. GK = rect. GA + sq. HK —
B \/ (HA = HC) HG + sq. HK
= HD? 4 sq. HK

Now GC : DC = DC : (HC = GE)

-+ DC* = GC X GE = rect. GK = sq. HK - sq. DB — AB* §

Johr=a® b
a. See Sci. Am. Sup., V. 70, p. 382, Dec. 10, 1910. Credited
to A. E. Colburn.

Twenty i
Three squarcs,' two construct- I
ed outwardly and one overlapping. ,fﬁ\
Through G draw GD par. A
to BH meeting FE produced at D. -, %—}-’\:h A _\'\_:
Draw EG. i | s s A\
Tri. AGE is common to sq. BE <F ) ;‘,\ e : M
1

and rect. AD. \ b c
i AGE=¥% s BE=3 N\ fm g e
rect. AD NS 1920 B2 '

". sq. BE = rect. AD,
Rect. AD == sq. HF - (rect. HD = sq. HC, see fig. 19).
.. sq. BE = sq. HF - sq. HC or
B gtof b2
a. See Sci. Am. Sup., V. 70, p. 382, Dec. 10, 1910. Credited to
A. E. Colburn,

[56]
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Tuwenty-One
Three squares, two constructed out-
wardly, and the one AH overlapping. 4
Extend GB to D, draw DK par. to - // ]
HB and draw DE. JEoty §
Tri. AEF = tri. ABH, having AF — |
AH, and sides respectively 4 K
perp. to each other. [ / )B
Tri. DAE =% rect. AK=1%sq. AG. | N/ -~
PR IR S ,‘
(rect. HK = DK X DH s
—HAX HD=HB'=sa. .ly-“Figat ¢
HOY =sq/HF =g HC. 8 " se w5 o
h*=a*+4 b
a. See Am. Sci. Sup., V. 70, p. 383, Dec. 10, 1910. Credited
to A. E. Calburn.

Twenty-Two

Three squares all construct-
ed outwardly. /ﬁ\\
Extend CB to D, meeting i N
AH produced at D, and through - \ \?\
D draw ED par. to HB, making ¢ 2 \\ g N
DK = AH. Draw KL and «
produce FA to G. b
Tri. ALG = tri. DNK, and tri.
; LCN = tri. ABD
", rect. GD = sq. LB, having
polygon AGNB in com-
mon.
.. sq. AC = rect. AK = rect,
AE = sq. HF 4- rect.
HE = sq. HF + sq.

[57]
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HP, see fig. 20. .'. h* — a2 - b2
a. See Am. Sci. Sup., V. 70, p. 383, Dec. 10, 1910, Credited
to A. E. Colburn. ]

Twenty-Three

Two square, one on AH outward-
ly, and one, LE, with sides — AB,
transposed. ]

Draw through H, perp. to AB,
GH and produce it to meet MC pro-
duced at F. Take HK — GB, and
through K draw LN par. and equal to
AB. Complete the transposed sq. LE,
Sq. LE = rect. DN + rect, DL —

(DK X KN = LN X KN
= AB X AG = HB?) + (rect. LD — paral. AF = sq,
AC) for tri. FCH = tri. RMA and tri. CPR = tri, SLA.
.. sq. LE = HB? + sq. AC, or h? — 2 -+ b2
a. Original with the author of this work, Feb. 2, 1926,

Construct Twenty-Four
wi BHE = f@~~__
tri. BHC and /’ 7
tri. AHF = g_ 3ie s _..---ﬁ N
tri. AHC, and &7 OfE T
through  pts. X \ “Zr i
F, H, and E

draw the line ‘\’Qf

GHL, making FG and EL each — AB, and complete the rect’s FK
and ED, and draw the lines*HD and HK. |
Tri. HKA — 3£ AK X AF — % AB X AC — 1 AH:.
Tri. HBD = 14 BDXBE:%ABXBC:% HB=

Whence AB > AC — AH? and AB X BC = HB:.

[58]
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Adding, we get AB X AC 4 AB % BC — AB (AC 4 BC)
= AB’, or AB* = BH*  HA*
R T Y

a. Original with the author, discovered Jan. 31, 1926,

Twenty-Five

Construction. Draw HC, AE and BF :
each perp. to AB, making each equal to AB.
Draw EC and FCD. Tri’s ABH and HCD
are equal and similar, ll \ |
Figure FCEBHA = paral. CB - paral. CA lF ; | |
=CH X GB+ CH X GA = AB X GB | 131?) |

+ AB X AG = HB* 4+ HA* — | el B

1 |
AB(GB—]»AG):ABXAB&/ #-
= AB:. :

a. See Math. Teacher, V. XVI, 1915. Credited to Geo. G.
Evans, Charleston High School, Boston, Mass.

bR

Twenty-Six

One square constructed outwardly. s
Draw perp’s HC and AD, and take AD AN

= CB. G E\.

Paral BEFA = rect. AG = AB % BG o e

= AB X BC = BH2 "And AB X | D/
AC = AH® A ;

Adding, we have BH? - AH? — AR X BC 4 AB X AC
= AB (BC 4 AC) = AB:.
Thi=avy e

a. See Jury Whipper's Pythagoraische Lehrsatz, 1880, p. 39,
fig. 38. Credited to Oscar Werner, as recorded in “Archiv. d. Math.
und Phys.,” Grunert, 1855.

[59]
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Twenty-Seven

And since the algebraic is the measure or transliteration of the
geometric square the truth by any proof through the algebraic method
involves the truth of the geometric method.

Furthermore these proofs through the use of circle elements are
true, not because of straight-line properties of the circle, but because
of the law of similarity, as each proof may be reduced to the propor-
tionality of the homologous sides of similar triangles, the circle being
a factor only in this, that the homologous angles are measured by

equal arcs.

Construction,
Through B draw BD
= 2BH, and par. to
HA. From D draw
perp to AB, as DE.
Find mean prop’l be-
tween AB and AE
which is BF. From A,

on AH, lay off AT —
F Q?f Lgmff,l‘fg 3 (1) Titk Mirnon: sv Uricens
[ 'I.‘B.' forrr:ing the two Twenty-Eight
| ;‘;‘;’ e ;:E:»;Z: . H is any pt. on the semicircle BHA.

AT : AB = AE;

‘ the tri. ABH is a rt. triangle. Complete the :1_)_ i TE- -F}
' AT, or (b —a)* = h(h — EB), whence EB = h—(b—a)* ¥

sq. AF and draw the pert. EHC.
BH? == AB X BC (mean proportional ) *
AH? = AB X AC (mean proportional )
8q. AF = rect. BE 4 rect. AE = AB % BC
-+ AB X AC = BH® 4 AH:. A

b= a? + b

a. See Sci. Am. Sup., V. 70, p. 383, Dec. 10, 1910. Credited
to A. E. Colburn.

1 |
! i
! i
i

i |

(1). Also EB : AH — BD : AB, ..EB:iaL(z). Equalmg
h-—-(b—a]"‘

we have

~—, whence h? = a® 4 b2
a. Devised by the author Feb. 28, 1926.

b. Here we introduce the circle in finding mean prop’l.

C—THE CIRCLE IN CONNECTION WITH THE
RIGHT TRIANGLE

I—THroueH THE Usk oF ONE CIRCLE.

| From certain Linear Relations of the Chord, Secant and Tan-

| gent in conjunction with a right triangle, or with similar related
right triangles, it may also be proven that: The square of the hypo-
tenuse of a right triangle is equal to the sum of the squares of the
other two sides.

[60] . [61]
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Twenty-Nine

(ER = ED.
sq. HF.
. h*=a® 4 b2
a. See Sci. Am. Sup., V. 70, p. 359, Dec. 3, 1910, Credited to
A. E. Colburn. 1

.. EG = AB.

[62]

Take ER = ED and

Bisect HE. With Q as
center describe semi-circle

AGR. Complete sq. EP.

Rect. HD — HC X HE

=HAX HE =

HB? — sq. HF.
EG is a mean proportional

between EA and

(ER = ED).

. sq. EP = rect. AD =
sq. AC + sq.

HF.

But AB is a mean prop’l

between EA and

". s5q. BL = sq. AC +-

ALGEBRAIC PROOFS

Thirty

In any circle upon any dia-
meter, EC in fig. 30, take any dis-
tance from the center less than the
radius, as BH. At H draw a
choral AD perp. to the diameter,
and join AB forming the rt. tri.
ABH.

a. Now HA % HD = HC X
HE, or b* = (h 4 a)
(h — a)

e

b. By joining A and C, and E and
D, two similar rt. tri's are formed, giving HC : HA —
HD : HE, or, again, b* = (h + a) (h — a).

. ht=a* - b%

But by joining C and D, the tri. DHC = tri. AHC, and since
the tri. DEC is a particular case of One, fig. 1, as is obvious, the above
proof is subordinate to, being but a particular case of the proof of
One.

c. See Edwards’ Geometry, p. 156, fig. 9, and Journal of Edu-
cation, 1887, V. XXV, p. 404, fig. VIL
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Thirty-Three

The construction is obvious. From the
similar triangles HDA and HBC, we have
HD : HB = AD : CB, or HD X CB =
HB X AD (1).

In like manner, from the similar triangles
DHB and AHC, HD X AC = AH X DB
(2). Adding (1) and (2), HD X AB =
HB > AD + AH X DB (3).

b =aZ b2

a. See Halsted's Elementary Geom. for Eq. (3), p. 202. See

Edwards’ Geom.,, p. 158, fig. 17, and Math. Mo., V. IV, p. 1.
Thirty-Four

In fig. 34, on any diameter construct
any rt. tri. as ABH, and produce the sides
to chords. Draw ED. Then in the similar
rt. tri. ABH and AED.

AB : AE=AH : AD,orh : b 4+ HE
—b :h 4 BD,

. h(h 4 BD) =b(b+ HE) =b* 4
bHE = b* 4 HF > HC = b*
+ HC? (1).

Now conceive AD to revolve on A as a center until D coincides with
C, when AB = AD = AC = h, BD = 0, and HB =
HC = a. Substituting in (1) we have h? = a? + b2

a. This is the solution of G. I. Hopkins of Manchester, N, H.
See his Plane Geom., p. 92, art. 427, and Jour. of Ed., 1888, V.
XXVII, p. 327, 16th prob. Also Heath’s Math. Monographs, No.
2, p. 28, proof XV,

b. Special case. When FC is a diameter we get (1) BC =
(b 4 a) (b — a)/h, and (2) BC = 2b?/h — h.

Equating, .". h* = a® + b2

c. See Math, Mo., V. IIL, p. 300.
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T hirty-One
The construction is -easily
perceived. |
a. Since CD is a mean prop’ .
between AD and DE, we have
directly, as CD = AH, b* =
(h —a) (h+a) =h*— a2
o h? =a® 4+ b2
b. By analysis and compari-
son it is obvious, by substituting.
for ABH its equal tri. CBD, that
this solution is subordinate to
that under 30.
; i c. See Journal of Education,’
1888, V. XXVII, p. 327, 21st proof, or Heath’s Math. Mono-
graph, No. 2, p. 30, 17th of the 26 proofs there given.
T hirty-Two

In any circle draw any chord
as AC perp. to aﬁy diameter as
BD, and join A and B, B and
C, and C and D, forming the
three similar rt. tri's ABH, CBH

and DBC.
a. Whence AB : DB = BH
: BC, giving AB < BC = DB
% BH = (DH + HB) BH =
DH » BH 4 BH* = AH X
HC 4 BH?; or h® = a® + b*%
b. Fig. 32 is closely related

to fig. 30.
c. For solutions see Edwards’ Geom. p. 156, fig. 10, Journal of
Education, 1887, V. XXVI, p. 21, fig. 14, Heath’s Math. Mono-~
graphs, No. 1, p. 26, and Math. Mo., V. 111, p. 300, solution XXI.
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(2) Tue MEeTHOD BY SECANTS.
T hirty-Five

The construction of Fig. 35, has the ver-
tex of the rt, angle of the given rt. tri. at the
center of the circle whose radius is the shortei
leg. _.
/ The secants and their external segments
bring reciprocally proportional, (see any plans
geometry), letting F be the pt. where the
circle intersects the line AB, we have, AD :
AB=AF : AE,orb 42 :h= (h—2CB—=h— 2_;12_) b
a, whence h? = a* - b2,

a. In case b = a, the points A, E and F coincide and the proof
still holds; for substituting b for a the above prop’n reduces to h? —
2a® = 0; .". h? = 2a® as it should.

b. By joining E and B, and F and D, the similar triangles upon
which the above rests are formed. 3

T g

Thirty-Six

In fig. 36 E the middle pt. of AB will

fall between A and F, at F, or between F
and B, as HB is less than, equal to, or greater
than HE. Hence there are three cases; but
investigation of one case—when E falls be-
tween I and B—is sufficient. Join L an Bj
and F and C, making the two similar triangles
AFC and ALB, whence h : b+ a=b—a:
AF; - aF =P'=2 (), ‘

]om F and G, and B and D making the two similar tri’s FGE
and BDE, whence }4h : a — ¥5h = a 4 ¥h : FE, whence FE =

[66]

ALGEBRAIC PROOFS

% . (2). Adding (1) and (2) gives y4h — 2"+ b — J6h?

h
whence h? = a® 4+ b%

a. The above solution is given by Krueger, in *“Aumerkungen
uber Hrn. geh. R. Wolf’s Auszug aus der Geometrie,” 1746. Also
see Jury Whipper, p. 41, fig. 42, and Math. Mo., V. IV, p. 11.

b. When G falls midway between F and B, then fig. 36 becomes
fig. 35. Therefore cases 35 and 36 closely related.

Thirty-Seven

In fig. 37a, take HF = HB. With
B as center, and BF as radius describe
semicircle DEG, G being the pt. where
the circle intersects AB. Produce AB to
D, and draw FG, FB, BE to AH pro-
duced, and DE, forming the similar tri's
AGF and AED, from which (AG = x)
: (AF — y) = (AE = y + 2FH) : "}"“WJE
(AD=x+42BG) =y + 2z : x4 2r
whence x2 4 2rx = y* 4 2yz (1).

But if, see fig. 37b, HA = HB, (sq. GE = h*) = (sq. HB
= a?) 4+ (4 tri. AHG = sq. HA = b*), whence h* = a* 4 b*;
then, (see fig. 37a) when BF = BG, we will have BG* = HB? -
HF?, or r* = z* + 7%, (since z = FH). (2).
(1) + (2)=(3) x* + 2rx 4 r* =y* 4 2yz + 2* + 2*
or () (x+ )= (v+2z)*+ 2
. (5) h*=a%*} b%sincex +r=AB=h,y 4 z=AH =b,
and z = HB = a

a. See Jury Whipper, p. 36, where Whipper also credits it to
Joh. Hoffmann. See also Whipper, p. 37, fig. 34, for another state-
ment of same proof.

Gr-w:"'r

a]r\
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Thirty-Eight (2) + (3) = (4) HB* + HA*=2AD~. But as in proof, fig. 37b,

In fig. 38, in the m'rcIe; we found, (eq. 2), r? = 22 2P =222
i : .. 2AD?, (in fig. 38) = AB2.
whose center is O, and whose B —at 4 b
cgac:)ne;:;rl::]‘;;Bt,h:rzg dEEzi:?:rzfﬂ : a. See Jury Whipper, p. 44, fig. 43, and there credited to Joh.
he ;.rc BHA join D to A a8 d Hoffmann, one of his 30 solutions.
N B, produce DA to F, making

AF = AH, and produce HB Thirty-Nine
to G making BG = BD, thus’
forming the two isosceles tri's FHA and DGB; also the two isosceles
tri's ARD and BHS. As angle DAH — 2 angle at F, and angle
HBD = 2 angle at G, and as angle DAH and angle HBD are
measured by same arc HD, then angle at F — angle at G. .". arc
AP = arc QB.

And as angles ADR and BHS have same measure, 4 of arc.
APQ, and ¥ of arc BQP, respectively, then tri’s ARD and BHS
are similar, R is the intersection of AH and DG, and S the inter-
section of BD and HF. Now since tri’s FSD and GHR are similar,
being equiangular, we have, DS : DF — HR : HG. .. DS : (DA

In fig. 39, let BCA be any triéng'le, and let AD, BE and CF
+ AF) = HR : (HB 4 BG),

‘ be the three perpendiculars from the three verticles, A, Band C, to
.. DS : (DA 4 AH) = HR : (HB -+ BD), the three sides, BC, CA and AB, respectively. Upon AB, BC and
-. DS : (2BR + RH) = HR : (2B§ + 8D) ; CA as diameters describe circumferences, and since the angles ADC,
.. (1) DS® 4 2DS ¢ BS = HR? + 2HR X BR. 3 BEC and CFA are rt. angles, the circumferences pass through the
And (2) HA* = (HR 4 RA)? — HR® -+ 2HR X RA + RA? points D and E, F and E, and F and D, respectively.

= HR* 4 2HR X RA 4 AD?
(3) HB* = BS*= (BD — DS)? = BD* — 2BD X DS + DS?
= AD? — (2BD X DS — D§?)
= AD* — 2 (BS + SD) DS 4 Ds?
= AD* — 2BS X SD — 2D5? + DS
= AD* — 2BS X DS — D§* = AD* — (2BS X DS
— Ds?)

Since BC > BD = BA X BF, CB % CD = CA > CE, and
AB X AF = AC X AE, therefore
[BC X BD 4 CB X CD = BC (BD + CD) = BC?]
= [BA X BF 4+ CA X CE = BA’iABXAF—I—CA'*i-'AC
> AE=AB* 4 AC* 4 2AB X AF (or 2AC X AE)].
When the angle A is acute (see fig. a) or obtuse (see fig. b) the sign
is — or - respectively.
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And as angle A approaches 90°, AF and AE approach 0, and at 902
they become 0, and we have BC? — AB? - AC?

". when A = a rt. angle h* = a® -} b=
a. See Olney's Elements of Geometry, University Edition, Pa :

II1, p. 252, art. 671, and Heath's Math. Monographs, No. 2, p. 33,
proof XXIV. f

Forty

In fig. 40 produce KC
and HA to M, complete the
rect. MB, draw BF par. to
AM, and draw CN and AP

% ’/' ‘perp to HM. Draw the
| semicircle ANC on the dia-
,"P | meter AC. Let MN — x..

iy \ f“lf | Since the area of the paral.;
m’_ Elg_qgs_lg _____ _KJ MFBA = the area of the
3 sq AK, and since, by the

Theorem for the measurement of a parallelogram, (see fig. 204a), we
have (1) Ag AE = (BF X AP = AM X AP) = a(a + x).
But, in tri. MCA, CN is a mean proportional between AN and NM.

S 2) b=l
() —(2)=GB) ¥ —b*=a* 4 ax — ax = a°,
Johe=at 1 br

a. This proof is No. 99 of A. R. Colburn’s 108 solutions, being:
devised Nov. 1, 1922,

_ (3) Tue MerHop BY TANGENTS.

1st—The Hypotenuse As A Tangent.
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ALGEBRAIC PROOFS

Forty-One

The construction of fig. 41 is evident, and
side b may be >, =, or < a.
From the similar triangles ACG and AEC, F
we have, 1
AC : AE = AG : AC, or AC :b + r =
b—r : AC;
S0 AGE = b R
From the similar tri's CBD and BFC, we get
(2) CB? = a* — 12,
From the similar rt. tri’s BCH and HCA, we get
(3) BEC ¢ AC =1°
2. (4) 2BC X AC=2r% (1) 4 (2) + (4) gives
(5) AC* 4 2AC X BC + BC? == a* 4 b* = (AC + BC)* =
AB?

S MR

a: See Math. Mo, V, 111, p. 300.

Forty-Two
Having constructed fig. 42, from the simi-
lar tri's ACD and AHC, we get, calling OC =
n (AC=h—a) : (AH=0b) = (AD=1b
—2r) : (AC=h—a)
.o (1) (h—a)?=b®*— 2br. But
(2) a®*=2a%
(1) + (2) = (3) (h—a)? 4+ a*=2a%+ b*— 2br, or (h —a)?
+ 2br 4 a® =a* + b*
Also (AC=h —a) : (AH=0b) = (OC=0H =1) : (HB
= a), whence
(4) (h —a) a =br.
o (5) (h—a)? 4+ 2(h — a)r  a? = a% 4 b?
o (6) h® = a% | b2

il
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p
or, in (3) above, expand and factor gives "
(7) h* — 2a(h — a) = a® 4+ b®* — 2br. Sub. for a(h — a) its’
equal, see (4) above, and collect, we have g
(8) h* = a* 4 b%
a. See Math. Mo. V. 1V, p. 81.

2nd—The Hypotenuse 4 Secant Which Passes Through
the Center of the Circle and One or Both Legs Tangents.

Forty-Three

The construction is evident, having BH,
the shorter leg a tangent. From the similar tri's
%, BCE and BDC, we get, BC : BD = BE : BC,
whence BC?* = BD X BE = (BO -4 OD)BE
= (BO + OC)BE. (1)

From similar tri's OBC and ABH, we get

OB : AB = OC : AH, whence OB/h = r/b; .". BO — “Tf
(2)

BC : BH = OC : AH, whence BC — %(3)

Substituting (2) and (3) in (1), gives,

2 .2

oy = (,13514_ r)BE = (-hf-rfbu) (BO — OC) =
( hr-tl’-br ) ( hl’—lg-hf ) (4)

whence h* = a% 4 b2,

Special cases of no. 43 often met with are:
(a) When, in fig. 43, O coincides with A.
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ALGEBRAIC PROOFS

Forty-Four

From the similar triangles
BHC and BDH, we get, h— b :
a=a :h -+ b, whence directly
h? = a? 4 b2,

a. This case is found in:
Heath’s Math, Monographs, No.
p. 22, proof VII, Hopkins' Plane
Geom. p. 92, fig. IX, Journal of
Education, 1887, V. XXVI, p. 21,
fig. VIII, Math. Mo., V. III, p.
229, Jury Whipper, 1880, p. 39, fig. 39, where he says it is found in
Hubert's Elements of Algebra, Wurceb, 1792, also in Whipper, p. 40,
fig. 40, as one of Joh. Hoffmann’s 30 proofs. Also by Richardson
in Runkle’s Mathematical (Journal) Monthly, No. 11, 1859. Many
persons, independent of above sources, have found this*proof.

(b) When O, fig. 44, is the middle point of AB.

Forty-Five

In this case let HB < HA, and employ tan-
gent HC and secant HE, whence
HC?= HE X HD = AD X AE = AG X AF
— BF X BG = BC% Now employing like argu-
ment as in case 43 above, we get h* = a* - b2,

(c) When O is the middle point of AR, and
HB = HA, HB and HA are tangents, and AG
—BF, secants. Argument same as (b), by applying theory of limits.

(d) When O is any pt. in AB, and the two legs are tangents.
This is only another form of No. 43 above, the general case. Buit
as the general case gives, see proof, case above, h?* = a* - b?, therefore
the special must be true, whence in this case (¢) h® =a® 4 b2 Or
if a proof by explicit argument is desired, proceed as in case 43.
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Forty-Six

By proving the general case, as in fig, 43, and
then showing that some case is only a particular
: of the general, and therefore true immediately, is
8 here contrasted with the following long and com-
plex solution of this (d) particular case. 1 now
give the solution found in The Am. Math. Mo., |
V. 1V, p. 80. ¢

“Draw OD perp. to AB. Then, AT? = AE X AF = AO* — EO?

= AO* — TH? (1)

BP? = BF ¥ BE = BO* — FO? = BO* — HP* (2)
V Now, AO : OT = AD :0D;
*. A0 X OD = OT X AD,

And, since OD =: OB, OT = TH = HP, and AD = AT + TD
— AT-- BP.

.. AT X FH 4 HP X BP = AO X OB (3)

Adding (1), (2), and 2 X (3),

AT? |- BP? 4 2AT X TH 4 2HP X BP = AO* —
BO? — HP* | 2A0 X OB;

'.AT’—|—2ATXTH—{-—FH’-{-BP’-FZBPXHP—}-HP’:'
AO* 4 2A0 X OB + BO=

.. (AT 4+ TH)?+ (BP 4 CP)* = (AO + OB)=

.. AH? 4+ BH? = AB%” Q. E.D.

. ht=a® 4 b2

TH® 4+

3rd—The Hypotenuse 4 Secant Not Passing Through the
Center of the Circle, and Both Legs Tangents.
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Forty-Seven
Through B draw BC parallel to HA,
making BC = 2BH ; with O, the middle point
of BC, as center, describe a circumference, , D
tangent at B and E, (In the fig., the D on AH
should be E.) and draw CD, forming the
two similar rt. tri's ABH and BDC, whence
D:(AH=») = (BC=2a) : (AB=h)
from which; DB =222 2;"’ 1))

Now, by the principal of tang and sec relations,
(AE? = [b — a]?) = (AB=h) (AD =h — DB), whence
DB =h— ’_(b—hﬂ)’ )

Equating (1) and (2) gives h* = a* 4 b%

a. If the legs HB -~ HA are equal, by theory of limits same
result obtains.

b. Math. Mo., V. IV, p. 81, No. XXXII.

¢. See twenty-seventh proof above, and observe that this forty-
seventh proof is superior to it.

4th—Hypotenuse and Both Legs Tangents.
Forty-Eight

The construction, fig. 48, has the three sides
of the rt. tri. ABH all tangents. Denote AB by
h, BH by a and HA by b; also OD by r.
Now, (1) h+2r—a+b.
(2) he + 4hr 4 41t = a* + 2ab 4 b,
(3) Now if 4hr + 4r* = 2ab, then h* = a* -+ b
(4) Suppose 4hr -+ 4r2 = 2ab.
(5) 4r(h 4 r) = 2ab; .". 2r(h + r) = ab.
(1) =(6) 2r=a+4b—h (6) in (5) gives
(7) (a+b—h) (h+r)=ab.
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(8) h(a<+b—h —1) - ar ~+ br = ah. 1 c. See Olney’s Elements of Geometry, University Edition, p.
D= r=(+4+b—h— r). (9) in (8) gives ] 312, art. 971, or Schuyler’s Elements of Geometry, p. 353, exercise 4.
(10) br 4 ar 4 br = ab, 1 Also Math. Mo., V. IV, p, 12, proof XXVI.

(11) But hr + ar 4 br — 2 area tri. ABC Remark—By ingenious devices, some if not all, of these in which
(12) And ab = 2 area tri, ABC ) the circle has been employed can be proved without the use of the
-+ (13) hr 4 ar 4 br — ab circle—not nearly so easily perhaps, but proved. The figure, with-

. (14) 4hr 4 412 — 2hc out the circle, would suggest the device to be employed. By so doing

.". the supposition in (4) is true. : new proofs may be discovered.

* s L 2 e

) h_ Tl ,+ b IL—THuroueH tHE UsE oF Two CIRCLES.
a. This solution was devised by the author Dec. 13, 1901, before Forty-Ni

I received Vol. VIII, 1901, p. 258, Am. Math. Mo., where a like orRy Iy sne

solution is given. . Construction. Upon the legs of the rt.

tri. ABH, as diameters construct circles and

draw HC, forming three similar rt. tri. ABH,

b. By drawing a line OC, in fig. 48, we have the geom. fig. from
which, May, 1891, Dr. L. A. Bauer, of Carnegie Institute, Wash.,

D. C., deduced a proof through the equations HEC a1.1d HAhC'_ T S i
(1) Area of tri. ABH = %r(h + a + b), and Thes “"bfe(tl) RN il i
(2) HD + HE=a+b—h. See pamphlet: On Rational A ; e
Right-Angled Triangles, Aug., 1912, by Artemus Martin for the Allso s g;t]i_' a;:{f_c, : ':,Bcgaﬂ (2)
Bauer proof. In same pamphlet is still another proof attributed to W kdE =i =

Lucius Brown of Hudson, Mass a. See Edwards’ Elements of Geom,, p. 161, fig. (34) and Math.

b. For this same fig. 48 there is another proof known as the | Mo., V. 1V, p. 1L.
*“Harmonic Proportion Proof.” i Fifty
From the similar tri's AHF and ADH, 1 With the legs of the
AH : AD = AF : AH, or AC : AD — AF : AE [ rt. tri. ABH as radii (fig.
whence AC ++ AD : AF 4+ AE — AD : AE : 50) describe circumfer-
or CD : CF = AD : AE, 4 ences, and extend AB to
and AC — AD = AF — AE — AD - AE, i C and F. Draw HC,
or DE : EF = AD : AE, HD, HE and HF. From
.. CD : CF = DC : EF. ' _ the similar tri’s AHF and
ar(h—}-b«—a):(h+b+a)=(a-h+b]:(a+h+b) FrHDH,

-". by expanding and collecting, we get AF : AH = AH : AD

h? = a? | b2 .. b? = AF X AD (1)
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From the similar tri's CHB and HER,
CB : HB = HB : BE .". a® = CB X BE (2)
(1) 4 (2) = (3) a* + b* = CB X BE + AF X AD
= (h+b) (h —b) 4 (h 4 a) (h— a)
= h? — b* 4 h* — a?;
or (4) 2h2 =2a% - 2b% .". h® —=a? 4+ b2 ]
a. Math. Mo., V. IV, p. 12, and also on p. 12 is a proof hy

; B = and z respectively.
Richardson. But it is much more difficult than the above method.

Tihen =iy s xo= h?s g% =ih®
i But it is obvious that z = x -} y
D.—RATIO OF AREAS Sohr=at 4+ b
As in the three preceeding divisions, so here in D we must rest )

our proofs on similar rt. triangles. :

Fifty-One v ”\\
In the figure, draw HC perp. to AB, form- <G/ \-\ /’é\
- ing the three similar triangles, ABH, AHC and \c H, "
HBC, and let AB = h, BH = a, HB = b, CA N s
b OB — . i G ' N o
- AAy Since similar surfaces are proportional to the °

squares of their homologous dimensions, therefore, : : F 1 553 |
% (x + )7 -+ Yoyz = b + ] = [Yhyz + oxs = a + b7] | e
=M (x+y)z =+ Yyz = (& + b?) '] : gl
S h? -2t = (a® 4 b?) =+ a? | | |
o hP=a? bR LT S

a. See Jury Whipper, 1880, p. 38, fig. 36 as found in Elements
of Geometry of Bezout; 1

Also Heath’s Math. Monographs, No. 2, p. 29, proof XVI;
Journal of Education, 1888, V. XXVII, p. 327, 19th proof, where
it is credited to L. J. Bullard, of Manchester, N. H. i

.".sq. AK =sq. BE 4 sq. HG .".
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Fifty-Two

In fig. 52 draw AG and BG par. res-
pectively to BH and AH, and through H draw
FE par. to AB, and complete the rect. on AB,
thus forming the similar tri’s BHE, HAF and
BAG. Denote the areas of these tri’s by x, v A

a. Original with the author, March 26, 1926, 10 p. m.
Fifty-Three

The construction of fig. 53 is
evident,  Since the triangles
ABH, AHL, and HBL are simi-
lar, so also the squares AK, BE
and HG, and since similar poly-
gons are to each other as the
squares of their homologous di-
mensions, we have

tri, ABH : tri. HBL : tri. AHL

vi=h? gt ht
= sq. AK : sq. BE :
sq. HG.
But tri. ABH = tri. HBL 4
tri. AHL.
h? = a? 4 b2

a. Devised by the author, July 1, 1901.

b. Another solution by the author is:
Scwe, by equation (5), see fig. 1, proof One, BH* = BA X BL =
w, LK, and in like manner, AH? = AB » AL = rect. AF,
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.". sq. BK = rect. LK 4 rect. AF = sq. BE -}- sq. HG,
ht=a® L b

c. This principle of “mean proportional” can be made use of in
many of the here-in-after figures among the Geometric Proofs, thus

giving variations as to the proof of said figures. Also many other
figures may be constructed based upon the use of the “mean propor-

tional” relation ; hence all such proofs, since they result from an alge-

braic relationship of corresponding lines of similar triangles, must
be classed as algebraic proofs.

[ E—ALGEBRAIC PROOF, THROUGH THEORY OF

LIMITS.
| Fifty-Four
‘ i /'\\ A The Pythagorean Theorem, in
i JEiy By P | sy its simplest form is that in which _
(ﬁ, 1 4 \\”/ 3 : Y \d the two legs are equal, Socrates
% 1 Il | ;7 (b. 500 B. C.), by drawing replies
| ) I 47 from a slave, using his staff as a
3 ! pointer and a figure on the pave-
| A{ Nl ’l ment (.sec fig. 54a) as a model,
| IseA v made him (the slave) see that the
i J—] 9\ 3 I equal triangles in the squares on
1 / 78 HB and HA were just as many
EI 7 th 54%.\ I as like equal tri's in the sq. on AB,

as is evident by inspection. (See
Plato’s Dialogues, Meno. Vol. I, pp. 256-260, Edition of 1883, Jow-
ett’s translation, Chas. Scribner and Sons).

[8o]

ALGEBRAIC PROOFS

Starting with fiz. 54a, and A
~

decreasing the length of AH, /7 S~
which necessarily increases the . ‘67
1 i ] o / \
iength of HB, since AB remains /I v \‘ J
constant, we decrease the sq. HD ‘b \‘ f ,’
and increase the sq. HC (see fig. <‘, Y

equal the constant sq. AF.
We have,(f:g). 54a, h* = a? 4 b? Ek_ F135)?"‘ E

But let side AH, fig. 54a, be diminished as by x, thus giving AH,
fig. 54b, or better, FD, fig 54c, and let DK be increased by y, as
determined by the hypotenuse h re-

34b). >
Now we are to prove that Al Nf gl 1
the sum of the two variable P 57 :
squares, sq. HD and sq. HC will : Y & ) |
h |
|

i kL C
maining constant, D AT A A
Now, fig. 54¢c, when a = b, A A
a* -+ b? = 2 area of sq. DP, ; {/ :'}": :
And when a < b, we have s I\E’kg’h
(a — x)? = area of sq. DN, and A P
(b 4 y)? = area of sq. DR. Fd,i___. _'N-z"P]
Also ¢ — (b4 y)? = (a — x)* Ele— xa-1 Lx“lilg

— arca of MABCLR, or M- - =4 - —-U
T e e S AT

Is this true? Suppose it is; then,’
after reducing (2) — (1) = (3) DA=AB=c¢c
— 2ax + x* -+ 2by 4+ ¥* DE =DK=a=b

—i'0 DF=a—x
or (4) 2ax — x* = 2by - y?, which DL=b-+y
shows that the area by which (a* = FE—= HK =x

sq, DP) is diminished = the area by KL =EM =y
which b? is increased. See graph 54c. = EK=FL=h
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.". the increase always equals the decrease.

But 2 — 2x(a — x) — x* = (a — x)* approaches 0 when x_

approaches a in value.
2 (5) (a— x)* = 0, when x = a, which is true

and (b)b® -} 2by - y? — (b + ¥)? = ¢* when x = a, for when

x becomes a, (b 4 y) becomes c, and so, we have ¢ = ¢ which is

true.

". equation (2) is true; it rests on the eq’s (5) and (6), both of

which are true.
" whether a < = or > b, h* = a2 -+ b2,

a. Devised by the author, in Dec. 1925. Also a like proof to

the above is that of A. R. Colburn, devised Oct. 18, 1922, and is |

No. 96 in his collection of 108 proofs.

F.—ALGEBRAIC-GEOMETRIC PROOFS.

In determining the equivalency of areas these proofs are alge-
braic; but in the final comparison of areas they are geometric.

Fifty-Five
The construction, see fig. 55,
being made, we have sq. FE =

(a 4 b)=

ABH
=h 4 4“2";= h* -+ 2ab,
Equating, we have
h? 4 2ab = (a 4+ b)2 = a2 4
2ab - b?
oth¥i=a* L B2,
a. See Sci. Am. Sup, V. 70,

A. R. Colburn, Washington, D. C,
[82]

But sq. FE = sq. AC 4+ 4 tri. 8

p. 382, Dec. 10, 1910, credited to

ALGEBRAIC PROOFS
Fifty-Six

With A as center and
AH as radius describe arc HE:
with B as center and BH as
center describe arc HD; with
B as center describe arc EN;
with A as center describe arc
GD. Draw the parallel lines
as indicated. By inspecting
the figure it becomes evident
that if y* = 2xz, then the

theorem holds. Now, since L Ch I:Z |
AH is a tangent and AR is a téj 17{11_{11[(

chord of same circle,
AH?2 = AR X} AD, or (x 4+ y)* =x(2y + 22) =x* -+ 2xy |
2xz.
Whence y? = 2xz.
o8 AK = [(x? 4 y* + 2xy) =sq. AL] 4 [(2* + 2yz + (2x=z
=y2)] =sq, HE.
Joh? = a® 4 ba
a. See Sci. Am. Supt,, V. 84, p. 362, Dec. 8, 1917, and credited
to A. R. Colburn., It is No. 79 in his (then) 91 proofs.
b. This proof is a fine illustration of the flexibility of geometry.
Its value lies, not in a repeated proof of the many times established
fact,' but in the effective marshaling and use of the elements of a proof,
and even more also in the better insight which it gives us to the inter-
dependence of the various theorems of geometry.
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Fifty-Seven

Draw the bisectors of angles
A, B and H, and from their com-
mon point C draw the perp’s CR,
CX and CT; take AL = AU —
AP, and BZ = BP, and draw
lines UV par. to AH, LM par..
to AB and KY par. to BH. Let®
A] = AP =x, BZ = BP =y,
and HZ =H] =z =CJ] =
CP = CZ
Now 2 tri. ABH = HB X HA
= (x+2) (y + 2)}
=xy+xz+yz 4 2°
= rect. PM | rect. HW -+ rect. HQ 4 sq. KX,
But 2 tri. ABH = 2AP X CP - 2BP X CP + (2 sq. HC —
2PC?) )
= 2xz + 2yz 4 22°
= 2 rect. HW + 2 rect. HQ 4 2 sq. KX.
". rect. PM == rect, HW - rect. HQ - sq. KX. ]
Now sq. AS = (sq. AO = sq. AW) -+ (sq. OS = sq. BQ) -
(2 rect. PM = rect. HW - 2 rect. HQ + 2 sq. HK)
=sq. HG 4 sq. HD. .. h* =a? - b%,
a. This proof is due to Mr. F. S. Smedley, a photographer, of
Berea, O., June 10, 1901.
Also see Jury Whipper, 1880, p. 34, fig. 31, credited to E. Moll-
mann, as given in “Archives d. Mathematik, u. Ph. Grunert " 1851,
for fundamentally the same proof.

[84]

ALGEBRAIC PROOFS

Fifty-Eight
In fig. 58 take AN and AQ = AH, and
KM and KR = BH, and through N and R, k

and Q and M, draw NS and RO par. to KB,
and QL par. to KB, and QL and MP par.
to AB. Then it follows that '

CR = i 08-L 50 &, oR o e
LN T T LY ;F 45¢ | |
Now sq. AK = CK? = C§? 4 RK? — RS? 'Q—JJ{_T{-L‘
4+ 2CR X SK, or i€ _R_SLK
h=b*+ a* — (a4 b— h)? - 2(h — a)
(h — b)
=b* 4 a* —a? — b* — h* — 2ab + 2ah - 2bh - Zh* — 2ah —

2bh - 2ab = h2
. 2CR X SK = R&? or
2(h—a) (h—b)= (a4 b—h)?or
2h* + 2ab — 2ah — 2bh = a? ++ b? + h® 4 2ab — 2ah — 2bh.
. h?=a? | b2
". sq. upon AB = sq. upon BH - eq. upon AH.
a. Original with author Apr, 23, 1926, 2 p. m.

II.—GEOMETRIC PROOFS.

All geometric proofs must result from the comparison of areas—
the foundation of which is superposition.

As the possible number of algebraic proofs has been shown to be
limitless, so it will be conclusively shown that the possible number of
geometric proofs through dissection and comparison of congruent or
equivalent areas is also “absolutely unlimited.”

The geometric proofs are classified under ten type-forms, as de-
termined by the figure, and only a limited number under each type
will be given, among them being the more important, the better
known and the recently devised or new ones.
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The references to the authors in which the proof, or figure, is 5.
found or suggested, are arranged chronologically so far as possible.
The idea of throwing the suggested proof into the form of a
single equation is my own; by means of it every essential element of
the proof is set forth, as well as the comparison of the equivalent or -
equal areas.
The wording of the theorem for the geometric proof is: The
square described upon the hypotenuse of a right-angled triangle is
equal to the sum of the squares described upon the other two sides.

TYPES

It is obvious that the three squares constructed upon the three
sides of a right-angled triangle can have eight different positions, as
per selections. Let us designate the square upon the hypotenuse by
h, the square upon the shorter side by a, and the square upon the other '
side by 4, and set forth the eight arrangements ; they are:

All squares h, a and b exterior,

a and b exterior and h interior.

h and a exterior and b interior.

h and b exterior and a interior.

a exterior and h and b interior.

b exterior and h and a interior.

h exterior and a and b interior.

All squares h, a and b interior,

By exterior is meant constructed outwardly. i
By interior is meant constructed overlapping the given right tri-

angle.

The arrangement designated above constitutes the first eight of
the following ten geometric types. !

Also for some selected figures for proving Euclid I, 47, the
reader is referred to H. d’Andre, N. H. Math. (1846) Vol. 5, p. 324. !

BSOSO LA e G B e

[86]

GEOMETRIC PROOFS

A,

"This type includes all proofs derived from the figure determined
by constructing squares upon each side of a right-angled triangle, each
square being constructed outwardly from the given triangle.

The proofs under this type are classified as follows:

(a) Those proofs in which pairs of the dissected parts are con-
gruent.

: One
Particular case — illustrat-
ive rather than demonstrative.

The sides are to each other
as, 3, 4, 5 units. Then sq. AD
contains 25 sq. units, HE 9 sq.
units and HK 16 sq. units. Now
it is evident that the no. of unit
squares in the sq. AD = the sum
of the unit squares in the squares
HE and HK.

.". square AD = sq. HE - sq.
HEK.

a. That by the use of the
lengths 3, 4, and 5, or length having the ratio of 3 : 4 : 5, a right
angled triangle is formed was known to the Egyptians as early as
2000 B. C., for at that time there existed professional “‘rope-fasten-
ers”; they were employed to construct right angles which they did by
placing three pegs so that a rope measuring off 3, 4 and 5 units would
just reach around them. This methed is in use today by carpenters
and masons; sticks 6 and 8 feet long from the two sides and a “ten-
foot” stick forms the hypotenuse, thus completing a right-angled
triangle, hence establishing the right angle.

But granting that the early Egyptians formed right angles in the
“rule of thumb” manner described above, it does not follow, in fact

‘ [87]
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THE PYTHAGOREAN PROPOSITION

it is not believed, that they knew the area of the square upon the
hypotenuse to be equal to the sum of the areas of the squares upon
the other two sides.

The discovery of this fact is credited to Pythagoras, a renowned 1
philosopher and teacher, born at Samos about 570 B. C., after
whom the theorem is called “The Pythagorean Theorem.” (See p.
25).

b. See Hill’s Geometry for Beginners, p. 153 ; Ball's History of .
Mathematics, pp. 7-10; Heath's Math. Monographs, No. 1, pp. 15-
17. '

Two

Another particular case is
illustrated by fig. 60, in which
BH = HA, showing 16 equal
triangles. !

Since the sq. AK contains 8
of these triangles,

.. 8q. AK =sq. HD <+ sq. HG.

a. See Beeman and Smith’s
New Plane and Solid Geometry,
p. 103, fig. 1.

b. For this and many other
demonstrations by dissection, see
H. Perigal, in Messenger of
Mathematics, 1873, V. 2, p. 103.

GEOMETRIC PROOFS

Three
In fig. 61, through P, Q, R F
and S, the centers of the sides AN
of the sq. AK draw PT and RV g~ 3 2 \\
par. to ' AH, and QU and SW

par. to BH, and through O, the f\\ y'Ny ]4)5
cetiter of the o4 /MG, dra@ XH  \ | v
par. to AB and 1Y (In fig. 61, ;\ <

change G on line AH to Y.) par. 1 ?\ y

to AL, forming 8 congruent ; b N
quadrilaterals; viz., 1, 2, 3 and 4 ’Ply{ 5 “[)é

in sq. AK, and 1, 2, 3 and 4 in '| 3,\\ 40

sq. HG, and sq. 5 in sq. AK = L _{ _}K.

sq. (5 = HD). The proof of

their congruency is evident, since, in the paral. OB, (§B = 5A) =

(OH = OG = AP since AP = AS).

(Sq. AK = 4 quad. APTS + sq. TV) = (sq. HG =4 quad.
OYHZ) + sq. HD.

.". sq. on AB =sq. on BH + sq. on AH.

a. See Mess. Math., Vol. 2, 1873, p. 104, by Henry Perigal, F.
R. A. S., etc., MacMillan and Co., London and Cambridge. Here
H. Perigal shows the great value of proof by dissection, and suggests
its application to other theorms also. Also see Jury Whipper, 1880,
p. 50, fig. 46; Ebene Geometrie, Von G. Mahler, Leipzig, 1897, p.
58, fig. 71, and School Visitor, V, III, 1882, p. 208, fig. 1, for a par-
ticular application of the above demonstration.

b. See Todhunter’s Euclid for a simple proof extracted from a
paper by De Morgan, in Vol. I of the Quarterly Journal of Math.,
and reference is also made there to the work “Der Pythagoraische
Lehrsatz,” Mainz, 1821, by J. J. 1. Hoffimann.

¢. By the above dissection any two squares may be transformed
into one square, a fine puzzle for pupils in plane geometry.
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d. Hence any case in which the three squares are exhibited, as
set forth under the first 9 types of II, Geometric Proofs, A to J in-

clusive (see Table of Contents for said types) may be proved by this

method.

d. This proof is unique in that the smaller sq. HD is not dissected. 1

Four

In fig. 62, on CK construct
tri. CKL = tri. ABH; produce
CL to P making LP — BH and
take LN = BH; draw NM,
AO and BP each perp. to CP;

ABH, and from any angle of the
sq. HD, as H, with a radius =
KM, determine the pt. R and
draw HR, thus dissecting the
sq’s, as per figure.

It is readily shown that sq.
AK = (tri. CMN = tri. BTP) 4 (trap. NMKL = trap.
DRHB) 4 (tri. KTL = tri. HRE) -+ (quad. AOTB + tri.
BTP = trap. GAHS) -+ tri. ACO = tri. GSF) = (trap. DRHB
+ tri. HRE = sq. BE) - (trap. GAHS + tri. GSF = sq. AF)
=sq. BE + sq. AF. i
.". sq. upon AB = sq. upon BH 4 sq. upon AH.

a. This dissection and proof were devised by the author to estab-
lish the Law of Dissection, by which, no matter how the three squares
are arranged, or placed, their resolution into the respective parts as
numbered in fig. 62, can be readily obtained.

b. In many of the geometric proofs herein the reader will observe 3

that the above dissection, wholly or partially, has been employed.
Hence these proofs are but variation of this general proof._
March 18, 1926. E. S. LOOMIS
[90]

at any angle of the sq. GH, as
F, construct a tri. GSF = tri.

GEOMETRIC PROOFS
Five

_NF In fig. 63 conceive rect. TS
iy \ ,-PT' cut off from sq. AF and placed
in position of rect. QE, AS co-
inciding with HE ; then DEP is
a st. line since these rect. were
equal by construction, The rest
of the construction and dissection
is evident.

sq. AK = (tri. CKN = tri.
PBD) 4+ (tri KBO — tri.
BPQ) -+ (tri. BAL = i

TFQ) + (tri. ACM = tri.
FTG) + (sq. LN = sq. RH)
=, BE+rect QE -+ rect. GQ 4+ sq. RH =sq. BE + sq. GH.
. sq. upon AB = sq. upon BH -} sq. upon AH.
a. Original with the author after having carefully analyzed the
esoteric implications of Bhaskara’s “Behold!” proof—see proof One
Hundred Fifty-Four, fig. 212.

b. The reader will notice that this dissection contains some of
the elements of the preceding dissection, that it is applicable to all
three-square ﬁglures like the preceding, but that it is not so simple
or fundamental, as it requires a transposition of one part of the sq.
GH, — the rect. TS —, to the sq. HD, — the rect. in position
(QE— so as to form the two congruent rect’s GQ and QD.

¢. The student will note that all geometric proofs hereafter,
which make use of dissection and congruency, are fundamentally only
variations of the proofs established by proofs T'hree, Four and Five,
and that all other geometric proofs are based, either partially or
wholly on the equivalency of the corresponding pairs of parts of the
figures under consideration.

[or]
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8i b SN) = sq. BE 4 sq. HG.
i " 5q. upon AB = sq. upon BH - sq. upon AH.
This proof is a simple vari- a. Original with author March 28, 1926, 9:30 p. m.
ation of the proof Four above. b. A variation of the proof Five above,
In fig. 64 extend GA to M, ]
draw LN and BO perp. to AM, Eight
take NP = BD and draw P$
par. to LN, and through H In fig. 66 produce CA to S, r?)
draw QR par. to AB. Then draw SP par. to FB, take HT s s?\ﬁ‘q. A
2 | since it is easily shown that parts = HB, draw TR par. to HA, Q’ iy \\\ LAEN
Sl Kk | 1 and 4 of sq. AK = parts 1 produce GA to M, making AM e | e \\
'y b g and 4 of sq. HD, and parts (2 = AG, produce DB to L, draw SN - — —p.
1 \,tl | 42Vl 8 ofvh AK — 2 5ol KO and CN par. resp. to BH A 7
I ///? \ : 3 of sq. HG and AH, and draw QD. ; 2
el Y :\"{JK ", sq. upon AB = sq. upon : Rect. RH = rect. QB. | \\ ,‘13
BH - sq. upon AH, Sq. AK = (tri. CKN = tri. i 9(/ :
a. Original with the author March 28, 1926 to obtain a figure ASG) (m.. KBO = i : K W |
more readily constructed than fig. 62. 1 SAQ) + {tr{. BAL == t"f- | ,/74 \ i
y DQP) 4+ (tri. ACM = ¢tri. CLL./_F‘ ﬁﬁ K
Seven QDE) + (sq. LN = sq, ST) 1500
I Bz 65, prodice CA 't = rect. PE + rect. GQ -+ sq. ST = sq. BE -+ rect. QB + rect.
O, KB to M, GA to V, making . GQ + s¢. 5T = sq. BE + sq. GH.
tA’E‘.\ AV = AG, DB to U, and draw .". sq. upon AB = sq. upon BH - sq. upon AH.
- \‘ KX and CW par. resp. to BH : a. O‘rigirlml with authc.nr March 28, 1926, 10 a. m.
and AH, GN and HL par. to b. This is anather variation of fig. 63.

< AB, and OT par. to FB.
Sq. AK = [tri. CKW = (tri. .
HLA = trap. BDEM -+ tri,
'NST)] + [tri. KBX = tri.
GNF = (trap. OQNF + tri.
BMH)] 4 (tri. BAU = tri.
OAT) - (tri. ACV = tri.
AOG) + (sq. VX = paral.

(0] N [93]
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Nine
oF, In fig. 67, the dissection is

\_ toparts 1,2 and 3 insq. HG; al-

)\ in sq. HD.
. (sq. AK =parts 1 4-2 4+ 3

14+ 2+ 3) 4+ (sq. HD =
parts 4 - 5).
.. sq. on AB = sq. on BH -+
'F —éj -H\’K sq. on AH.
4. See Jury Whipper, 1880, p. 27, fig. 24, as given by Dr. Ru-
dolf Wolf in “Handbook der Mathematik, etc.,”” 1869; Journal of

Education, V. XXVIII, 1888, p. 17, 27th proof, by C. W. Tyron,

Louisville, Ky.; Beman. and Smith's Plane and Solid Geom., 1895,
p. 88, fig. 5; Math. Mo., V. IV, 1897, p. 169, proof XXXIX; and

Heath's Math. Monographs, No. 2, p. 33, proof. XXII. Also The
School Visitor, V. 111, 1882, p. 209, for an application of it to a

particular case.

[94]

_‘.: evident and shows that parts 1,
N ,L[”'E\ 2 and 3 in sq. AK are congruent
: |
I
|
!

4 ]\p. so that parts 4 and 5 in sq. AK
#  are congruent to parts 4 and 5

+ 44 3) = (sq. HG = parts |

GEOMETRIC PROOFS

Ten

In fig. 68 the construction
is readily seen, as also the con- A
gruency of the corresponding ¢ ~» |
dissected parts, from which % [
square AK = (quad. CPNA |
= quad. LAHT) - (tri. |
CKP = tri. ALG) + (tri.
BOK = quad. DEHR - tri.
TFL) + (tri. NOB = tri.
RBD).
*. square upon AB = sq. upon
BH —+ sq. upon AH.

a. See Math. Mo,, V. IV,
1897, p. 169, proof. XXXVIIL.

Eleven

The construction and dissec-
tion of fig. 69 is perceived, and
the congruency of the correspond-
ing parts can be easily established, % S % g -\‘H £

A 4T
and we find that sq. AK = "\ ! o U--D
(quad. ANMR = quad N |
AHWX) -+ (tri. CNA = tri. 1 -
WFG) + (tri. COM = wi. AN
AXG) - (tri. MOQK = tri. |
EDU) + (tri. POK = i ;
THS) 4 pentagon BLMOP = !
pentagon ETSBV) - (tri. BRL : P /
= tri. DUV). O 13-%2 -k
*. 5q. upon AB = sq. upon BH
- sq. upon AH.

[05]
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a. Original with the author of this work, August 9, 1900. Af-* .
terwards, on July 4, 1901, I found same proof in Jury Whipper, =

1880, p. 28, fig, 25, as given by E. von Littrow in ‘“Popularen Geom-
etrie,” 1839,

Twelve

+ In fig. 70, extend CA to O,
N and draw ON and KP par. to
AB and BH respectively, and ex-

A

e
%/
—~
.Y

N
Y

Py AB and draw DM. Then we

”

trap. OABN = pentagon
OGAHN) - (tri. BRK =

N
N
\

tri. OFN) - (tri. PRB = tri.

I
I
1
1
1
U
Aj 5
1 7
1
|
! LED).

et R
CFig 10 NK Prigaainiye |
a. See Math. Mo., V. 1V, 1897, p. 170, proof. XLIV.

[96]

N _L, i :
TS . tend DB to R. Take BM =

I

i trap. BDLH + tri. MHL =
I
I

#*  have sq. AB = (trap. ACKP =

. 5q. upon AB = sq. upon BH

GEOMETRIC PROOFS

T hirteen

Fig 71 objectifies the lines
to be drawn and how they are
drawn is readily seen.

Since tri. OMN = tri. ABC,
tri, MPL —tri. BRH, tri. BML
= tri. AOG, and tri. OSA =
tri. KSB, (K is the pt. of inter-
section of the lines MB and
0OS) then sq. AK = trap.
ACKS + tri. KSB = tri. KOM
= trap. BMOS - tri. OSA =
quad. AHPO -+ tri. ABH 4
tri. BMLL + tri. MPL = quad.
AHPO -+ tri. OMN + tri.
AOG - tri. BRH = (pentagon
AHPOG - tri. OPF) + (trap. PMNF = trap. RBDE) -} tri.
BRH = sq. HG + sq. HD.

.". sq. upon AB = sq. upon HD +- sq. upon AH.

a. See Sci. Am. Sup., V. 70, p. 383, Dec. 10, 1910. It is No.
14 of A. R. Colburn’s 108 proofs.

[97]
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Fourteen
’,15 In fig. 66, extend GA and
RO DB t0 O and N, and KM and
{T\' I ;F CL par. to AG and AH, and
N % extend BF to S, making FS§ —
\ -:’ ST /,E'\ BH; complete the sq. SU and
Ao

)n \‘H/ -, *« draw NP and PR par. res-
e — - = ]5) pectively to AB and AH ; join

AK = 4 tri. BAN - sq. NL
sq. GQ = rect. AR - rect.

sq. ND) = sq. HG 4 sq.
HD.
". sq. upon AB = sq. upon
BH + sq. upon AH.

a. This proof is credited to Miss E. A. Coolidge, a blind girl.
See Journal of Education, V. XXVIII, 1888, p. 17, 26th proof.

b. The reader will note that this proof employs exactly the same
dissection and arrangement as found in the solution by the Hindu
mathematician, Bhaskara. See fig. 212, proof One Hundred Fifty-
Four.

(b) Those proofs in which pairs of the dissected parts are show«
to be equivalent.

As the triangle is fundamental in the determination of the equal-
ity.. of two areas, Euclid’s proof will be given first place.

[98]

77 SQ. Then it follows that sq.
= rect. AR 4 rect. TR |

QF + sq. GQ + (sq. TF =

GEOMETRIC PROOFS

Fifteen

In fig. 73 draw HL (The
perp. from H to CK intersects
CK at L.) perp. to CK, and
draw HC, HK, AD and BG.

Sq. AK = rect. AL +- rect. BL,
= 2 tri. HAC 4 2 tri. HBK
= 2 tri. GAB +} 2 tri. DBA
= sq. GH -+ sq. HD.

. sq. upon AB = sq. upon
BH 4 sq. upon AH.

a. Euclid, about 300 B. C. | ” i i
discovered the above proof, and (e =y v
it has found a place in every CL'E'Lg"Ll_j&"'
standard text on geometry. Logically no better proof can be devised
than Euclid’s.

For the old descriptive form of this proof see Elements of Euclid
by Todhunter, 1887, Prop. 47, Book I. For a modern model proof,
second to none, sce Beman and Smith’s New Plane and Solid Geom-
etry, 1899, p. 102, Prop. VIII, Book II. Also sce Heath’s Math,
Monographs, No. 1, 1900, p. 18, proof I.

b. I have noticed lately two or three American texts on geometry
in which the above proof does not appear. 1 suppose the author
wishes to show his originality or independence—possibly up-to-date-
ness. He shows something else. The leaving out of Euclid’s proof
is like the play of Hamlet with Hamlet left out.
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Sixteen
,?\ In fig. 74 extend HA and
o \\ : HB and draw the perp’s CL
Q’ it ,’E\\ and KN; also draw the perp.
A o2 *.  HM and the lines HC and HK.
N ™ D) Then it is evident that tri’s
S 4 :\ \. ,° ABH, CAL and BKN are
by equal. :
bdd] e e S Now sq. BK = rect. AM
% g ol s rect. BM = 2 tri. HAC + 2
N o 3 \l > tri HBK =HA X CL -+ HB

\oir v B KRN = s HG '+ s, HD.
3 ’_F Y e~ i AB = sq. upon
M __,‘K .. 5q. upon $q. upor
ox g ’ﬁ! i BH - sq. upon AH.
a. See Edwards's Elements of Geom., p. 155, fig. (4).

Seventeen
,’F\ In fig. 75 draw KL par. to
7 1 N BH, CN par. to AH, extend DB
gf \\ } ’E‘\ to M, and draw HN. Then it
\ 7 \\ is evident that sq. AK = hexa-
\ I gon ACNKBH = par. ACNH
o /fl -+ par. HNKB = AH X LN
| + BH ¥ HL = sq. HG + sq.
AI Y \\ |~ | HD.
| ol | .". sq. upon AB = sq. upon BH
: M}u‘i ; -+ sq. upon AH.

a. See Edwards’s Geom.

CL’. fFlg,.'l:SE;K 1895, p. 161, fig. (32).

b. In each of the 39 figures

given by Edwards the author hereof devised the proof as found here-
in.
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Eighteen

In fig. 76 the construction is
evident.

Sq. AK = rect. BL - rect. AL
= paral. BM -} paral. AM =
paral. BN - paral. AO = sq.
BE -} sq. AF.

*. sq. upon AB = sq. upon BH
~+ sq. upon AH.

a.- See Edwards’s Geom.,
1895, p. 160, fig. (28); Ebene
Geometrie von G. Mahler, Leip-
zig, 1897, p. 80, fig. 60; and
Math. Mo., V. IV, 1897, p. 168,
proof. XXXIV.

Nineteen

In fig. 77 the construction
is evident, as well as the parts
containing like numerals.
8q. AK = tri. BAL - tri. Q
CKN - sq. LN 4 (tri. ACM
~+ tri. KBP = tri. HQA +
tri. QHS + sq. RF 4 (rect.
HL = sq. HP + rect. AP =
sq. HD + rect. GR) = sa.
HD +- sq. HG.

. sq. upon AB = sq. upon
BH - sq. upon AH,

a. See Heath’s Math.
Monographs, No. 2, p. 33, proof
XXI.

[161]
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Twenty
1Q Fig. 78 sugpests its construc-
R/’ | tion, as all lines drawn are either
o | perp. or par. to a side of the given
[}
!
|
|
|

AK = rect. BL - rect, AL =
i paral. BHMK - paral. AHMC
b ’IR N\ = paral. BHNP - paral
| \\ AHNO = sq. HD +} sq. HG.
| D .. sq. upon AB = sq. upon BH
\ | /" -+ sq. upon AH.
A a. This is known as Haynes’s
! proof ; see Math, Magazine, Vol.
iIFig Lgf,r‘f 1, 1882, p. 25, and School Visi-
| tor, V. IX, 1888, p. 5, proof 1V.
- \
ch_:"_ ]__J‘__ _‘JK_ ¢ Twenty-One
: . The construction of fig. 79
- /N! is easily seen.
A Sq. AK = rect. BL - rect. AL
™M = paral. BHNM - paral
v AHNO =sq HD + sq. HG.
i \ - 9 upon AB = sq. upon BH
| m -+ sq. upon AH.
| ’ a. This is Lecchio’s proof,
I . 1753. See jury Whipper, 1880,
p. 26, fig. 22, (Historical Note) ;
| Olney's Geom., 1872, part III,
| p. 251, 5th method; Jour. of
| Education, V. XXV, 1887, p.
| i | 404, fig. II1; Hopkins’s Plane
gl gk Geam., 1891, p. 91, fig, I1; Ed-
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n I'P tri. ABH. Then we have sq.
\f

1

GEOMETRIC PROOFS

wards’s Geom,, 1895 p. 159, fig. (25); Math. Mo, V. IV, 1897,

VL

Twe aty-Two

In fig. 80 extend DE and

GF to P, CA and KB to Q and
R respectively, draw CN par. to
AH, and draw PL and KM perp.
to AB and CN respectively. Take
HO = ES and draw DS.
Sq. AK = tri. KNM -} hexagon
HCKMNB = wi. BOH +
pentagon ACNBH = tri. DSE
-+ pentagon QBORP = tri.
DES + paral. AHPQ + quad.
PHOR = sq. HG + tri. DES
-} paral. BP — tri. BOH = sq.
HG - tri. DES - trap. HBDS
= sq. HG + sq. HD.

7

|
el

p. 169, XL; M Math. Monographs, No. 1, 1900, p. 22, proof

|
b. The above proof ishut a particular case of Pappus’ Theorem.

A
A B

.". sq. upon AB = sq. upon BH - sq. upon AH,
a. See Math. Mo., V. 1V, 1897, p. 170, proof XLV.’

[ 03]
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Twenty-T hree £

Construction of fig. 81
explanation ;| f Crom it we

exagon ACLKBH = 2 quad.
© ACLH = 2FEDG = hexagon
ABDEFG == sq. AF -+ sq. BE
-+ 2 tri. ABH.
". $q. upon AB = sq. upon BH
-+ sq. upon AH.}

a. See Jury Whipper, 1880,
p. 32, fig. 29, as found in “Auf-
angsgrunden der Geometrie” von
Tempelhoff, 1769.

Twenty-Four

In fig. 82 take BO = AH
and AN = BH, and complete the

"E\ figure; we will have sq. AK = °
o k.

\ rect. BL 4 rect.- AL = paral.

~° paral. DEFO - paral. FGNE =
sq. DH -+ sq. GH.

—+ sq. upon AH.

1895, p. 158, fig. (21), and Math,

XL]
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"'&;BKMH <+ paral. ACMH = |

". sq. upon AB = sq. upon BH
a. See Edwards's Geom.,

Mo., V. 1V, 1897, p. 169, proof '

GEOMETRIC PROOFS

Twenty-Five
In fig. 83 extend CA to Q
and complete sq. QB. Draw
GM and DP each par. to AB,
and draw NO perp. to BF, This
construction gives sq. AB = sq.
AN = rect. AL + rect. PN =
paral. BDRA -+ (rect. AM —
paral. GABO) = sq. BE + sq.
AF
. 8q. upon AB = sq. upon BH
-+ sq. upon AH.
a. See Edwards's Geom.,
1895, p. 158, fig. .(29), and
Math. Mo., V. IV, 1897, p. 168, proof XXXV.

Twenty-Six
In fig. 84 extend KB to
meet DE produced at P, draw
QN par. to DE, NO par. to
BP, GR and HT par. to AB,
extend CA to S, draw HL par.
to AC, CV par. to AH, KV and
MU par. to BH, MX par. to
AH, extend GA to W, DB to
U, and draw AR and AV. Then
we will have sq. AK = tri.
ACW - tri. CVL + quad.
AWVY + tri. VKL + tri.
KMX -+ trap. UVXM + tri. Cle— L ZK
MBU - tri. BUY = (tri. GRF + tri. AGS + quad. AHRS) -+
(tri. BHT 4 tri. OND - trap. NOEQ - tri, QBN + tri. HQT)
= sq. BE 4- sq. AT.
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". 5q. upon AB = sq. upon BH - sq. upon AH.
a. This is E. von Littrow’s proof, 1839; see also Math, Mo.,
V. 1V, 1897, p. 169, proof XXXVII.

I I I
Cel _ LK

Twenty-Seven

7

In fig. 85 extend GH and DE
to P, HB (B is the vertex opp. the
side AH of tri. ABC, and N is the
intersection of the lines HB and
CM) to N, draw PL perp.
to AB, CN par. to AH and KO

> par. to BH; whence sq. AK

[(trap. HACN — tri, MNH =
paral. ACMH = rect. AL) =
(trap. AHPG — tri. HPF = sq.
AG)] + [( trap. HOKB — tri.
MHO = paral. HMKB = rect.
BL) = (trap. HBDP — tri,
PHE = sq. HD)].

*. sq. upon AB = sq. upon BH
-+ sq. upon AH.

a. See Math, Mo., V. IV, 1897, p. 169, proof XLII.

GEOMETRIC PROOFS

Twenty-Eight

In fig. 86, construct sq. HM AF
=sq. HG, sq. HO = sq. HD, Y
draw HL perp. to AB, and draw ¢ ~ b /F\
CM and KN. From this con- ?
struction, we get sq. AK = rect. \ )3
BL - rect, AL = paral. HNKB h 2
~+ paral. HACN = sq. BP A
sq. HM = sq. HD -+ sq. HG. ) |,’|>‘1
.". 5q. upon AB = sq. upon BH T O ,'f
- sq. upon AH. 12 N =) |

a. Vieth's proof—see Jury |F Lg FulN |
Whipper, 1880, p. 24, fig. 19, as s \
given by Vieth, in “Aufangsgrun- g — K
den der Mathematik,” 1805; also Math. Mo., V. 1V, 1897, p. 169,
proof XXXVI.

Twenty-Nine
In fig. 87, construct the sq.
HT, draw GL, HM, and PN
par. to AB; also KU par to BH,
OS par. to AB, and join EP.
By analysis we find that sq. AK
= (trap. CTSO -} tri. KRU)
-+ [tri. CKU 4+ quad. STRQ
=+ (tri. SON = tri. PRQ) +
rect. BQ] = (trap. EHBV 4+
tri. EVD) + [tri. GLF - tri.
HMA + (paral. SB = paral.
ML)] =sq. HD 4- sq. AF.
.". sq. upon AB = sq. upon BH
- sq. upon AH.
a. After three days of analyzing and classifying solutions based
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on the A type of figure, the above dissection occurred to me, July 16,
1890, from which I devised above proof.

o F: T hirty

"é/ N ,"f\ In fig. 88, through K draw
‘H~ \ NL par. to AH, extend HB to
i1 3y L, GA to O, DB to M, draw
N ~ | DL and MN par. to BK, and

> ’ | CN par. to AO.

i . ! 8q. AK = hexagon ACNKBM
| N 4, 1N = paral. CM - paral. KM =
| | Bsq,CO-}—sq.ML:sq.HD—{—
I B )7 sq. HG.

\ / .". sq. upon AB == sq. upon BH

ck"“ ’,‘" -+ sq. upon AH.

& o ~ a. See Edwards’s Geom.,

97 . 1895, p. 157, fig. (16).

Thirty-One
-’"F In fig. 89 extend HB to M
5 \-\ making BM = AH, HA to P
%/' \ > ’R making AP = BH, draw CN
A y @nd KM each par. to AH, CP
\ m and KO each perp to AH, and
» 7 draw HL perp. to AB. Sg. AK
7 = rect. BL -}~ rect. AL = paral.
\ N RKBH +- paral. CRHA = sq.
N

\
. RM + sq. CO = sq. HD
<P F L g ygﬁ’ yie sq. HG. s 5
20N : l’b .". sq. upon AB = sq. upon BH

|
\ // L ,/ -+ sq. upon AH.

K 2. See Math. Mo., V. IV,
1897, p. 169, proof XLIII.
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Thirty-Two

In fig. 90 extend HA to N
making AN = BH, through C v
draw NO par. to BH and mak- ¢ ~ \ v’R
ing CO = BH, draw AL = and H Cf
par. to NO, extend DB to M, * \P
draw MO and OK, \

Sq. AK = hexagon ACOKBM = R
paral. COMA -+ paral. OKBM ’
— sq. HD + sa. HG. <I\I/

.. sq. upon AB = sq. upon BH &

-+ sq. upon AH. X |

a. This proof is credited to N F ‘5 o
C. French, Winchester, N. H. G“r - 5
See Journal of Education, V. S
XXVIIL, 1888, p. 17, 23d proof; bl g
Edwards’s Geom., 1895, p. 159,
fig. (26); Heath’s Math. Monographs, No. 2, p. 31, proof XVIIL
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Thirty-Three

M In fig. 91 complete the

2E » squares AK, HD and HG, also

,,'F ¢ N the paral’s FE, GC, AO, PK

7 o it )E and BL. From these we find

(&/ \\ Uit that sq¢. AK = hexagon

I H- ACOKBP = paral. OPGN
|
|
I

| POLD — paral. BKLD =
| paral. LDMH — (tri. MAE
| | 4+ tri. LDB) - paral
LN GNHM — (o GNA - tri.
| Iy HMF) —sq. HD +} sq. HG.
| .. sq. upon AB = sq. upon
Va BH -+ sq. upon AH.
h a. See Olney’s Geom., Uni-
e versity Edition, 1872, p. 251,
\@/ 8th method ; Edwards’s Geom.,
1895, p. 160, fig. (30).
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! \
. \ D}I — paral. CAGN + paral.

GEOMETRIC PROOFS

Thirty-Four

In fig. 92
extend GF and : - ﬂ\\
DE to N, com- % S
plete the square \
NQ, and extend e e i /E)\
HA to P, GA A W \\
to R and HB to i TN N
L. <0 \ s
From these dis- " %
sected parts of \ 7 Y
the sq. NQ we | i \
see that sq. AK [ \
+ (4 tri. ABH e |
+ rect. HM + 1 \ P
rect. GE + b EATE 0
rect. OA) = 1% bt
(rect. PR =sq.
HD + 2 tri.
ABH) -+ (rect. AL = sq. HG -+ 2 tri. ABH) + rect. HM +
rect. GE - rect. AO, = sq. AK + (4 tri. ABH + rect. HM +
rect, GE - rect. OA — 2 tri. ABH — 2 tri. ABH — rect. HM —
rect. GE — rect. OA = sg. HD + sq. HG.
. sq. AK = sq. HD - sq. HG.
.". sq. upon AB = sq. upon BH - sq. upon AH.

a. Credited by Hoffmann, in “Der Pythagoraische Lehrsatz,”
1821, to Henry Boad, of London, Eng. See Jury Whipper, 1880,
p. 18, fig. 12.
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Thirty-Five

. P

\

e imds R el

In fig. 93, produce HB to L, HA to R meeting CK prolonged,
ED and FG to M and Q in AB prolonged, DE and GF to O, CA
to P, and draw HN par. to AB and OH par. to BK. Then sq. AK
-+ tri. RAC - tri. BLK + tri. ABH = tri. RLH = (tri. ONH
= tri. BLK) -+ (paral. HM = sq. HD) -+ (tri. QPA = tri.
RAC) + (paral. HP = sq. HG) +} tri. ABH.
.". sq. upon AB — sq. upon BH - sq. upon AH.

a. See Jury Whipper, 1880, p. 30, fig. 28a.

|
R T
|

[112]

GEOMETRIC PROOFS

Thirty-Six

In fig. 94 extend HB
and CK to L, AB and ED /',?\\
to M, DE and GF to O, f/
CA and KB to P and N res- :;'
pectively and draw PA. (é/ |
Now observe = that (quad. |
CLBA = sq. HK + ti. N, |
BLK) = [quad. BMNF = N
hexagon AHBMOP = (tri. e T L
EMB = i BLK) + Al M
paral. BO = sq. HD) -+ | 1
(paral. AO = sq. AF)]. I i
.". sq. upon AB = sq. upon | F | \
BH - sq. upon AH. 'F14g.9 ! i

a. Devised by the au- CL — 'g’ _jf_ _j'K_ G 'L"\
thor, July 7, 1901, but suggested by fig. 28b, in Jury Whipper, 1880,
p. 31.

b. By omitting, from the fig., the sq. AK, and the tri’s BLK and
BMD, an algebraic proof through the mean proportional is easily
obtained.

B.

This type includes all proofs derived from the figure in which
the square constructed upon the hypotenuse overlaps the given triangle
and the squares constructed upon the legs as in type A.
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T hirty-Seven
,1_-\ Assuming the three squares
,ﬁ‘ B ( constructed, as in fig. 95, draw
v | X N GD—it must pass through H.
R NG A N R AR g RN

~<M_D i AHL + 2 ui. ABH + 2
L ~»° tri. HBM = 2 tri. AHL + 2
B (tri. ACG = tri. ALG -+ tri.
GLC) 4+ 2 tri. HBM = (2 tri.
AHL —+ 2 tri. ALG) + (2 GLC = 2 tri. DMB) +- 2 tri. HBM
= sq. AF -} sq. BE.
*. sq. upon AB = sq. upon BH - sq. upon AH.
a. See Math. Mo., V. 1V, 1897, p. 250, proof XLIX.

T hirty-Eight

In fig. 96 draw KL par. to
3 - -- -X AH, take HM — BH, and draw
L ; A 3 MN par. to BH.
. - N Sq. AK = tri. ANM -} trap.
‘\Fllg-%' { | ) MNBH + i BKL + i
s 14 7 KOL + quad. MHOC = (tri,
A i COF 4 tri. ACG + quad.
MHOC) + (trap. PEDB +
tri. BPH) = sq. AF - sq. HD.
.". sq. upon AB = sq. upon BH + sq. upon AH.
a. See Math, Mo., V. IV, 1897, p. 250, proof L.
b. If XY is drawn in place of MN, (LX — HB), the proof is

prettier, although same in principle.
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T hirty-Nine

In fig. 97 draw GN and OD AF
par. to AB. ,q" G _:K».J;‘
Sq. AK = rect. AQ - rect. OK ok .IL \}M ’41',1 ~
— paral. AD - rect. AN = sq. % e Ui
BE - paral. AM = sq. BE +
sq. AF.
*. sq. upon AB = sq. upon BH
- sq. upon AH.

a, See Math. Mo., V. IV, 1897, p. 250, XLVI.

Forty

In fig. 98, draw GN and
DR par. to AB and KM par. to
AH. R is the pt. of intersection
of AG and DO.
Sq. AK = rect. AQ -+ rect. RN
- rect. LK = (paral. DA =
sq. BE) -} (paral. RM = pen-
tagon RTHMG -+ tri. CSF)
-+ (paral. GMKC = trap. GMSC + tri. TRA) = sq. BE
sq. AF.
‘. sq. upon AB = sq. upon BH + sq. upon AH.

a. See Math. Mo., V. IV, 1897, p. 250, proof XLVII.

Forty-One

In fig. 99 draw LM through
H perp. to AB, and draw HK
and HC. -
Sq. AK = rect. LB -}- rect. LA %
— 2 tri. KHB + 2 tri. CAH
== sq. AD +} sq. AF. )
.. sq. upon AB = sq. upon BH
- sq. upon AH.
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a. See Jury Whipper, 1880, p. 12, proof V; Edwards’s Geom.,
1895, p. 159, fig. (23); Math. Mo., V. IV, 1897, p. 250, proof
XLVIIIL

: F ortyl Two

{‘_ ﬂ]K In fig. 100 draw HL par.
/‘% 7 to BK, KM par. to AH, and

o i \ q’ /,’q '“:\ draw EB and KH.
Q i MSaZ e N 8o AR — (i ABH — 4l
S il D ACG) + quad. AHPC common
S i -7 to sq. AK and sq. AF - (tri.

HOM = wi. CPF) + (tri.
KPM = tri. END) -} [paral.
QHOK = 2(tri. HOK = tri. KHB — tri. OHB = tri. EHB —
tri. OHB = tri. EOB) = paral. OBNE] - tri. OHB common to
sq. AK and sq. HD.
‘. sq. AK == sq. HD + sq. AF.
*. sq. upon AB == sq.,upon BH -+ sq. upon AH.

a. See Math. Mo., V. IV, 1897, p. 250, proof LI.

b. See Sci. Am. Sup., V. 70, 1910, p. 382, for a geometric proof,
unlike the abave proof, but based upon a similar figure of the B type.

Forty-Three
In fig. 101, extend DE to
K, and draw KM perp to FB.
Sq. AK = (tri. ABH = tri.
N ACG) -} quad. AHLC common
'h) to sq. AK and sq. AF - (tri.
+~ KLM = tri. BNH) + [tri.
BEKM — tri. KBD — trap.
BDEN + (tri. KNE =
CLF)]. .".sq AK =sq. BE 4 sq. AF.
*. sq. upon AB — sq. upon BH + sq. upon AH.
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a. See Edwards’s Geom., 1895, p. 161, fig. (36); Math, Mo.,
V. 1V, 1897, p. 251, proof LIL

: Forty-Four
In fig. 102 extend GF to B
L making FL. = HB and draw ' 1:\
KL and KM respectively par. to ’\f( o
BH and AH. LR oK
Sq. AK = (tri. ABH = tr. _,~ \_g\,’ "’E
CKL = trap, BDEN -+ tri. G ST

COF) - (tri. BKM = tri.
ACG) 4 (tri. KOM = tri.
BNH) + quad. AHOC common
to sq. AK and sq. AF = sq. HD
+ sa. HG.
. 8q. upon AB — sq. upon BH <~ sq. upon AH.
a. See Math. Mo., V. 1V, 1897, p. 251, proof LVII.

-
”

Forty-Five

In fig. 103 extend DE to L
making KL. = HN, and draw
ML.
Sq. AK = (tri. ABH = tri.
ACG) + (tri. BMK = 14 rect.
BL = [trap. BDEN -+ (tri
KNE = tri. CMF) -+ (tri
MKL = tri. BNH)] -+ quad.
AHMC common to sq. AK and
sq. AF = sq. HD - sq. HG.
*. sq. upon AB = sq. upon BH 4 sq. upon AH.

a. See Edwards's Geom., 1895, p. 158, fig. (18).
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Forty-Six

In fig. 104 extend GF and
DE to L and draw LH.
Sq. AK = hexagon AHBKLC
= paral. HK -+ paral. HC =
sq. HD + sq. HC.
.". sq. upon AB = sq. upon BH
I‘D ~ sq. upon AH.

a. Original with the author,

July 7, 1901. See Olney’s Geom.
university edition, 1872, p. 250,
fig. 374 ; Jury Whipper, 1880, p. 25, fig. 20b, as given by M. v. Ash,
in “Philosophical Transactions,” 1683; Math. Mo., V. IV, 1897,
p. 251, proof LV ; Heath's Math. Monographs, No. 1, 1900, p. 24,
proof 1X,

b. By extending LH to AB, an algebraic proof can be readily
devised, thus increasing‘the no. of figures for simple proofs.

Forty-Seven

A In fig. 105 extend GF and
e \ DE to L.
Sq. AK = pentagon ABDLG
— (3 tri. ABH = tri. ABH +
rect. LH) =sq. HD - sq. AF.
l; N - sq. upon AB = sq. upon BH
| D) + sq. upon AH.
- a. See Journal of Education,

1887, V. XXVI, p. 21, fig. X.
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Forty-Eight

In fig. 106, through H draw
LM perp. to AB, and draw HK
and HC.

Sq. AK = rect. LB -} reet. LA
=2tri. HBK 4 2 tri. AHC =
sq. HD - sq. HG.

.". sq. upon AB = sq. upon BH
-+ sq. upon AH.

a. See Sci. Am. Sup., V. 70, p. 383, Dec. 10, 1910, being No.
16 in A. R, Colburn’s 108 proofs.

Forty-Nine

In fig. 107 extend GF and
DE to L, and through H draw
LN, N being the pt. of inter-
section of NH and AB.
Sq. AK = rect. MB - rect. MA
= paral. HK + paral. HC =
sq. HD <+ sq. HG.
.". sq. upon AB = sq. upon BH
-+ sq. upon AH.

a. See Jury Whipper, 1880,
p. 13, fig. 5b, and p. 25, fig. 21,
as given by Klagel in “Encyclopaedie,” 1808; Edwards’s Geom.,
1895, p. 156, fig. (7); Ebene Geometrie, von G. Mahler, 1897,
p. 87, art. 11; Math, Mo., V. IV, 1897, p. 251, LIIL

b. This figure will give an algebraic proof.
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Fifty
In fig. 108 extend DE to K,

‘N: ;{ZE’E draw FE, and draw KM par. to
T + AH.
4\ Sa AK = (i ABH = tri.
N ACG) <+ quad. AHOC common
to sq. AK and sq. AF 4 tri.
7 BLH common to sq. AK and sq.
HD <+ [quad. OHLK =
OHLPN -+ (tri, PKM = tri. PLE) + (tri. MKN = tri. OFN)
— ¢ri. FEH = tri, KBD = (trap. BDEL + tri. COF)] = sq.
HD + sq. AF.
", sq. upon AB = sq. upon BH |- sq. upon AH.
a. Math. Mo., V. IV, 1897, p. 251, proof LVL.

Fifty-One

AL In fig. 109 extend GF and
'* 2 BK to L, through draw MN
par. to BK, and draw KM.
A I Sq. AK = paral. AOLC =
! ﬁL/E-\—-—J---\ﬂK paral. HL 4 paral. HC =
(paral. HK = sq. AD) + sq.
HG.
‘. sq. upon AB = sq. upon
BH - sq. upon AH.
a. See Jury Whipper, 1880,
p. 27, fig. 23, where it says that
this proof was given to Joh. Hoffmann, 1800, by a friend ; also Math.
Mo., 1897, V. 1V, p. 251, proof LIV.
b. From thi¢ figure an algebraic proof is easily devised.
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Fifty-Two

In fig. 110 draw KL par.
and equal to BH, through H
draw LM par. to BK, and draw
AD, LB and CH.
Sq. AK = rect. MK - rect. .
MC — (paral. HK = 2 tri. Q’
BKL — 2 tri, ABD = sq. BE) .

-+ (2 tri. AHC = sq. AF). N
.". sq. upon AB = sq. upon BH
-+ sq. upon AH.

a. This figure and proof is taken from the following work, now
in my library, the title page of which is:
“Euclides Elementorum Geometricorum
Libros Tredecim
Isidorum et Hypsiclem
g4 Recentiores de Corporibus Regularibus, &
Procli
Propositiones Geometricas
Claudius Richards
e Societate Jesu Sacerdos, patria Ornacensis in libero Comitatu
Burgundae, & Regius Mathematicarum
Professor: dicantique
Philippo 1111, Hispaniarum et Indicarum Regi Cathilico.
Antwerpiae,
ex Officina Hiesonymi Verdussii. M. DC. XLV.
Cum Gratia & Privilegio”
The figures of this book are all grouped together at the end of
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the volume. The aboye figure is numbered 62, and is constructed
for “Propositio XLVIL” in “Librum Primum,” which proposition
reads, “In rectangulis triangulis, quadratum quod a latere rectum
angulum subtedente describitur; aequuale est eis, quae a lateribus
rectum angulum continentibus describuntur quadratis.”

Then comes the following sentence:

“Proclus in hunc librum, celebrat Pythagoram Authorem huius
propositionis, pro cuius demonstratione dicitur Diis Sacrificasse
hecatombam Taurorum.” Following this comes the “Supposito,” then
the “Constructio,” and then the “Demonstratio,” which condensed
and translated is: (as per fig. 110) triangle BKL equals triangle
ABD; square BE equals twice triangle ABM and rectangle MK
equals twice triangle BKL; therefore rectangle MK equals square
BE. Also square AG equals twice triangle AHC; rectangle HM
equals twice triangle CAH ; therefore square AG equals rectangle
HM. But square BK equals rectangle KM plus rectangle CM.
Therefore square BK equals square AG plus square BD.

The work from which the above is taken is a book of 620 pages,
8 inches by 12 inches, bound in vellum, and, though printed in 1645
A. D., is well preserved. It once had a place in the Sunderland
Library, Blenheim Palace, England, as the book plate shows—on the
book plate is printed—"From the Sunderland Library, Blenheim
Palace, Purchased, April, 1882.”

I found the book in a second-hand book store in Toronto, Can-
ada, and on July 15, 1891, I purchased it. E. S. Loomis.

The work has 408 diagrams, or geometric figures, is entirely in
Latin, and highly embellished.

e L

GEOMETRIC PROOFS

Fifty-Three

In fig. 111 extend GF to L
making FL. = BH, draw KL,
and draw CO and KM par. to
BH and AH respectively.

Sq. AK = (tri. ABH = tri. g -
ACG) + tri. CAO common to
sg’s AK and AF + sq¢. MH
common to sq’s AK and AF -
[pentagon MNBKC = rect.
ML = rect. MF 4 (sq. NL
—sq. HD)] = sq. HD + sq. HG.
.. sq. upon AB = sq. upon BH - sq. upon AH.
a. Devised by the author July 30, 1900.

Fifty-Four
In fig. 112 produce GF and

DE to L, and GA and DB to M. i //D\

Sq. AK -+ 4 tri. ABH = sq. GD g_E \K
= sq. HD 4 sq. HG + (rect. > T_———h’E
HM = 2 tri. ABH) + (rect. G- 1 e
LH = 2 tri. ABH) whence sq. I 3 ‘
AK = sq. HD + sq. HG. :

.". sq. upon AB = sq. upon BH
- sq. upon AH.

a. See Jury Whipper, 1880, \
p. 17, fig. 10, and is credited to
Henry Boad, as given by Johann

¥
N "jr a
Hoffmann, in “Der Pythagoraische Lehrsatz,” 1821; also see Ed-
wards's Geom., 1895, p. 157, fig. (12). Heath’s Math. Monographs,
No. 1, 1900, p. 18, fig. 11; alsa attributed to Pythagoras, by W. W.
Rouse Ball. Also sce Pythagoras and his Philosophy in Sect. II,
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Vol. 10, p. 239, 1904, in proceedings of Royal Society of Canada,
wherein the figure appears as follows:

00K

C.

This type includes all proofs derived from the figure in which
the square constructed upon the longer leg overlaps the given triangle
and the square upon the hypotenuse,

Fifty-Five
Al’_{ In fig. 113 extend KB to L, take
s GN = BH and draw MN par. to AH.
: ﬁ, Sq. AK = quad. AGOB common to
~  sq's AK and AF - (tri. COK = tri.
7 ABH 4 tri. BLH) + (trap. CGNM

PyN ,‘;F. — trap. BDEL) + (tri. AMN = tri.
M > BOF) = sq. HD + sq. HG.
% i .". sq. upon AB == sq. upon BH - sq.

upon AH.

268, proof LIX.
[124]

a. See Math. Mo., V. 1V, 1897, p.

o

GEOMETRIC PROOFS

Fifty-Six

In fig. 114, draw DL par. to AB, 4
through G draw PQ par. to CK, take B
GN = BH, draw' ON par. AH and H/', A
LM perp. to AB. - -}
Sq. AK = quad. AGRB common to sq's 7
AK and AF 4+ (tri. ANO = tri. BRF) g
~+ (quad. OPGN = quad. LMBS) 4 fﬂ')N M ‘B:)F
(rect. PK = paral, ABDL = sq. BE) | S
= (b GRO =t AML) ='sq. N oo ¥ I
BE -t sq. AF. 'P}—”"}f‘“:
“. sq. upon AB = sq. upon BH -+ sq. 1
upon AH, i GL'I‘:_l 'g‘_"m'—JK

a. Devised by the author July 20, 1900.

Fifty-Seven
‘£

In fig. 115 through G and D draw oTEN
MN and DL each par. to AB, and b
draw GB. o R -D
Sq. AK = rect. MK - rect. MB = 4
paral. AD + 2 tri. BAG = sq. BE N 2
-+ sq. AF. 1 \\ ’ I)F
.. sq. upon AB = sq. upon BH 4 1 N\ i
sq. upon AH. IM " _G'/: - .:N

a. See Math. Mo., V. IV, 1897,
p. 268, proof LXII.
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Fifty-Eight

% In fig. 116 extend FG to C, draw
A EB, and through G draw HN, and

& ':L N\ draw DL par. to AB.
=T 5q. AK — 2[quad. ACNM = (tri.
.  CGN = tri. DBL) + tri. GAM
N common to sq. AK and AF - (tri.
INC | 4% ACG = ui ABH = ui. AMH +
e tri. ELD)] = 2 tri. AGH + 2 tri.
e BDE — sq. HD + sq. HG.
| ! | *. sq. upon AB = sq. upon BH 4
L _.__”_. K sq. upon AH.

a. See Math. Mo., V. IV, 1897,
p. 268, proof LXIII.

. Fifty-Nine ~

In fig. 117 extend FG to C, draw
HL par. to AC, and draw AD and HK.
Sq. AK = rect. BL -+ rect. AL =
(2 tri. KBH = 2 tri. ABD 4 paral.
ACMH = sq. BE } sq. AF.

.". sq. upon AB = sq. upon BH -+ sq.
upon AH.
a. See Jury Whipper, 1880, p. 11,

11; Math. Mo., V. IV, 1897, p. 267,
proof LVIII.
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Sixty

In fig. 118 through G draw MN
par. to AB, draw HL perp. to CK, and
draw AD, HK and BG.

Sq. AK = rect. MK - rect. AN =
(rect. BL = 2 tri. KBH = 2 tri.
ABD) + 2 tri. AGB = sq. BE + sq.
AF.

.". sq. upon AB = sq. upon BH - sq.
upon AH.

a. See Math. Mo, V. IV, 1897, p.
268, proof LXI.

Sixty-One

In fig. 119, extend FG to C, draw
HL par. to BK, and draw EF and LK. e ‘!f\
Sq. AK = quad. AGMB common to < e
sq’s AK and AF + (tri, ACG = tri. ! )2
ABH) 4 (tri. CKL = trap. EHBN nﬂ’
+ tri. BMF) + (tri. KML = tri. Ko
END) = sq. HD + sq. HG. |
.". 5q. upon AB = sq. upon BH - sq. : 3 LK' l
upon AH. 1 \G \
a Sec Math, Mo, V. IV, 1897, | 275 M !
p. 268, proof LXIV. (e F1g.1195K
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Sixty-Two

Fd
/s

extend FG to C, and draw EB and FK.
‘n} Sq. AK = (rect. LK == 2 tri. CKF =
2 tri. ABE = 2 tri. ABH -+ 2 tri. HBE
— 'tri. ABH + tri. FMG - sa. HD)
,L\M_ e N*ﬁ[—‘ 4 (rect. AN = paral. MB).
‘ » | *. sq. upon AB = sq. upon BH + sq.
ﬁ/ 1 ' upon AH.

]
a. See Math. Mo., V. 1V, 1897, p.
Cie 'Flg__liﬂ ik 269, LXVIL

/ﬂ'.: In fig. 120 draw FL par. to AB,
I

|

I

Sixty-Three
In fig. 121 extend FG to C, HB
~B\_ oL, draw KL par. to AH, and take
’ **\ NO = BH and draw OP and NK
» par. to BH.
« $q. AK = quad. AGMB common to
sq’s AK and AF 4 (tri. ACG = tri.

157, fig. (14).

In
N o ABH) + (i CPO = wi. BMF)
\ bi A gt N + (trap. PKNO - tri. KMN = sq.
N KO0y NL=s HD) =sa HD 4 5. AF.
; ’G‘ \\ L .". sq. upon AB = sq. upon BH +-sq.
e XFig1siks”  upon AR
Hmp a. See Edwards’s Geom., 1895, p.

GEOMETRIC PROOFS

Sixty-Four

In fig. 122 extend HB to L mak-
ing FLL = BH, draw HM perp. to
CK and draw HC and HK,

Sq. AK = rect. BM + rect. AM =
2 tri. KBH - 2 tri. HAC = sq. HD
-+ sq. HG.

*. sq. upon AB = sq. upon BH -} sq.
upon AH.

a. See Edwards's Geom., 1895, p.
161, fig. (37).

Sixty-Five

In fig. 123 extend KB and FG res-
pectively to L and C, draw LF and HM
respectively par. to BK and draw MB
and FD.

Sq. AK = paral. ACNL = paral. HN
- paral. HC = (2 tri. BHM =2 tri.
DEF =sq. HD) + sq. HG =sq. HD
-+ sq. HG.

*. sq. upon AB = sq. upon BH - sq.
upon AH.

a. See Math. Mo., V. IV, 1897, p.
269, proof IXIX. ¢
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Sixty-Six

In fig. 124 extend FG to C, draw
KN par. to BH, take NM — BH,
draw ML par. to HB, and draw MK
KF and BE.

Sq. AK = quad. AGOB common to
sq's AK and AF -+ (tri. ACG =
ABH) - (tri. CLM = tri. BOF)
‘Ft 31 + [(tri. LKM —tri. OKE) 4- .
KON — tri. BEH] 4 (tri. MKN
= tri. EBD) = (tri. BEH + tri.
dz&i-:- -_.JK EBD) + (quad. AGOB - tri. BOF
—+ tri. ABC) = sq. HD + sq. HG.
*. sq. upon AB = sq. upon BH < sq. upon AH.
a. See Math. Mo., V. IV, 1897, p. 269, proof LXVIII.

v

gL 7

Ul
[
P

P,JF

Sixty-Seven

g In fig. 125 extend FG to H, draw

,7 1%, HL par. to AC, KL par. to HB, and
i I '\ draw KG, LB, FD and EF.

| D Sq. AK = quad. AGLB common to

f?/ sq’s AK ‘and AF - (tri. ACG =

ABH) + (tri. CKG = tri. EFD =

¥4 sq. HD) - (tri. GKL = tri. BLF)

/o + (tri. BLK = ¥4 paral. HK = ¥ sq.

9}}(: ; HD) = (34 s, HD L % 54, HD) 4
. | (fusd; AGLE 4 tri. ABH 4

BLF) = sq. HD - sq. AF.
". sq. upon AB = sq. upon BH - sq.
upon AH.

a. See Math. Mo., V. IV, 1897, p. 268, proof LXV.

[130]

In fig. 126 extend FG to C
and N, making FN = BD, KB to
‘O, (K being the vertex opp. A in
the sq. CB) draw FD, FE and EB,
and draw HL par. to AC.

Sq. AK = paral. ACMO = paral.
HM - paral. HC = [(paral.
EHLF = rect. EF) — (paral
EOMF — 2 tri. EBF = 2 tri.

sq. HD + sq. AF.

GEOMETRIC PROOFS

Sixty-Eight

DBF = rect. DF) = sq. HD] =

*. sq. upon AB = sq. upon BH + sq. upon AH.
a. See Math. Mo., V. 1V, 1897, p. 268, proof LXVI.

LBy
4 |:1 A
]
; L
By
]
\ "IMF

r}_;__.

e
| ,@ :
AFigae

1I9

In fig. 127 through
C and K draw NP and
PM par. respectively to
BH and AH, and extend
ED to M, HF to L, AG

to C /,
Sq. AK + rect. HM + ?

4 tri. ABH =rect. NM

= sq. HD 4 sq. HG g
+ (rect. NQ = rect.
HM) + (rect. GL =
2 tri. ABH) -+ (rect.
BM = 2 tri. ABH).

*. sq. AK = sq. HD + sq. HG.

Sixty-Nine

to Q, HA to N and FG >IN

*. sq. upon AB = sq. upon BH + sq. upon AH.
[131]
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a. Credited by Joh. Hoffman, in “Der Pythagoraische Lehrsatz,”
1821, to Henry Boad of London; see Jury Whipper, 1880, p. 19,
fig. 13.

D.

This type includes all proofs derived from the figure in which
the square constructed upon the shorter leg overlaps the given triangle
and the square upon the hypotenuse.

Seventy
In fig. 128 extend ED to K, draw
HL perp. to CK and draw HK.
Sq. AK = rect. BL - rect. AL =
(2 tri. BHK == sq. HD + (sq. HE
by Euclid’s proof).
*. sq. upon AB = sq. upon BH - sq.
upon AH.
a. See Jury Whipper, 1880, p. 11,
fig. 3.
Seventy-One
In fig. 129 extend ED to K,
draw CL par. to AH, (L being the
foot of the perp. from C upon the
line KN) EM par. to AB and draw
FE.
Sq. AK = (quad. ACLN = quad.
EFGM) + (tri. CKL = tri. ABH
= trap. BHEN + tri. EMA) 4
(tri. KBD = tri. FEH) —+ tri

{
| \ !
T

0 | BND common to sq’s AK and HD,

{ 27N | =5 HD 4 sq AF.
. N\

) N/ .. sq. upon AB = sq. upon BH -+

C\z_Ejg_— 1'22- —-NK sq-upon AH.

a. See Edwards’s Geom., 1895, p. 155, fig. (2).
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Seventy-Two

In fig. 130 extend ED to K, draw R
HL par. to AC, and draw CM. e N
Sq. AK = rect. BL - rect. AL = (}/ \\
paral. HK -+ paral. HC = sq. HD
-+ sq. HG.

" sq. upon AB = sq. upon BH -+ sq.
upon AH.

a. Devised by the author Aug. 1,
1900.

Seventy-Three

In fig. 131 extend ED to K and Q, 4
draw CL perp to EK, extend GA to M, e
take MN = BH, draw NO par. to AH, (87
and draw FE. @
Sq. AK = (tri. CKL = tri. FEH) - NN
(tri. KBD = tri. EFQ) - (trap. A
AMLP —+ tri. AON = rect. GE) -
tri. BPD common to sq’s AK and BE AT X -
-+ (trap. CMNO = trap. BHEP) =
sq. HD + sq. HG. ! \ oL
". sq. upon AB = sq. upon BH -+ sq. : JN
upon AH. ' - M

a Original with the author, August C -
1,:1900.
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Seventy-Four

F In fig. 132, through D draw LN
, 4 ‘\ par. to AB, extend ED to K, and draw
[‘?f \ HL and CD.
\ N Sq. AH = (rect. AN = paral. AD =
\\ sq. DH) -+ (rect. MK 2 tri. DCK =
\ sq. GH).
A .". sq. upon AB = sq. upon BH 4 sq.
AT £
7 \ ¢+ 1 upen AH.
N e -\;/— -N-1 a. Contrived by the author, August
T R
% o 7 | b. As in types A, B and C, many
D)Ié_&E;' _’9_1{:,24 l( \J other proofs may be derived from the
D type of figure.
Seventy-Five
In fig. 133 extend
'/_‘E FB and FG to L and M
st & \ : making BL = AH and
Q' N\ GM = BH, complete
PN Y the rectangle FO and ex-
Lis N tend HA to N, and ED
<M \ to K.
\ N : Sq. AK -+ rect. MH +

(4 4 tri. ABH = rect. FO

| Y. =sq. HD+4sq. HG 4
5wl b (rect. NK = rect.
N |7 MH) + (rect. MA=
2 tri. ABH) -+ (rect.

Lg 138>
"““;JV DL = 2 tri. ABH);

7 collecting we have sq.

\Vg AL . HD3- sy

HG.
[134]
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.". sq. upon AB = sq. upon BH - sq. upon AH.

a. Credited to Henry Boad by Joh. Hoffmann, 1821; see Jury
Whipper, 1880, p. 20, fig. 14.

E.

This type includes all proofs derived from the figure in which
the squares constructed upon the hypotenuse and the longer leg overlap
the given triangle, ‘

Seventy-Six

In fig. 134, through A draw LM
par. to KB, and draw GB, HK and
HC.

Sq. AK = rect. LB + rect. LA =
(2 tri. HBK = sq. HD) + (2 tri.
CAH = 2 tri. BAG = sq. AF).

.". sq. upon AB = sq. upon BH -}- sq.
upon AH.

a. See Jury Whipper, 1880, p. 14,
V1; Edwards’s Geom,, 1895, p. 162, g >
fig. (38) ; Math. Mo., V. V, 1898, p. \6//
74, proof LXXV.

Sewenty-Seven

In fig. 135 extend DE to K and
draw DL and CM par. respectively to
AB and BH.

Sq. AK = (rect. LB — paral. AD =
sq. BE) -+ (rect. LK = paral. CD =
trap. CMEK = trap. AGFB) -+ (tri.
KDN = tri. ABC) = sq. BE + sq. .
AF.

.". sq. upon AB = sq. upon BH 4 sq.
upon AH.

a. See Math. Mo., V. V, 1898, p. 74, LXXIX.
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N

N\

i1

Seventy-Eight

In fig. 136 extend KB to P, draw
CN par. to HB, take NM = HB, and
draw ML par. to AH.
Sq. AK = (quad. NOKC = quad.
GPBA) 4 (tri. CLM = tri. BPF) -+
(trap, ANML = trap. BDEQ) -} tri.
ABH common to sg's AK and AF
tri. BOH common to sq's AK and HD
=sq. HD 4 sq. AF.
*. sq. upon AB = sq. upon BH — sq.
upon AH.

a. Math. Mo., V. V, 1898, p. 74, proof LXXVIIL.

Seventy-Nine

In fig. 137, extend DE to
K, GA to L, draw CL par. to

/'I)E AH, and draw LD and HG.

Sq. AK = 2[trap. ABNM =
tri. AOH common to sq’s AK
and AF 4 (tri. AHM = tri.
AGO) + tri. HBN common to
sq's AK and HD + (tri. BHO
= tri. BDN) = sq. HD +- sq.
AF.

*. 5q. upon AB = sq. upon BH
~+ sq. upon AH.

a. See Math. Mo., V. V, 1898, p. 74, proof LXXVL
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Eighty

In fig. 138 GF and ED to

O and complete the rect. MQ.

Extend DB to N.

Sq. AK + rect. NO 4+ 4 tri.

ABH = rect. MO = sq. HD .7

+ sq. AF -+ rect. BO + [rect.¢

AL = (rect, HN = 2 tri,

ABH) + (s¢ HG = 2 tri.
“ABH -+ rect. NF)], which

coll'd gives sq. AK = sq. HD

sq. HG.

.". sq. upon AB = sq. upon BH

-}~ sq. upon AH.

a, Credited to Henry Boad by Joh. Hoffman, in “Der Pytha-
goraische Lehrsatz,” 1821 ; see Jury Whipper, 1880, p. 21, fig. 15.

Eighty-One

In fig. 139 draw CL and KL par.
respectively to AH and BH, and draw.
through H, LP.

Sq. AK = hexagon AHBKLC =
paral. LB - paral. LA = sq. HD
sq. AF.

". sq. upon AB = sq. upon BH -
sq. upon AH.

a. Devised by the author, March

12, 1926.
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k'_ 150 F L| Eighty-Two
0 N In fig. 140 extend CA, HB, DE
\ | and CK to M, N, K and L respective-

N ; ly, and draw MN, LN and CO res-
pectively par. to AB, KB and HB.

| Sq. AK 4+ 2 tri. AGM +} 3 tri. GNF

| -+ trap. AGFB = rect. CN = sq.

I HD 4 sq. HG + 2 tri. AGM +- 3

tri. GNF - trap. COEK. which

HG.
*. sq. upon AB = sq. upon BH --sq. upon AH.
a. See Math. Mo., V. V, 1898, p. 74, proof LXXVIIL.

Eighty-Three

In fig. 141 extend KB and CA res-
pectively to O and N, through H draw
LM par. to KB, and draw GN and
MO respectively par. to AH and BH.
3. Sq. AK = rect. LB + rect. LA =
paral. BHMO +- paral. HANM = sq.
HD -} sq. AF.
*.-sq. upon AB = sq. upon BH -+ sq.
upon AH.

a. Original with the author, Aug-
ust 1, 1900.

b. Many other proofs are derivable
from this type of figure.

¢. An algebraic proof is easily obtained from fig. 141.

F.

This type includes all proofs derived from the figure in which
the squares constructed upon the hypotenuse and the shorter leg over-
lap the given triangle.
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'M_'_ﬁ: ___m coll'd gives sq. AK = sq. HD + sq.~

GEOMETRIC PROOFS

Eighty-Four

In the fig. 142 draw KM par. to

AH,

Sq. AK = (tri. BKM = tri. ACG)

+ (tri. KLM = tri. BND) - quad. f}
AHLC common to sqg’s AK and AF

-+ (tri. ANE = tri. CLF) - trap.
NBHE common to sq’s AK and EB

= sq. HD + sq. HG. 3
". sq. upon AB = sq. upon BH + -;D/

sq. upon AH.

a. The Journal of Education, V. XXVIII, 1888, p. 17, 24th
proof, credits this proof to J. M., McCready, of Black Hawk, Wis.;
see Edwards’s Geom., 1895, p. 89, art. 73; Heath's Math. Mono-
graphs, No. 2, 1900, p. 32, proof XIX.

Eighty-Five

In fig. 143 extend AH to N mak- /\-E
ing HN = HE, through H draw LM ﬁ( 'q
1
|
|
ol

//

par. to BK, and draw BN, HK and (5~ / }
e, ¢
Sq. AK = rect. LB -+ rect. LA = \
(2 tri. HBK = 2 tri. HBN = sq. Y
HD) -+ (2 tri. CAH = 2 tri. AHC \
— sq. HG) = sq. HD + sq. HG. A 5
". sq. upon AB = sq. upon BH \a’
sq. upon AH.

a. Original with the author, August 1, 1900.

b. An algebraic proof may be resolved from this figure.

¢. Other geometric proofs are easily derived from this form of
figure.

|
.I'
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Eighty-Six

In fig. 144 draw LH perp. to AB
and extend it to meet ED) produced and
draw MB, HK and HC.

Sq. AK = rect. LB + rect. LA =
(paral. HMBK = 2 tri. MBH = sq.
PE) + (2 tri. CAH = 2 tri. AHC
=sq. AF) = sq. BE -} sq. AF.

.". sq. upon AB = sq. upon BH - sq.
upon AH.

a. see Jury Whipper, 1880, p. 14,
fig. 7.

Eighty-Seven

In fig. 145 extend GA and
BD to M, complete the square
ML, and extend AH to O.
Sq. AK + 4 tri. ABH = sq.
LM = sq. HD -+ sq. HG +
3 tri. ABH = (trap. BNOP +
tri. ARE = tri. ABH), which
collected gives sq. AK =sq. HD
-+ sq. HG.
.". sq. upon AB = sq. upon BH
- sq. upon AH.

a. See Jury Whipper, 1880,
p. 17, fig. 11, where it is credited, by Johann Hoffmann, in “Der
Pythagoraische Lehrsatz,” 1821, to Henry Boad.

G.
This type includes all proofs derived from figures in which the
squares constructed upon the two legs overlap the given triangle.
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Eighty-Eight

In fig. 146 extend FG to C and draw
KL par. to AG.
Sy. AK = quad. AGMB common to sq’s
AK and AF + (tri. ACG = tri. ABH) +
(tri. HKL = trap. NBHE + tri. BMF)
+ (tri. KML = tri. CND) — sq. HD +
sq. HG.
". sq. upon AB = sq. upon BH 4 sq. upon
AH. i

a. See Edwards's Geom., 1895, p. 161,

N P

e

B g
afig the

fig. (33); Math. Mo., V. V, 1898, p. 73, proof LXX.

b. In Sci. Am. Sup., V. 70, p. 359, Dec.

3, 1910, is a proof by

A. R. Colburn, by use of above figure, but the argument is not that

given above,

Eighty-Nine

In fig. 147 extend FG to C and ED to
K.
Sq. AK = (tri. ACG = tri. ABH of sq.
HG) 4 (tri. CKL = trap. NBHE - tri.
BMF) ~+ (tri. KBD = tri. BDN of sq.
HD -+ trap. LMBD common to sq’s AK
and HG) 4 pentagon AGLDB common to
sq's AK and HG) = sq. HD + sq. HG.
.". sq. upon AB = sq. upon BH - sq. upon
AH.

a. See Edwards's Geom., 1895, p. 159, fig. (24) ; Sci. Am. Sup.,
V. 70, p. 382, Dec. 10, 1910, for a proof by A. R. Colburn on same

~ form of figure.
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Ninety

In fig. 148 extend FG to C and draw

HG extended to L.

Sq. AK = 2[trap. ACLM = tri. GMA
7R common to sq's AK and AF - (tri. ACG =
LN T .Ir'p‘ tri. AMH of sq. AF + tri. HMB of sq. HD)

|+ (tri. CLG = tri. BMD of sq. HD)] =
I sq. HD 4 sq. HG.
; | .. sq. upon AB = sq. upon BH - sq. upon
ey 4% K AR
a. See Math. Mo., V, V, 1898, p. 73,
proof LXXII.

Ninety-One

2 In fig. 149 extend FG to C, ED to K
and draw HL par. to BK.
Sq. AK = rect. BL 4 rect. AL = (paral.
I MKBH = sq. HD) + (paral. CMHA =
1\ “pu#” 1% sa. HG) = sq. HD + sq. HG.
‘I .". sq. upon AB = sq. upon BH + sq. upon
oL AR

RN a. Journal of Education, V. XXVII,

Giyﬂji‘ _yK 1888, p. 327, fifteenth proof by M. Dickinson,
Winchester, N. H.; Edwards’s Geom., 1895,
p. 158, fig. (22); Math. Mo., V. V, 1898, p. 73; proof LXXI;
Heath’s Math. Monographs, No. 2, p. 28, proof XIV.
b. An algebraic proof is easily devised from this figure.
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Ninety-Two

In fig. 150 extend ED and FG to K
and C respectively, draw HL perp. to CK,
and draw HC and HK.

Sq. AK = rect. BL. + rect. AL = (paral.
MKBH = 2 tri. KBH = sq. HD) -+
(paral. CMHA = 2 tri. CHA = sq. HG)
=sq. HD 4 sq. HG.

.. sq. upon AB = sq. upon BH —+ sq. upon
AH.

a. See Jury Whipper, 1880, p. 12, fig. 4.

b. This proof is only a variation of the one preceeding.

¢. From this figure an algebraic proof is obtainable,

Ninety-Three
In fig. 151 extend FG to C, HF
to L. making FL = HB, and draw KL

and KM respectively par. to AH and
BH.

N g
Sq. AK = { [(tl’i- CEM = tri. | \\ \3/, &%\\

BKL) — tri. BNF = trap. OBHE] |- *\ ¥ 71 '\
+ (tri. KMN = tri. BOD) = sq. | P D

HD} 4 [(ti. ACG=1ti. ABH) IEw 2 "\ ¢
+ (tri. BOD + hexagon AGNBDO) CWZVZ151_ NB7
=sq. HG] =sq. HD + sq. HG.

" .". sq. upon AB = sq. upon BH -+ sq. upon AH.

a. As taken from “Philosphia et Mathesis Universa, etc.”, Ratis-
bonae, 1774, by Reichenberger; see Jury Whipper, 1880, p. 29, fig.
215
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Ninety-Four

In fig. 152 extend AG, ED, BD and
FG to M, K, L and C respectively.
Sq. AK = 4 tri. ALP + 4 quad. LCGP +-
sq. PQ - tri. AOE — (tri. BNE = tri.
AOE) = (2 tri, ALP + 3 quad. LCGP
+ sq. PQ + tri. AOE = sq. HG) + (2
tri. ALP 4 quad. LCGP — tri. AOE =
sq. HD) = sq. HD + sq. HG.

*.". sq. upon AB = sq. upon BH - sq. upon

AH

a. See Jury Whipper, 1880, p. 29, fig. 26, as given by Reichen-

berger, in Philosophic et

‘N 7
e | N \ ra
%/ T \D', 12
v \ y/
\ w \

yo 3
N = Ko
e]é:: g 15 é :' _\,1K/
; s

N\ ’

\\u/

=

Mathesis Universa, etc.”’, Ratisbonae, 1774.

Ninety-Five

In fig. 153 extend HF and
HA respectively to N and L, and
complete the sq. HM, and extend
I ED to K and BG to C.

? Sq. AK + 4 tri. ABH = sq.
I N HM = (s FK = sq. HD)
! M 4 sa HG + (rect. LG =2
tri. ABH) + (rect. OM =2
tri. ABH) whence sq. AK = sq.

HD 4 sq. HG.

.. sq. upon AK = sq. upon BH

-+ sq. upon AH.

a. Similar to Henry Boad’s proof, London, 1733; see Jury
Whipper, 1880, p. 16, fig. 9; Math, Mo., V. V, 1898, p. 74, proof

LXXIV.
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Nirle.!y-.S"ix
In fig. 154 extend FG and ED to C and
K respectively, draw FL par. to AB, and
draw HD and FK.
Sq. AK = (rect. AN = paral. MB)

2 tri. FOK = tri. FMG + tri. ABH 4
2 tri. DBH) = sq. HD 4 sq. HG.

.. sq upon AB = sq. upon BH -+ sq. upon
AH.

proof LXXIII.

Ninety-Seven

In fig. 155 produce FG to C, through
D and G draw LM and NO par. to AB,
and draw AD and BG.
Sq. AK = rect. NK - rect. AO = (rect.
AM = 2 tri. ADB = sq. HD) 4 (2 tri,
GBA = sq. HG.
.". sq. upon AB = sq. upon BH -}~ sq. upon
AH,

a. This is No. 15 of A, R. Colburn’s
108 pioofs; see his proof in Sci. Am. Sup.,
V. 70, p. 383, Dec. 10, 1910.

a See Math. Mo., V. V, 1898, p. 74,

. N
W \.\ s

N
L R :‘D'_/L:,f:M

NL _.\(5(’/_,_._:0

| =7 I
Gﬂg 155 _K

b. An algebraic proof from this figure is easily obtained.

2 tri. BAD = hx = 2* (1)
2 tri. BAG = h(h — x) = b* (2)

(1) +(2)=0@)h*=a+b. ES.L
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Ninety-Eight

In fig. 156 produce HF and
CK to L, ED to K, and AG to
O, and draw KM and ON par. to
R P AH.
Sq. AK = paral. AOLB = [trap.
AGFB - (tri. OLM = tri.
1 GR ) 0 ABH) = sq HG] + { rect.
=7 Nyl GN = [tri. CLF — (tri. COG
afig 13%')' 20N U RN e (e DL
tri. CKP)] = sq. FK = sq.
HD } =sq HD -+ sq. HG.
.". sq. upon AB = sq. upon BH - sq. upon AH.
a. This proof is due to Prin. Geo. M. Phillips, Ph. D., of the
West Chester State Normal School, Pa., 1875; see Heath’s Math.
Monographs, No. 2, p. 36, proof XXV,

Ninety-Nine

In fig. 157 extend CK and
HF to M, ED to K, and AG to
O making GO = HB, draw ON
par. to AH, and draw GN.

Sq. AK = paral. ALMB = paral.
| GM ~+ paral. AN = [(tri. NGO
| G ﬁ(—’l*r-'zl,ﬂ — tri. NPQ = trap. RBHE) +

. A (tri. KMN = tri. BRD)] = sq.

%F_lﬁ-lsl i SN D O e

M .". sq. upon AB = sq. upon BH
- sq. upon AH.
a. Devised by the author, March 14, 1926.
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H.

This type includes all proofs devised from the figure in which
the squares constructed upon the hypotenuse and the two legs overlap
the given triangle.

One Hundred

In figure 158 draw LM par. to KB,
draw HK, HC, HN and GB, and produce
BH to O making BO = AH, and draw
KO.

Sq. AK = rect. LB + rect. LA = (2 tri.
KHB =2 tri. BHA = sq. HD) + (2 tri.
CAH = 2 tri. AGB = sq. AF) =sq. HD
-+ sq. AF. g
.". sq. upon AB = sq. upon BH -} sq. upon
AH.

a. Original with the author. After-
wards the first part of it was discovered to be the same as the solu-

- tion in Math. Mo., V. V, 1898, p. 78, proof LXXXI.

b. This figure gives readily an algebraic proof.

One Hundred One

In figure 159 extend ED to O, draw
AO, OB, HK and HC, and draw, through
H, LO perp. to AB, and draw CM perp.
to AH.
Sq. AK = rect. LB 4 rect. LA — (paral.
HOBK = 2 tri. OBH = sqg. HD) +
(paral. CAOH = 2 tri, OHA = sq. HG)
= sq. HD 4 sq. HG.
.". sq. upon AB = sq. upon BH + sq. upon
AH.

a. See Olney’s Geom., 1872, Part III,
p. 251, 6th method; Journal of Education, V. XXVI, 1887, p. 21,
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fig. XII1; Hopkins's Geom., 1891, p. 91, fig. VI; Edwards’s Geom.,
1895, p. 160, fig. (31); Math. Mo, V. V, 1898, p. 74, proof
LXXX ; Heath's Math. Monographs, No. 1, 1900, p. 26, proof XI.

b. From this figure one can deduce an algebraic proof.

One Hundred Two

BM, HK and HC.

HD + sq. HG.

AH.

8

b. An algebraic proof follows from the “mean prop’l” principle.

One Hundred Three

— sq. HD + sq. HG.

_AH.
[148]

In fig. 160 draw LM perp. to AB
through H, extend ED to M, and draw BG,

Sq. AK = rect, LB -} rect. LA = (paral.
KHMB = 2 tri. MBH =sq. HD) + (2
tri. ABH = 2 tri. BAG =sq. HG) = sq.

7 : .". sq. upon AB = sq. upon BH - sq. upon

a. See Jury Whipper, 1880, p. 15, fig.

In fig. 161 extend ED to Q, BD to R,
draw HQ perp. to AB, CN perp. to AH,
KM perp. to CN, and extend BH to L.
Sq. AK = tri. ABH common to sq's AK
and HG + (tri. BKL = trap. HEDP of
sq. HD + tri. QPD of sq. HG) -+ (tri;
KCM = tri. BAR of sq. HG) + (tri.
CAN = trap. QFBP of sq. HG 4 tri.
HPB of sq. HD) + (sq. MH = sq. RQ)

.". 5q. upon AB = sq. upon BH - sq. upon

GEOMETRIC PROOFS

a. See Edwards’s Geom., 1895, p. 157, fig. (13); Math. Mo.,

V. V, 1898, p. 74, proof LXXXII.
One Hundred Four

In fig. 162 extend ED to P, draw HP,
draw CM perp. to AH, and KL perp. to
CM.
Sq. AK = tri. ANE common to sq's AK
and NG - trap. ENBH common to sq’s
AK and HD + (tri. BOH = tri. BND
of sq. HD) - (trap. KLMO = trap.
AGPN) —+ (tri. KCL = tri. PHE of sq.
HG) + (tri. CAM = tri. HPF of sq.
HG) = sq. HD -+ sq. HG.
", 5q. upon AB = sq. upon BH < sq. upon
AH. 3

a. Original with the author August 3, 1890.

\\$>l§ -~

b. Many other proofs may be devised from this type of figure.

One Hundred Five
In fig. 163 extend GA to
M, GF to N, and complete
rect. MN, and extend DB and
AH respectively to O and P.
Sq. AK -+ rect. BN -+ 3 tri
ABH + trap. AGFB = rect.
MN = (sq. HO = sq. HD)
-+ sq. HG 4 rect. BN +
[rect. AL = (rect. HL = 2
tri. ABH) + (sq. AR = tri.
ABH -} trap. AGFB)] = sq.
HD -+ sq. HG.
. sq. upon AB = sg. upon
BH - sq. upon AH.
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a. See Jury Whipper, 1880, p. 22, fig. 16, credited by Joh. Hofl-
mann in “Der Pythagoraische Lehrsatz,” 1821, to Henry Boad, of
London, Eng.

1

This type includes all proofs derived from a figure in which
there has been a translation from its normal position of one or more
of the constructed squares.

Symbolizing the hypotenuse-square by h, the shorter-leg-square
by a, and the longer-leg-square by b, we find, by inspection, that there
are seven distinct cases possible in this I-type of figure, and that each
of the first three cases have four possible arrangements, each of the
second three cases have #awo possible arrangements, and the seventh
case has but one arrangement, thus giving 19 sub-types, as follows:
(1) Translation of the h-square, with

" (a) The a- and b-squares constructed outwardly.

(b) The a-sq. const’d out'ly and the b-sq. overlapping.

(c¢) The b-sq. const'd out’ly and the a-sq. overlapping.

(d) The a- and b-sq’s const’d overlapping.

(2) Translation of the a-square, with
(a) The h- and b-sq’s const'd out'ly.
(b) The h-sq. const'd out'ly and the b-sq. overlapping.
(c) The b-sq. const’d outlly and the h-sq. overlapping.
(d) The h- and b-sq’s const’d overlapping.

(3) Translation of the b-square, with
(a) The h- and a-sq’s const'd out’ly.
(b) The h-sq. const’d out'ly and the a-sq. overlapping.
(¢) The a-sq. const'd out'ly and the h-sq. overlapping.
(d) The h- and a-sq’s const'd overlapping.

(4) Translation of the h- and a-sq’s, with
(a) The b-sq. const'd out'ly.
(b) The b-sq. overlapping.

(5) Translation of the h- and b-sq’s with
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-(a) The a-sq. const’d out'ly.
(b) The a-sq. const'd overlapping.
(6) Translation of the a- and b-sq’s, with

(a) The h-sq. const’d out’ly.

(b) The h-sq. const’d overlapping.

(7) Translation of all three, h-, a- and b-squares.

From the sources of proofs consulted, I discovered that only 8
out of the possible 19 cases had received consideration. To complete
the gap of the 11 missing ones I have devised a proof for each missing
case, as by the Law of Dissection (see fig. 62, proof Four) a proof is
readily produced for any position of the squares. Like Agassiz's stu-
dent, after proper observation he found the law, and then the arrange-
ment of parts (scales) produced desired results.

Case (1), (a).

One Hundred Six

In fig. 164 the sq. upon the
hypotenuse, hereafter called the
h— sq., has been translated to the
position HK. From P the middle
pt. of AB draw PM making HM
— AH; draw LM, KM, and -
CM ; draw KN = LM, perp. to
LM produced, and CO = AB,
perp. to HM.

Sq. HK = (2 tri. HMC =
HM % CO =sq. AH) + (2
tri. MLK = ML » KN = sq.
BH) —sq. BH + sq. AH.

.". sq. upon AB = sq. upon BH + sq. upon AH.

a. Original with the author, August 4, 1900. Several other
proofs from this figure is possible. :
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Case (1), (b).
One Hundred Seven
£ In fig. 165, the po-
,’TP \ Q(\ sition of the sq's are evi-
] 311 \Sn,’ L? dent, as the b— sq. over-
| - b1 laps and the h— sq. is
i f T translated to right of nor-
- h \5;{.-.._ OL*-.___\\\ mal position. Draw EM
A \\Fl 3165 a’JF j / -":fNi ;.K> perp. to AB through B,
i i \\ I/ +,7 ke KL = EB, draw
! \G’ \ ' LC, and BN and KO
\\é - perp. to LC, and FB perp.
| . . to BN.
Sq. BK = (trap. FCNB = trap. PBDE) + (tri. CKO = tri.
ABH) -~ (tri. KLO = tri. BPH) + (quad. BOLQ +- tri. BTF
— trap. GFBA) = sq. BH - sq. AH.
.". sq. upon AB = sq. upon BH - sq. upon AH.

a. One of my dissection devices.
Case (1), (c).
AR _
G// | Ye, One Hundred Eight
<\ by In fig. 166 draw LA and produce
il A iR O, i e GO, L and RN
\\‘ each perp. to LA. (D is the vertex
opp. H in the sq. EB.)
/’ | N A " 8g: CK = (tr: CAB-= tri. BPD)
73 2 .7 4 (trap. CLMO + trap. BPEH) +
¢——Ue. (i KRN = tri. AQG) + (quad.
L Fi G1e6,K  NKEA -+ tri, RML — trap. AHTQ)
Yl 15 =50 HD, 4 1. CK.
\D.,_IM - *. sq. upon AB = sq. upon BH +
-

sq. upon AH.
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GEOMETRIC PROOFS

Casg (1), (d).
One Hundred Nine

In fig. 167 draw HO and LP each
equal to and perp. to AB, draw CN,
and KP each par. to AB, draw EF, and
produce ED to R and BD to Q. ¢

Sq. CK = (tri. KLP = trap. BHESof '\ \® k7 "\
sq. HD 4 tri. AES of sq. AG) + (tri. Ql’{' i
HKO = trap. AQDS of sq. HG - tri. e R
BSD of sq. HD) -+ (tri. CHA = tri.

FEH of sq. HG) + (tri. LCT = tri.

EFR of sq. HD) 4 (tri. CHN = tri.

FEH of sq. HG) = sq. HD 4 sq. HG.

.". 5q. upon AB = sq. upon BH 4 sq. upon AH.

Case (2), (a).
One Hundred Ten

In fig. 168 with sq's placed
as in the figure, draw HL perp.
to CK, CO and BN par. to
AH, making BN = BH, and
draw KN,

Sq. AK = rect. BL 4 rect.
AL = (paral. OKBH = sq.
BD) -l (paral. COHA = sq.
AF) = sq. BD - sq. HG. o

", sq. upon AB = sq. upon o IL\‘ lk

BH 4 sq. upon AH. (e — - 1

Case (2), (b).—For which are more proofs extant than for any
other of these 19 cases—Why? Because of the ready dissection of
the resulting figures.
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One Hundred Eleven

In fig. 169 extend FG to C.
Sq. AK = (pentagon AGMKB —
quad. AGNB common to sq’s AK and
AF + tri. KNM common to sq's AK

|
e,
|

; j\q and FK) - (tri. ACG = tri. BNF 4
\ | . trap. NKLF) + (tri. CKM = tri.
i 9’[?: | bABH):sq.FK—I—sq.AF. ‘
] .". 5q. upon AB = sq. upon BH -+ sq.
qu;g_“’_g upon AH.

a. See Hill's Geom. for Beginners,
1886, p. 154, proof I; Beeman and Smith's New Plane and Solid
Geom., 1899, p. 104, fig. 4.
b. This ﬁgure is of special interest as the sg. ML may occupy
15 other positions having common vertex with sq. AK and its sides
coincident with side or sides produced of sq. HG. One such solu-
tion is that of fig. 164.

One Hundred Twelve

In fig. 170 extend FG to C.

Sq. AK = quad. AGNB common to sq’s
AK and AF + (tri, ACG — tri. ABH) +

)
i P44 (tri. CME = tri. BNF) + (trap. EMKD
| \\ gt ] common to sq's AK and EK) -+ (tri. KND
| o] = tri. KML) = sq. DL -} sq. AF.
| E(f,G \a I .". sq. upon AB = sq. upon BH - sq. upon
sy 1g110yk  AH.
\ , a. See Edwards’s Geom., 1895, p. 161,
{5l fig. (35).
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One Hundred Thirteen

In fig. 171 extend FG to C and const.
sq. HM = sq. LD, the sq. translated.
Sq. AK = (tri. ACG = tri. ABH) 4 (tri.

COE = tri. BPF) + (trap. EOKL com- S0 ’:B‘>
mon to both sq’s AK and LD, or = trap. | ~ ‘M~ F
NQBH) 4 (tri. KPL = tri. KOD = 1 Y k', |
ti. BQM) + [(ei. BQM + polygn | &7 |
AGPBMQ) = quad. AGPB common to :

s¢'s AK and AF] = sq. LD 4 sq. AF. cL:E< E’L_HJ 7}-_}.1'(
.". sq. upon AB = sq. upon BH + sq. upon I8 7
AH. b o

a. See Sci. Am. Sup., V. 70, p. 359, Dec. 3, 1910, by A. R.
Colburn,

b. I think it better to omit sq. HM (not necessary), and thus
reduce it to proof above.

One Hundred Fourteen

In fig. 172 extend ED to K and draw
KM par. to BH.
Sq. AK = quad. AGNB common to sq's 3
AK and AF —+ (tri, ACG = tri. ABH) +
(tri. CKM = trap. CEDL - tri. BNF)
~+ (tri. KNM = tri. CLG) = sa. GE +

|
|
sq. AF Ve
q sq. upon AB = sq. upon BH + sq. upon C‘g—& L2, "'\7IK'
AH. N
a. See Edwards’s Geom., 1895, p. 156, \\5’
fig. (8).
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One Hundred Fifteen

In fig. 173 extend DE to C ana
draw KN par. to HB.
Sq. AK = quad. AGNB common to

5 v 5¢'s AK and HG + (tri. ACG = tri.
s |4 CAD = trap. EMAD 4 tri. BNF)
@ ' Mg p7) -+ (i CKN = tri. ABH) + (tri.
Ol Y 1 KNP =i AML) = DL +
LE - i \\ | sq. AF.
qujg_flé_ _MK .. sq. upon AB = sq. upon BH - sq.
upon AH.

a. See Math. Mo., V. VI, 1899, p. 33, proof LXXXVI,

@ne Hundred Sixteen

In fig. 174 extend ED to C, DN
to B, and draw EO par. to AB, KL
perp. to DB and HM perp. to EO.
Sq. AK = rect. AO + rect. CO =
g paral. AELB - paral. ECKL = sq.
AD 4 sq. AF.

*. sq. upon AB = sq. upon BH -
sq. upon AH.

a. See Math, Mo., V. VI, 1899,
p. 33, LXXXVIIL
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One Hundred Seventeen

In fig. 175 extend HF to L,
HA to M and complete the square
HE. Sq. AK + 4 tri. ABH =

sq. HE_quD-I-sq.AF—l—T ’fl\ |/’E
(2 rect. GL = 4 ti, ABH), B’ e e
whence sq. AK = sq. CD -+ sq. » | \5’ | \D
AF. X \ I 4 ZEEN [ 7
". sq. upon AB = sq. upon BH UJI{ 178 i
-+ sq. upon AH. ! \_é -‘A;-JK

a. This is one of the conjec- Y e D
tured proofs of Pythagoras; see é/

Ball's Short Hist. of Math., 1888, p. 24; Hopkins's Plane Geom.,
1891, p. 91, fig. IV; Edwards’s Geom., 1895, p. 162, fig. (39);
Beman and Smith's New Plane Geom , 1899, p. 103, fig. 2; Heath's
Math. Monographs, N. 1, 1900, p. 18, proof II.

One Hundred Eighteen

N In fig. 176 extend FG to C, draw
HN perp. to CK and KM par. to HB.
Sq. AK = rect. BN -+ rect. AN =
{ R paral. BHMK - paral. HACM = sq.
el B ok L%.ADnl—sq. AF.
g I N1 71 . sq. upon AB = sq. upon BH - sq.
' Asﬁ"@, | upon AH.
a. See Math. Mo., V. VI, 1899, p.

g,fl H_”&’.N_ 'JK 33, proof LXXXVIL
b. In this figure the given triangle

may be either ACG, CKM, HMF or BAL; taking either of these
four triangles several proofs for each is possible. Again, by inspection,
we observe that the given triangle may have any one of seven othar
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L

positions within the square AGFH, right angles coinciding. Further-
more the square upon the hypotenuse may be constructed overlapping,
and for each different supposition as to the figure there will result
several proofs unlike any, as to dissection, given heretofore.

¢. The simplicity and applicability of figures under Case (2), (b)
makes it worthy of note.

Case (2), (c).
One Hundred Nineteen
In fig. 177 ED being the sq. trans-
/'f\\ lated, the construction is evident.
F” \ . Sq. AK = quad. AHLC common to

Sk~ —— o s AK and AF 4 (tri. ABC = tri.
ACG) 4+ (tri. BKD = trap. LKEF
— tri. CLF) + tri. KLD common to
sq's AK and ED =sq. ED 4 sq. AF.

el
N .". 5q. upon AB = sq. upon BH - sq.
3 a. Sec Jury Whipper, 1880, p. 22,

fig. 17 as given by von Hauff, in “Lehrbegriff der reinen Mathe-
matik,” 1803 ; Heath’s Math, Monographs, 1900, No. 2, proof XX.
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Case (2), (d).

One Hundred Twenty

In fig. 178 extend KB to P, CA
to R, BH to L, draw KM perp. to
BL, take MN = HB, and draw NO
par. to AH.

Sq. AK = tri. ABH common to sq’s
AK and AF -+ (tri. BON = tri.
BPF) -+ (trap. NOKM = trap.
DRAE) + (tri. KLM = tri. ARQ)
-+ (quad. AHLC = quad. AGPB) .
= sq. AD - sq. AF.

*. sq. upon AB = sq. upon BH
sq. upon AH.

a. See Math. Mo., V. VI, 1899, p. 34, proof XC.

One Hundred Twenty-One

In fig. 179 upon CK const. tri.
CKP = tri. ABH, draw CN par. to
BH, KM par. to AH, draw ML and
through H draw PO.

Sq. AK = rect. KO + rect. CO =
(paral. PB = paral. CL = sq. AD)
-+ (paral. PA = sq. AF) = sq. AD
-|— sq. AF.

". sq. upon AB = sq. upon BH 4

sq. upon AH.

a. Original with the author, July
28, 1900.

b. An algebraic proof comes read-
ily from this figure.
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Case (3), (a). :
One Hundred Twenty-Two

AE In fig. 180 produce DB to
MY N, HB to F, KB to M, and draw
4 ! fs N CN, AO, KP and RQ perp. to
W N
< Sq. AK = (quad. CKPS -}~ tri.
: : R [ BRQ = trap. TBLF) 4 (tri.
g ,:"B/ | \ e : KBP = tri. TBG) - (trap.
ok SR ) 1\ | OQRA = trap. BMED) +
- % | N\

g 1 4 | (tri. ASO = tri. BMH) = sq.
%FF' N _ T E HD + sq. GL.
i g Y .". sq. upon AB = sq. upon BH
~+ sq. upon AH.
a. Devised for missing Case (3), (a), March 17, 1926.

Case (3), (b).
1 One Hundred Twenty-T hree

In fig. 181 extend ED to K and
through D draw GM par. to AB.
Sq. AK = rect. AM + rect. CM =
i AR Ei A (paral.cti'}}‘l‘i}z sq. I‘E})})i— (paléacl. CcD
\ 280, = sq. sq. EC.
o _'}L_ 7 _:Q;}_: 'MJ! .". sq. upon AB == sq. upon BH -+ sq.
Nl i \ upon AH.
\ ey ! a See Math. Mo,, V. VI, 1899, p.
ot -Tﬂ-_f

N

33, proof LXXXV. i
b. This figure furnishes an algebraic
proof.
¢. If any of the triangles congruent to tri. ABH is taken as the
given triangle, a figure expressing a different relation of the squares
is obtained, hence covering some other case of the 19 possible cases.
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One Hundred Twenty-Four

In fig. 182 extend EF to K.
Sq. AK = quad. ACFL common to sq's
AK and GF -+ (tri. CKF = trap.
LBHE + tri. ALE) — (tri. KBD =

3 L% ,

tri. CAG) -+ tri. BDL common to sq's ¢~ | Nz ]
AK and HD = sq. HD -+ sq. AK. (é/ | Q,\F |
*. sq. upon AB = sq. upon BH 4 sq. M | S
upon AH.

N L

a. See Olney’s Geom., Part 1II, \J/L‘ﬂ@k_\:
1872, p. 250, 2nd method; Jury Whip-
per, 1880, p. 23, fig. 18; proof by E. Forbes, Winchester, N. H., as
given in Jour. of Ed'n, V. XXVIII, 1888, p. 17, 25th proof; Jour.
of Ed’'n, V. XXV, 1887, p. 404, fig. II; Hopkins's Plane Geom.,
1891, p. 91, fig. I11; Edwards's Geom., 1895, p. 155, fig. (3) ; Math.
- Mo., V. VI, 1899, p. 33, proof LXXXIII; Heath's Math. Mono-
graphs, No. 1, 1900, p. 21, proof V; Geometric Exercises in Paper
Folding, by T. Sundara Row, fig. 13, p. 14 of 2nd Edition of The
Open Court Pub. Co., 1905. Every teacher of geometry should use
this paper folding proof.

One Hundred Twenty-Five

In fig. 183 extend EF to K, and
HL perp. to CK.
Sq. AK = rect. BL + rect. AL =
paral. BF - paral. AF = sq. HD |-

|
sq. G‘F ey \\ V‘/ |
‘. sq. upon AB = sq. upon BH -+ g | | i
sq. upon AH. s I )f |
a. See Math. Mo., V. VI, 1899, N 1 -// | \\!
p. 33, proof LXXXIV. . L( E/L L[ #3.
b. Fig. 183 is fig. 182 with extra 14 3’L“ K
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a. See- Sci. Am. Sup., V. 70, p. 383, Dec. 10, 1910, in which
proof A. R. Colburn makes T the given triangle, and then substitutes
part 2 for part 1, part 3 for parts 4 and 5, thus showing sq. AK —
sq. HD 4 sq. FG.

line HL, fig. 182 gives a proof by congruency, while fig. 183 gives a
proof by eguivalency, and it also gives an algebraic proof by use of
the mean proportional.

Casg (3), (c).

One Hundred Twenty-Six Case (3), (d).

One H wndred Twenty-Light

In fig. 186 produce AH to O, draw

CN par. to HB, and extend CA to G. E‘— T A 'Jﬁ
Sq. AK = trap. EMBH common to
sq’s AK and HD -+ (tri. BOH = tri.
BMD) -+ (quad. NOKC = quad.
FMAG) -+ (tri. CAN = tri. GAL)
—+ tri. AME common to sq's AK and

In fig. 184 the construction is evi-
dent, FG being the translated b-square.
Sq. AK = quad. GLKC common to
sq's AK and CE + (tri. CAG = trap.
BDEL - tri. KLE) + (tri. ABH =
N\ tri. CKF) + tri. BLH common to sq’s
I},\AKand HD = sq. HD -} sq. CE.
< .. sq. upon AB = sq. upon BH + sq.
upon AH.

EG =: sq. HD -+ sq. LF. R
a. See Halsted’s Elements of Geom., . sq. upon AB = sq. upon BH + sq. % 7 \3//
1895, p. 78, theorem XXXVII; Edwards's Geom., 1895, p. 156, upon AH. \ I )F
fig. (6); Heath's Math, Monographs, No. 1, 1900, p. 27, proof 2. See Math. Mo.. V. VI. 1899 i 7
XIIL . 34, proof LXXXIX. ‘\é "7

b. As the relative pgsition of thc
given triangle and the translated square may be indefinitely varied, so

One Hundred Twenty-Seven
In fig. 185 draw KL perp. to CG

thi ber of f: t be indefinitel t, of which the follow-

/‘F e MO BH. oA . in; :;u;?‘:r of proofs must be indefinitely great, of which the follow
g/ Sq. AK = (tri. ABH = tri. CKF) +
= tri, BNH common to sq's AK and HD

N T I X+ (quad. CGNK = sq. LH + trap.
MHNK - tri. KCL) common to sq’s
M AK and FG -+ (tri. CAG = ‘trap.
BDEN - tri. KNE) = sq. HD 4 sq.
FG.

*. sq. upon AB = sq. upon BH + sq.
upon AH.
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One Hundred Twenty-Nine

In fig. 187 draw LM through H.
v Sq. AK = rect. KM + rect. CM =
i paral. KH - paral. CH =sq. HD
(sq. on AH = sq. NF).

//
ik BN
o |
v
: |
| .". sq. upon AB = sq. upon BH
sq. upon AH.

a. Original with the author, July
28, 1900.

b. An algebraic solution may be
devised from this figure.

e

\\@/
Case (4), (a).
; One Hundred Thirty

In fig. 188 extend KH to

K T making NT = AH, draw

N TC, draw FR, MN and PO

\\ perp. to KH, and draw HS par.
. EOAgkz( d. CMNH

% q. quad. —

%/ tri. KPO = quad. SHFG) +-

1\ (tri. MKN = tri. HSA)

g \\ (trap. FROP = trap. EDLB)

;5 :D) ~+ (tri, FHR = tri. ECB) =
» sq. CD - sq. GH. :

B\Lv/ .". sq. upon AB = sq. upon BH

- ~+ sq. upon AH.
a. Devised by author for case (4), (a) March 18, 1926.
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Case (4), (b).
One Hundred Thirty-One

In fig. 189 draw GP
par. to AB, take LS = AH,
draw KS§, draw LO, CN and
QM perp. to KS, and draw
BR.

Sq. AK = (tri. CKN = tri.
ABH) + (tri. QKM =tri. &
BRF) + (trap. QLOM =
trap. PGED) -+ (tri. LSO
= tri. GPR) 4 (quad.
COSA = quad. AGRB) =
sq. GD - sq. AF.

.". sq. upon AB = sq. upon BH -} sq. upon AH.

a. Devised by author for Case (4), (b).
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Casge (3), (a).
One Hundred Thirty-Two

In fig. 190 CE and AF are the
translated sq’s; produce GF to O
and complete the sq. MO ; produce
HE to S and complete the sq. US;
produce OB to Q, draw MF, draw
WH, draw ST and UV perp. to
WH, and take TX = HB and
draw XY perp. to WH. Since sq.
MO = sq. AF, and sq. US = sq.
CE, and since sg. RW = (quad.
URHV 4+ tri. WYX = trap.
MFOB <4 (tri. HST = tri.
BQH) -+ (trap. TSYX = trap.

|
|

N
G- :g[-‘__llo MFN) — sq. HD + (sqg. NB =
sq. AF).

.. sq. RW = sq. upon AB = sq. upon BH -+ sq. upon AH.
a. Devised March 18, 1926, for Case (5), (a).

BDEQ) -+ tri. UVW = tri.

GEOMETRIC PROOFS

Case (5), (b).

One Hundred Thirty-Three

In fig. 191 draw GL through
B, and draw PQ, CO and MN perp.
to BL.
Sq. BK = (tri. CBO = tri. BGD)
-+ (quad. OCKL + tri. BPO =
trap. GFRB) + (tri. MLN = tri. g X|
BSD) -+ (trap. PQNM = trap.
SEHB) = sq. HD + sq. DF.
.". sq. upon AB = sq. upon BH |
sq. upon AH.

a. Devised for Case (5), (b).

ase (6), (a).

One Hundred Thirty-Four

In fig. 192 extend ED and
FG to M thus completing the
sq. HM, and draw DM. )
Sq. AK + 4 tri. ABC = sq. - by

T S R N N
Kz rece. HD = 4 ui 4BO), \ ! R A
from which sq. AK = sq. LD \ I~ 7 0 | B
- sq. DF. ‘E\'y 1, o
.. sq. upon AB = sg. upon BH C‘L‘ _l‘f_i‘_g’;/\ -JK
-+ sq. upon AH, N : 3 &

a. This proof is credited to \\IM’ «

‘M. MeclIntosh of Whitwater,
‘Wis. See Jour, of Ed’n, 1888, V. XXVII, p. 327, seventeenth proof.
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One Hundred T hirty-Five One Hundred Thirty-Seven

In fig. 195, the translation
E]Ir-; fig. 193 complete the sq. and construction is evident.
S ‘ Sq. AK = (tri. CRP = tri.
D S¢. HM — (4 tri. ABC = 2 BVE) + (trap. ANST = trap. ; E
/ AN ided g rect. HL) = sq. AK = sq. EL BMDV) + (quad. NRKB - il T % | N
E l Ny | \\ + sq. LF. tri. BST = trap. AFGC) + i | \&’4' ool E)
\ i /J-\ I B‘ - 5q. upon AB = sq. upon BH tri. ACP common'to sq. AK and E\ T Bl -
iy e B | AG = sq. ME + sq. FP, S
=) 193, 1 a. See Jour. of Ed’n, 1887, ", sq. upon AB = sq. upon BH = L 155 Rk
a'c 14l fﬁ V. XXVI, p. 21, fig. XIL b o ioa AH, NP (RLAN
// b. Another proof is h?® == a. Devised by author, March 26, 1926, 10 p. m.
MU (a - b)? — 2ab =—a® } b2
One Hundred Thirty-Eight
One Hundred Thirty-Six T B 196 4he i, o AFE
1n' B 190 4k is translated to position of GC, F = "}P
translation is evident. ﬂ?d(;lf; sqben H.EPm ps SE;?;; ll 1 /Iu :
. . o . Draw an ’
ﬁnd Gs;nce],’ by proof]Sz.;, par. to BH making each = :G /_ _L+_ 5t
;\D R 'AH, draw CQ and BS par. to % I N !
F_---& A (3 + 3) and 4 of sq. ! par, ﬂg—m—J -m \5} e
\@/ TLQ — - & AK are congruent with AH, take CN = BH éf"d draw \ 4 |
| 3 e \ s | corresponding parts of NT par. to AB, continue DL : }P \
l
: /& ' 2 N i sq’s KE and LF. to M, and draw DT and TC. UL__ EF’E‘[J'_I?(:_\‘_\;K

Consider the two sq's EL and
GC as the two rect’s EM and
TC, and the sq. LN.

Jf/L E].qq)lq _.K_ AL ’n‘ .". sq. upon AB = sq.
upon BH - sq. upon
AH.

a. Devised by author, March 28, 1926, 3 p. m.
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Sq. AK = (tri. ACP = tri. DTM) -+ (tri. CKQ = tri. TDE)
-+ (tri. KBR = tri. CTO) + (tri. BAS = tri. TCN) -+ (sq.
SQ = sq. LN) =sq. EL 4 sq. GC.

*. sq. upon AB = sq. upon BH + sq. upon AH.

a. Devised by author, March 22, 1926.

b. As sq. EL, having a vertex and a side in common with a
vertex and a side of sq. GC, either externally (as in fig. 194), or
internally, may have 12 different positions, and as sq. GC may have
a vertex and a side in common with the fixed sq. AK, or in common
with the given triangle ABH, giving 15 different positions, there is
possible 180 — 3 = 177 different figures, hence 176 proofs other
than the one given above, using the dissection .as used here, and 178
more proofs by using the dissection as given in proof Four, fig. 62.

c. This proof is a variation of that given in proof Five, fig. 63.

One Hundred Thirty-Nine

; In fig. 197 the con-
struction is evident, as
FO is the translation of
the sq. on AH, and KE
is the translation of the
sq. on BH.

Since rect. CN = rect.
QE, we have sq. AK =
(tri. LKV = tri. CLP)
+ (tri. KBW = tri.
LCF) + (tri. BAT =
tri. KRQ) - (tri. ALU
= tri. RKS) + (sq.
TV =sq. MO) = rect.
KR -+ rect. FP 4

_k
»4.

s
|
g___jfl'Pl Figiss ';D.__;El
G__ M_Q A,
sq. MO = sq. KE + sq. FO.
. sq. upon AB = sq. upon BH - sq. upon AH.
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2; Devised by author, March 30, 1926, 8 p. m.

One Hundred Forty

In figure 198 the
translation and construc-
tion is evident.

Parts 2 and 3 of sq. AK
— parts 2 and 3 of sq. |
DS, parts 1 and 4 + 4
of sq. AK = parts 1and |E Is
4 of sq. KG.
.. sq. upon AB = sq.
upon BH - sq. upon
H.

a. Devised by author, March 27, 1926, 10:40 p. m.

One Hundred Forty-One

In fig. 199 complete the sq.
on EH, draw BD par. to AH,
and draw AL and KF perp. to

B. / z f’ \

Bo. HG — (4w ABH =2 o7 17\ £ 77 1N
ct. HL) = sq. AK = sq. EL € LE S S
+ sa. DK. o o \\Dl’/ '\\ : /M)

.. 8q. upon = sq. upon !
-+ sq. upon AH. e{El-«g—w—g SK/
a. See Edwards's Geom., A

1895, p. 158, fig. (19).

b. By changing position of
. FG, many other proofs might be obtained.
c. This is a variation of proof, fig. 153.
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Case (6), (b).
One Hundred Forty-Twe

In fig. 200 the construction is evident,

AR Sq. AK = (tri. ABH = trap. KEMN +

¥ \, tri. KOF) + (tri. BOH = tri. KLN) +

%—"\1'—— j?{ quad. GOKC common to sq's AK and CF

\ \\L/ |2 + (tri. CAG = tri. CKE) = sq. MK +
1 N\ Kl sq. CF.

A *. sq. upon AB = sq. upon BH - sq. upon

AH.

a. See Hopkins’s Plane Geom., 1891, p.
92, fig. VIIL

b. By drawing a line EH, a proof through parallelogram, may
be obtained. Also an algebraic proof.

c. Also any one of the other three triangles, as CAG may be
called the given triangle, from which other proofs would follow.
Furthermore since the tri. ABH may have seven other positions leav-
ing side of sq. AK as hypotenuse, and the sq. MK may have 12
positions having a side and a vertex in common with sq. CF, we
would have 84 proofs, some of which have been or will be given;
etc., etc., as to sq. CF, one of which is the next proof.

|
|
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One Hundred Forty-Three

5 //H-

In fig. 201, through H draw LM, 2N
and draw CN par. to BH and KO par. % : ke
to AH. ; o
B A= Rk KM S OMi= & 1] ]

paral. KH < paral. CH = HB < KO
'+ AH X CN = sq. on BH + sq. on
AH = sq. MD + sq. MG.

*. sq. upon AB = sq. upon BH -+ sq.
upon AH.

a. Original with the author Janu-
ary 31, 1926, 3 p. m.

Case (7), (a).
One Hundred Forty-Four

In fig. 202 extend

B to X, draw WU and J7F
KS each = to AH and i Iy
par. to AB, CV and HT \#é
perp. to AB, GR and 7 ».1' A _;‘_r_ ;j( 7
FP par. to AB, and LW @7 _ | NRIF] g 909 Y-~
and AM perp. to AB. £ B D, o, g y

8q. AK = (tri. KCS 4+ > 1 | 7
TR !ﬁ’w

BYDX 4 tri. FON) Nk

(tri. HKT = tri. GRA = tri. BEX - trap. RAWQ) + (tri.
UH = tri. LWG) -+ (tri. CWV = tri. WLN) + (sq. VT
= paral. QOFR) = sq. BD + sq. GF.

.". sq. upon AB = sq. upon BH -} sq. upon AH.

a. Original with the author, August 8, 1900.
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b. As in fig. 200 many other arrangements are possible each of
which will furnish proof or proofs.

i
This type includes all proofs derived from figures in which one
or more of the squares are not graphically represented. There are
two leading classes or sub-types in this type—first, the class il which
the determination of the proof is based upon a square; second, the
class in which the determination of the proof is based upon a triangle.
As in the I-type, so here, by inspection we find 6 sub-classes in
our first sub-type which may be symbolized thus:
(1) The h-square omitted, with
(a) The a- and b-squares const’d outwardly—3 cases.
(b) The a-sq. const’d out’ly and the b-sq. overlapping—3 cases.
(¢) The b-sq. const'd out'ly and the a-sq. overlapping—3 cases.
(d) The a- and b-squares overlapping.—3 cases. ;
(2) The a-sq. omitted, with
(a) The h- and b-sq’s const’d out’ly—3 cases.

(b) The h-sq. const'd out'ly and the b-sq. overlapping—3 cases.
(¢) The b-sq. const'd out’ly and the h-sq. overlapping—3 cases.
(d) The h- and b-sq’s const’d out'ly and overlapping—3 cases.

(3) The b-sq. omitted, with
(a) The h-and a-sq’s const’d out'ly—3 cases.

(b) The h-sq. const'd out’ly and the a-sq. overlapping—3 cases.
(¢) The a-sq. const'd out'ly and the h-sq. overlapping—3 cases.

(d) The h- and a-sq’s const'd overlapping—3 cases.
(4) The h- and a-sq’s omitted, with

(a) The b-sq. const'd out'ly,

(b) The b-sq. const’d overlapping,

(c) The b-sq. translated—in all 3 cases.
(5) The h- and b-sq’d omitted, with

(a) The a-sq. const'd out’ly,

(b) The a-sq. const'd overlapping,
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(¢) The a-sq. translated—in all 3 cases.
(6) The a- and b-sq’s omitted, with

(a) The h-sq. const'd out'ly,

(b) The h-sq. const'd overlapping,

(c) The h-sq. translated—in all 3 cases.

The total of these enumerated cases is 45. We shall give but a
few of these 45, leaving the remainder to the ingenuity of the inter-
ested student.
(A)—Proofs determined by arguments based upon a square.

Case (1), (a).

One Hundred Forty-Five

In fig. 203 produce GF

and DE to N and L respective-
ly and draw AM, HL and BN
perp. to AB. The tri. AMG
= tri. ABH.
Sq. HD + sq. GH = (paral.
HO = paral. LP) - paral.
MH = paral. MP = AM X
AB = AB X AB = (AB)%
*. sq. upon AB = sq. upon
BH 4 sq. upon AH.

a. Devised by author for
case (1), (a), March 20, 1926.

b. See proof Fifty-One, fig. 109. By omitting lines CK and HN
in said figure we have fig. 203. Therefore proof No. 145 is only a
variation of proof No. 51, fig. 109.

Analysis of proofs given will show that many supposedly new
| proofs are only modifications of some more fundamental proof.

Case (1), (b).

While this case may be proved in some other way, we have
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selected the following as being quite unique. It is due to the ingen-
uity of Mr. Arthur R. Colburn of Washington, D. C,, and is No.
97 of his 108 proofs.

It rests upon the following Theorem on Parallelogram, which
is: “Tf from one end of the side of a parallelogram a straight line be
drawn to any péint in the opposite side, or the opposite side extended,
and a line from the other end of said first side be drawn perpendicu-
lar to the first line, or its extension, the product of these two drawn
lines will measure the area of the parallelogram.” Mr. Colburn
formulated this theorem and its use is discussed in Vol. 4, p. 45, of
the “Mathematics Teacher,” Dec., 1911. I have not seen his proof,
but have demonstrated it as follows:

In the paral.

b\ ’E - :G.:_- =7 ABCD, from the

\ end A of the side

AB, draw AF to

side DC produced,

. and from B, the

other end of side AB, draw BG perp. to AF. Then AF X BG =
area of paral. ABCD.

Proof: From D lay off DE = CF, and draw AE and BF
forming the paral. ABFE = paral. ABCD. ABF is a triangle and
is one-half of ABFE. The area of tri. FAB = 14 FA > BG;
therefore the area of paral. ABFE = 2 times the area of the tri.
FAB, or FA > BG. But the area of paral. ABFE = area of paral.
ABCD.

.. AF 3 BG measures the area of paral. ABCD. Q.E D.

By means of this Parallelogram Theorem the Pythagarean

Theorem can be proved in many cases, of which here is one.

—
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One Hundred Forty-Six

In fig. 204b extend GF and ED
to L completing the paral. AL, draw /’TE

FE and extend AB to M. Then by \
the paral. theorem: %
(1) EF X AM = AE X AG. i
(2) EF XX BM = FL X BF Fd

. ~
(1) — (2) = (3) EF(AM — BM) \Fi ﬂ-l'o‘:’f,#
—=AEXAG—FLXBF N\ ., ~
(3) = (4) (EF = AB) X AB = ’\(j/
AGFH -+ BDEH
or sq. AB =sa. HG + sq. HD
.". sq. upon AB == sq. upon BH -~ sq. upon AH.
a. This is No. 97 of A. R. Colburn’s 108 proofs.
b. By inspecting this figure we discover in it the five dissected
parts as set forth by my Law of Dissection. See proof Four, fig. 62.

Case (2), (c).
One Hundred Forty-Seven

In fig. 205 produce GA to M mak-
ing AM = HB, draw BM, and draw
KL par. to AH and CO par. to BH. (17 |
Sq. AK = 4 tri. ABH + sq. NH = Q g 9
4 X AH};BH 4+ (AH — BH)?
= 2AH ¥ BH + AH® — 2AH X
BH -+ BH® = BH® + AH2
*. sq. upon AB = sq. upon BH - sq.
upon AH,

a. Original with author, March, 1926.

b. See Sci. Am. Sup., V. 70, p. 383, Dec. 10, 1910, Fig. 17, in
which Mr. Colburn makes use of the tri. BAM.
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c. Another proof by author is obtained by comparison and sub-
stitutions of dissected parts as numbered.
Casg (6), (a). This is a popular figure with authors.

One Hundred Forty-Eight

In fig. 206 draw CD and KD par. res-
pectively to AH and BH, draw AD and BD,
and draw AF perp. to CD and BE perp. to
KD extended.

1N .7 | Sa AK =2 tri. CDA + 2 tri. BDK =
| ‘\‘E / | CD X AF + KD » EB = CD* 4 KD
| \Fm I *. sq. upon AB = sq. upon BH - sq. upon
- \
i AH.
Cu____/l. ﬂ-”%_ﬂl( a. Original with the author, August 4,
1900.

One Hundred Forty-Nine

In fig. 207 extend AH to E making HE
— HB, extend BH to F making HF = HA,
through H draw CN perp. to AB, draw LM
and KM par. respectively to AH and BH,
and, having completed the rect. FE, draw
CA, CB, HL and HK.
Sq. AK = rect. BN - rect. AN = paral.
BM -+ paral. AM = (2 tri. HMK = 2 tri.
CHB = sq. BH) - (2 tri. HAL =— 2 txi)
CAH = sq. AH).

‘. sq. upon AB = sq. upon BH - sq. upon

AH. i

a. Original with author March 26, 1926,
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One Hundred Fifty

In fig. 208 complete the sq. AK overlap-
ping the tri. ABH, draw through H the line
LM perp. to AB, extend BH to N making
BN = AH, and draw KN perp. to BN, and
CO perp. to AH. Then, by the parallelo-
gram theorem, Case (1), (b),

Sq. AK = paral. KM - paral. CM = A
(BH X KN = a?) 4 (AH X CO = b?)
=a? 4 b%

*. sq. upon AB = sq. upon BH 4 sq. upon AH.

4. See Math. Teacher, Vol, 4, p. 45, 1911, where the proof is
credited to Arthur H. Colburn.

b. See fiz. 212—which is more fundarncntal proof No. 150 or
proof No. 154?

c. See fig. 65 and fig. 213.

One Hundred Fifty-One

In fig. 209 draw CL and KL par. to
AH and BH respectively, and through H
draw LM.

Sq. AK = rect. KM - rect. LM = paral.
KH + paral. CH = BH X NL 4+ AH X
NH = BH? 4+ AH®

". 5g. upon AB = sq. upon BH -} sq. upon
AH.

a. This is known as Haynes's Solution
See the Math. Magazine, V. I, p. 60, 1882.
Also said to have been discovered in 1877 by Geo. M. Phllhps, Ph.
D., Prin. of the West Chester State Normal School, Pa. See Heath's
Math. Monographs, No. 2, p. 38, proof XXVI.

b. An algebraic proof is easily obtained.
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One Hundred Fifty-Two

In fig. 210 extend HB to
N and complete the sq. HM.
Sq. AK = sq. HM — 4
M (LA 4 AH)?

—2HBXHA=LA¢—[—
N 2LA X AH 4 AH? — 2HB
P HA = BH? 4 AH:,
‘. sq. upon AB =— sq. upon
BH - sq. upon AH.
a. Credited to T. P. Stow-

L4

\
s

s | N

|
< ‘
N ) '
\F
GL Lgu0 -‘lk
ell, of Rochester, N. Y. See

\H/

i The Math. Magazine, V. I,
1882, p. 38; Olney’s Geom., Part 111, 1872, p. 251, 7th method;
Jour. of Ed’n, V. XXVI, 1877, p. 21, fig. IX; also V. XXVII,
1888, p. 327, 18th proof, by R. E. Binford, Independence, Texas;
The School Visitor, V. 1X, 1888, p. 5, proof 11; Edwards’s Geom.,
1895, p. 159, fig. (27); Math. Mo., V. VI, 1899, p. 70, proof
XCIV; Heath’s Math. Monographs, No. 1, 1900, p. 23, proof
VIII; Sci. Am. Sup., V. 70, p. 339, fig. 4, 1910.

b. For algebraic solutions, see p. 2, in a pamphlet by Artemus
Martin of Washington, D. C., Aug. 1912, entitled “On Rational
Right-Angled Triangles”; and a solution by A. R. Colburn, in Sci.
Am. Supplement, V. 70, p. 359, Dec. 3, 1910.

c. By drawing the line HM, and considering the part of the
figure to the right of said line HM, we have the figure from which
the proof known as Garfield’s Solution follows—see proof One. Hun-
dred Fifty-Seven, fig. 215.

In fig. 211, extend HA to
M and complete the sq. ML.
Sq. AK = s¢. ML — 4
HB X HA __ — (HB + HA)?

— 2HB X HA = HB* +
2HB X HA -+ HA®* — 2HB
< HA = sq. HB + sq. HA.
.". sq. upon AB = sq. upon
BH - sq. upon AH.

a. See Jury Whipper, 1880,
p. 35, fig. 32, as given in “Hu-
bert’s Rudimenta Algebrae,”
‘Wourceb, 1762. ;

b. This is but a variation of
proof Ninety-Five, fig. 153.

[é/
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Case (6), (b).
One Hundred Fifty-Four
For convenience designate the upper part of fig. 212, i. e., the
sq. AK, as fig. 212a, and the lower part as 212b.
In fig. 212a the construction is evi-
dent, for 212b is made from the dissected

1 \\ /’ 1 parts of 212a. GH’ is a sq. each side

s tﬂk | of which — AH, LB’ is  sq. each side

\ Mot of which = BH.

l ! Sq. AK = 2 wri. ABH + 2 tri. ABH

+ sq. MH = rect. B'N -+ rect. OF

F'- + sq. LM = sq. B’'L. + sq. A’F.
Lg 212 ol .". sq. upon AB = sq. upon BH - sq.

ﬁ:‘ B G-JI- w ":I upon AH.

LNy i NN \ a. See Hopkins's Plane Geom.,

s e
Ll i WV , p. 69, ; Beman an
E —ALO_ H’ Smith’s New Plane Geom., 1899, p. 104,
fig. 3; Heath’s Math. Monographs, No. 1, 1900, p. 20, proof IV.
Also Mr. Bodo. M. DeBeck, of Cincinnati, O., about 1905 without
knowledge of any previous solution discovered above form of figure
and devised a proof from it.
b. History relates that the Hindu Mathematician Bhaskara, born

1114 A. D., discovered the above proof and followed the figure with’

the single word “Behold,” not condescending to give other than the
figure and this one word for proof. And history furthermore de-
clares that the Geometers of Hindustan knew the truth and proof of
this theorem centuries before the time of Pythagoras—may he not
have learned about it while studying Indian lore at Babylon?
‘Whether he gave fig. 212b as well as fig. 212a, as I am of the
opinion he did, many late authors think not; with the two figures,
212a and 212b, side by side, the word “Behold!” may be justified,
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especially when we recall that the tendency of that age was to keep
secret the discovery of truth for certain purposes and from certain
classes ; but with the figure 212b omitted, the act is hardly defensible
—not any more so than “See?” would be after figure 210.

Again, authors who give 212a and “Behold!”, fail to tell their
readers whether Bhaskara's proof was geometric or algebraic. Why
this silence on so essential a point? For, if algebraic, the figure 212a
is enough as the next two proofs show. I now quote from Beman
and Smith: “The inside square is evidently (b — a)? and each of the
four triangles is ¥4 ab; .. h* — 4 X M4ab = (b — a)? whence
h* = a* 4+ b2.”

It is conjectured that Pythagoras had discovered the geometric
proof above. Be it so, Bhaskara discovered it independently, as also
did Wallis, an English Mathematician, in the 17th century, and
so reported, Miss Coolidge, the blind girl, a few years ago: see proof
Fourteen, fig. 72.

One Hundred Fifty-Five

In fig. 213 draw CN par. to BH, KM par.
to AH, and extend BH to L.

Sq. AK=4M+W MH — 2HB E\ ]ﬁ

% HA -+ (AH — BH)? — 2HB X HA + \;élt |
HA! — 2HB X HA -+ HB? — HB® 4 HAZ. I
‘. sq. upon AB = sq. upon BH -+ sq. upon |
AH.

a. See Olney’s Geom., Part 111, 1872, p.
250, Ist method ; Jour. of Ed'n, V. XXV, 1887, p. 404, fig. IV, and
also fig. VI; Jour. of Ed'n, V. XXVII, 1888, p. 327, 20th proof,
by R. E. Binford, of Independence, Texas; Edwards's Geom., 1895,
p. 155, fig. (3); Math. Mo., V. VI, 1899, p. 69, proof XCII; Sci.
Am, Sup., V. 70, p. 359, Dec. 3, 1910, fig. 1.
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b. A study of the many proofs by Arthur R. Colburn, LL. M.,
of Dist. of Columbia Bar, establishes the thesis, so often reiterated
in this work, that figures may take any form and position so long as
they include triangles whose sides bear a rational algebraic relation
to the sides of the given triangle, or whose dissected areas are so re-
lated, through equivalency that h* = a® - b? results.

Case (6), (c).

One Hundred Fifty-8ix

In fig. 214 produce HB to F and complete
the sq. AF. Draw GL perp. to AB, FM par.
to AB, and HN perp. to AB.

Sq. AF — AH? — 4£_>,2<£ + [LO? =

(AO — HO)?] = 2A0 X HO -+ AO* —
2A0 X HO + HO* = A0* 4 HO*= (AO
= AH? =+ AB)? 4+ (HO = AH X HB —=
AB)? = AH‘ =+ AB? + AH? X HB? +
AB? = AH*(AH® + HB?) —+ AB
AH?(AH® + HB?) —+ AB%.
. 1= (AH* { BH?) — AB%. .". AB* = BH* 4| AH
". sq. upon AB = sq. upon BH - sq. upon AH.

a. See Math. Mo., V. VI, 1899, p. 69, proof CIII.

b. The reader will observe that this proof proves too much, as

it first proves that AH? = AO? 4+ HO?, which is the truth sought.

Triangles ABH and AHO are similar, and what is true as to the :
relations of the sides of tri. AHO must be true, by the law of simi-

larity, as to the relations of the sides of tri. ABH.

(B) Proofs based upon a triangle through the calculations and

comparison of equivalent areas.
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One Hundred Fifty-Seven

In fig. 215 extend HB to D making o
BD = AH, through D draw DC par.
to AH and equal to BH, and draw CB
and CA. i

Area of trap, CDHA = area of ACB  « [: il

-+ 2 area of ABH. 14915 N

" % (AH 4+ CD)HD = 14 AB* + bt e
2 X % AH X HB or (AH - HB)? i
= AB? 4 2AH X HB, whence AB? \‘G}’/

= BH® - AH®.
". sq. upon AB = sq. upon BH ~+ sq. upon AH.

a. This is the “Garfield Demonstration,”—hit upon by the Gen-
eral in a mathematical discussion with other M. C.'s about 1876. See
Jour. of Ed'n, V. III, 1876, p. 161; The Math. Magazine, Vol. I,
1882, p. 7; The Schoal Visitor, V. IX, 1888, p. 5, proof 111; Hop-
kins's Plane Geom., 1891, p. 91, fig. VII; Edwards's Geom., 1895,
p. 156, fig. (11); Heath's Math. Monographs, No. 1, 1900, p. 25,
proof X.

b. For extension of any triangle, see V. Jelinek, Casopis, 28
(1899) 79—; Fschr. Math., (1899) 456.

c. See No 153, fig. 2]1

- One Hundred Flffj'-E!_ght

In fig. 216 extend BH to F making HF
= AH, erect AG perp. to AB making AG —
"AB, draw GE par. to HB and GD par, to AB.
Since tri’s ABH and GDF are similar, GD —
h(1 — a/b), and FD = a(l — a/b).
Area of fiz. ABFG = area ABH -+ area
§ AHFG = area ABDG + area GDF. .". I4ab
=+ ¥b[b + (b — a)] = %h[h 4 h(1 —
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a/b)] 4 Ya(b—a) (1 —a/b), (1). Whence h* = a* | b%
. sq. upon AB = sq. upon BH - sq. upon AH.

a. This proof is due to J. G. Thompson, of Winchester, N. H.;
see Jour. of Ed’n, V. XXVIII, 1888, p. 17, 28th proof; Heath’s
Math. Monographs, No. 2, p. 34, proof XXIIL

b. As there are possible several figures of above type, in each of
which there will result two similar triangles, there are possible
many different proofs, differing only in shape of figure. The next
proof is one from the many,

One Hundred Fifty-Nine

In fig. 217 produce HB to F making
HF = HA, through A draw AC perp. to
AB making AC = AB, draw CF, AG par.
to HB, BE par. to AH, and BD perp. to
AB. Since tri’'s ABH and BDF are similar,
we find that DF = a(l — a/b) and BD
= h(1 — a/b).

Area of trap. CFHA = 2 area ABH +
area trap. AGFB = area ABH -} area trap.
ACDB + area BDF.

Whence area ACG - area AGFB = area ACDB + area BDF
or % ab 4 1b[b 4 (b —a)] = ¥%h[h + h (1 —a/b)] +
Yia(b — a) (1 — a/b).

This equation is equation (1) in the preceding solution, as it
ought to be, since, if we draw BE par. to AH and consider only the
figure below the line AB, calling the tri. ACG the given triangle, we
have identically fig. 217 above. 4
.". sq. upon AB = sq. upon BH - sq. upon AH.

a. Original with the author, August, 1900. See also Jour. of
Ed’n, V. XXVIII, 1888, p. 17, 28th_proof.
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One Hundred Sixty

In fig. 218 extend HB to
N making HN = AB, draw
KN, KH and BG, extend GA
to M and draw BL par. to AH.
Tri. KBA -4 tri. ABH =
quad. BHAK = (tri. HAK
= tri. GAB) -+ (tri. DGB
= tri. BHG) = quad. ABDG
= tri. HBD + tri. GAH 4
tri. ABH, whence tri. BAK =
tri. HBD —+ tri. GAH.
*. sq. upon AB = sq. upon BH + sq. upon AH.

a. See Jury Whipper, 1880, p. 33, fig. 30, as found in the works
of Joh. Hoffmann.

One Hundred Sixty-One

In fig. 219 construct the three equi-
lateral triangles upon the three sides of the
given triangle ABH, and draw EB and
FH, draw EG perp. to AH, and draw
GB.

Since EG and HB are parallel, tri. EBH
— tri. BEG = ¥ tri. ABH.
.. tri. GBH = tri. HEG.

(1) Tri. HAF = tri, EAB = tri. EAK \ |I /
+ (tri. BGA = % tri. ABH) + (tri. \\\J/f/
BKG = tri. EKH) = tri. EAH +

tri. ABH.

(1) 4 (2) = (3) (tri. HAF + tri. BHF = tri. BAF 4 tri.

CZ) In like manner, tri. BHF = tri. DHB -+ 74 tri. ABH.
[187]
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ABH) = tri. EAH -} tri. DHB 4 tri. ABH, whence tri. FBA
= tri. EAH +- tri. DHB.
But since areas of similar surfaces are to each other as the squares of
their like dimensions, we have
¢tri. FBA : tri. DHB : tri. EAH = AB* : BH? : AH? whence
tri. FBA : tri. DHB - tri. EAH — AB® : BH? 4 AH*
But tri. FBA — tri. DAH + tri. EAH.

AB? — BH® -+ AH®

One Hundred Sixty-Two

In fig. 220 from the middle points of AB,
BH and HA draw the three perp’s FE, GC

NRR ¢ and KD, making FE = 2AB, GC = 2BH

A\ My - 77 and KD = ZHA, complete the three isosceles

b 7’ ui's EBA, CHB and DAH, and draw EH,
A BK and DB.

\ I ." Since these tri’s are respectively equal to the

FHQ'F.“%O' three sq’s upon AB, BH and HA, it remains

\ g ! to prove tri. EBA = tri. CHB < tri. DAH.

\\' ; The proof is same as that in fig. 219, hence

k proof for 220 is a variation of proof for 219.

a. Devised by the author, because of the

figure, so as to get arca of tri. EBA = AB?, etc.
‘. AB* = BH*® 4- AH2
*. 5q. upon AB = sq. upon BH - sq. upon AH.

a. ‘This proof is given by Joh. Hoffmann; see his solution in
Whipper’s Pythagoraische Lehrsatz, 1880, pp. 45-48.

See, also, Beeman and Smith's New Plane and Solid Geometry,
1899, p. 105, ex. 207.
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One Hundred Sixty-Three

In fig. 221 produce AH to E making HE
— HB, produce CH to F making HF = HA, i
draw BK perp. to AB making BK = BA, \\ ;Jl,k
KD par. to AH, and draw EB, KH, KA,AD | 37,7,
and AF. BD = AB and KD = HB. ! 4

of tri. EHB) - (area of tri. AHK — area
of tri. AHD) -+ (area of ABH = area of
ADF).
*. area of ABK — area of tri. EHB - area of tri. AHF.
*. sq. upon AB = sq. upon BH - sq. upon AH.

a. See Edwards’s Geom., 1895, p. 158, fig. (20).

One Hundred Sixty-Four

In fig. 222 take AD = AH, draw ED perp.

to AB, and draw AE. Tri's ABH and BED
are similar, whence DE = AH > BD + HB.
But DB = AB — AH. D N3

Area of tri. ABH = % AH X BH =2 Figa22

%ED—+}AED><DB:ADXED
+ % ED X DB= AH“(A}};—AH) _i_%AH(NB—-AH)E

. BH? = 2AH X AB — 2AH® 4 AB® 4 AH? — 2AH X AB.
.. AB* = BH* + AH2 ;
*. sq. upon AB = sq. upon BH -} sq. upon AH.
2. See Math. Mo., V. VI, 1899, p. 70, proof XCV.
b. See proof Five, fig. 5, under I, Algebraic Proofs, for an
algebraic proof.
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One Hundred Sixty-Five

In fig. 223 produce BA to L making AL
— AH, at L draw EL perp. to AB, and pro-

e

A

o duce BH to E. The tri's ABH and EBL are
| o similar.
l‘ A Area of tri. ABH = 15 AH X BH = % LE

Y LB—LEXLA= %AH._____(AI'}'H;F L

| x \

Figass :

. A AHYAR 4 AB) e
e

AB? = BH2 + AH=
*. sq. upon AB = sq. upon BH | sq. uponAH.

a. See Math. Mo., V. VI, 1899, p. 70, proof XCVI.

b. This and the preceeding proof are the converse of each other.
The two proofs teach that if two triangles are similar and so related
that the area of either triangle may be expressed principally in terms
of the sides of the other, then either triangle may be taken as the
principal triangle, giving, of course, as many solutions as it is possible
to express the area of either in terms of the sides of the other.

One Hundred Sixty-Six

In fig. 224 produce HA and HB
and describe the arc of a circle tang. to
HX, AB and HY. From O, its center,
draw to points of tangency, OG, OE
and OD, and draw OH.

Area of sq. DG = r*' = ¥ ab
% (2BEXV | 2 AEXV— 54 b | br.

But since 2r—=h -4+ a-4b, .. r=%(h +a-Db).
. 14 (h +a 4 b)* = 14 ab + h(h + a 4 b), whence h* = a*
+ b2
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*. sq. upon AB = sq. upon BH -} sq. upon AH.
a. This proof is original with Prof. B. F. Yanney, Wooster
University, O. See Math. Mo, V. VI, 1899, p. 70, XCVIIL.

One Hundred Sixty-Seven

In fig. 225 let AE = BH.
Since the area of a circle is 7r?,
if it can be proven that the circle
whose radius is AB = the circle
whose radius AH - the circle
whose radius is AE, the truth
sought is established.

It is evident, if the triangle
ABH revolves in the plane of
the paper about A as a center,
that the area of the circle gener-
ated by AB will equal the area
of the circle generated by AH
plus the area of the annulus
generated by HF.

Hence it must be shown, if possible, that the area of the annulus is
equal to the area of the circle whose radius is AE.

Let AB—=h=— AF, AH =b, BH =3, AD=% BH =r, HK

— KF, and AK = mr, whence GH = h 4 b, AK = #

e H—H — b, HK:KF:"_}P-

Now (GH=h 4 b) : (BH =2r) = (BH = 2r) : (HF

h—b) (1)

whence h = /b? 4 4r* and b = /h? — 4r2,

'.h';b= Vb=+24r2+h :mr,whenceb=r(m4#),
[191]
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andh+b h+\/h’—4r =, whenceh—r(m+—)

"__;;l:L:r{m+ .;-)#r(m— Y D
2 2 m

since (AD =r) : (AK =mr) = (HK—r;) : (AD =1), (2)

. AD : AK — HF : AE, or 2= AD : 2z AK = HF : AE,

*. 2z AK X HF = 2= AD X AE, or 2r (l‘-g_") HF = = AE

% AE.

But the area of the annulus equals 4 the sum of the circumferences
where radii are h and b times the width of the annulus or HF.
*. the area of the annulus HF = the area of the circle where radius
is HB.
*. the area of the circle with radius AB = the area of the circle with
radius AH - area of the annulus.
Lahi=xa’J 7 b:
*. sq. upon AB = sq. upen BH -} sq. upen AH.
a. See Math. Mo., V. 1, 1894, p. 223, the proof by Andrew
Ingraham, President of the Swain Free School, New Bedford, Mass.
b. This proof, like that of proof One Hundred Fifty-Six, fig.
214, proves too much, since both equations (1) and (2) imply the
truth sought. The author, Professor Ingraham, does not show his

readers how he determined that HK :ﬁ, hence the implication
is hidden; in (1) we have directly h* — b* = (4r* = a?).

Having begged the question in both equations, (1) and (2),
Professor Ingraham has, no doubt, unconsciously, fallen under the
formal fallacy of petitio principii.

From the preceeding array of proofs it is evident that the alge-
braic and geometric proofs of this most important truth are as un-
limited in number as are the ingenious resources and ideas of the
mathematical investigator.
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NO TRIGONOMETRIC PROOFS

Facing forward the thoughtful reader may raise the question:
Are there any proofs based upon the science of trigonometry or
analytical geometry?

There are no trigonometric proofs, because all the fundamental
formulae of trigonometry are themselves based upon the truth of the
Pythagorean Theorem ; because of this theorem we say sin%a 4 cos®A
— 1, etc.  Trigonometry #s because the Pythagorean Theorem is.

As Descartes made the Pythagorean theorem the basis of his
method of analytical geometry, no independent proof can here appear.
Analytical Geometry is Euclidian Geometry treated algebraically and
hence involves all principles already established.

Therefore in analytical geometry all relations concerning the
sides of a right angled triangle imply or rest directly upon the Pytha-
gorean theorem as is shown in the equation, viz., x* + y* = r%

And The Calculus being but an algebraic investigation of geo-
metric variables by the method of limits it accepts the truths of geo-
metry as established, and therefore furnishes no new proof, other than
that, if squares be constructed upon the three sides of a variable
oblique triangle, as any angle of the three approaches a right angle
the square on the side opposite approaches in area the sum of the
squares upon the other two sides.

But not so with quaternions, or vector analysis. It is a mathe-
matical science which introduces a new concept not employed in any
of the mathematical sciences mentioned heretofore,—the concept of
direction.

. And by means of this new concept the complex demonstrations
of old truths are wonderfully simplified, or new ways of reaching the
same truth are developed.

We here give four quarternionic proofs of the Pythagorean
Proposition. Other proofs are possible.
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I1I.—QUARTERNIONIC PROOFS

&
One

In fig. 226 designate the sides as to dis-

i \ tance and direction by A, B and G. Now, by
the principle of direction A = B + G; also
since the angle at H is a right angle, 25BG =

Fi g 3,16 0. (S signifies Scalar, Hardy, p. 6.)
(1)A+LB=G. ()?=(2) A=B+

28BG + G*%;
(2) reduced = (3) .". A? — B2 4 (3, considered as lengths.
.". sq. upon AB = sq. upon AH - sq. upon HB.

a. See Hardy’s Elements of Quarternions, 1881, p. 82, art. 54, §
1; also Jour. of Ed'n, V. XXVII, 1888, p. 327, Twenty-second

proof.

Twe
In fig. 227, extend BH to C making HC
"‘\" — HB and draw AC. As vectors AB = AH

.-+ HB,or A=B + G (1). Also AC =
AH + HC,or A= B — G (2).
Squaring (1) and (2) and adding, we have i
A® 4 A? = 2B® 4 2G% Or as lengths,
AB? - AC? = 2AH? 4 2AB*. But AB
= AC.
.. AB* = AH?® -+ HB*
.. sq. upon AB = sq. upon AH - sq. upon I1B.

a. This is James A. Calderhead’s solution. See Math. Mo., V.
V1, 1899, p. 71, proof XCIX.
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Three

In fig. 228 complete the rect. HC ‘and
draw HC. As vectors AB = AH 4 HB, or
A=B 4+ G (1) HC = HA + AC, or A’
=B+ G (2).

Squaring (1) and (2) and adding, gives N
A* 4 A" = 2B* 4 2G?. Or considered as prid

lines, AB? '+ HC* — 2AH* 4 2HB%. But

HC = AB.

.. AB? = AH® 4 HB*

.. sq. upon AB = sq. upon AH® + sq. upon HB2

a. Another of James A. Calderhead’s solutions. See Math. Mo.,
V. VI, 1899, p. 71, proof C.

Four

In fig. 229 the construction
is evident, as angle GAK =
—angle BAK. The radius be-
ing unity, LG and LB are sines
of GAK and BAK.

As vectors, AB — AH - HB,
or A= B 4 G (1). Also
AG = AF 4 FG or A" =
—B + G (2). Squaring (1)
and (2) and adding, gives
Az | A =2B% 4 2G% Or
considering the vectors as dis- :

tances, AB?* + AG? = 2AH* + 2HB? or AB® = AH*® 4
HB2

.. sq. upon AB = sq. upon AH - sq. upon BH.

a. Original with the author, August, 1900.

b. Other solutions from the trigonometric right line function
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figure (see Schuyler’s Trigonometry, 1873, p. 78, art. 85) are easily
devised through vector analysis.

IV.—DYNAMIC PROOFS,

The Science of Dynamics, since 1910, is a claimant for a place
as to a few proofs of the Pythagorean Theorem.

In Science, New Series, Oct. 7, 1910, V. 32, pp. 863-4, Pro-
fessor Edwin F. Northrup, Palmer Physical Laboratory, Princeton,
N. J., through equilibrium of forces, establishes the formula he—
a? + b

In V. 33, p. 457, Mr. Mayo D. Hersey, of the U. S. Bureau
of Standards, Washington, D. C., says that, if we admit Professor
Northrup’s proof, then the same result may be established by a much
simpler course of reasoning based on certain simple dynamic laws.

Then in V. 34, pp. 181-2, Mr. Alexander MacFarlane, of Chat-
ham, Ontario, Canada, comes to the support of Professor Northrup,
and then gives two very fine dynamic proofs through the use of
trigonometric functions and quarternionic laws.

Having obtained permission from the editor of Science, Mr. J.
McK. Cattell, on February 18, 1926, to make use of these proofs
found in said volumes 32, 33 and 34, of Science, they now follow.

One

In fig. 230, O-p is a rod without
Al mass which can be revolved in the plane
\ of the paper about O as a center. 1-2 is
another such rod in the plane of the

paper of which p is its middle point.
Concentrated at each end of the rod 1-2
are equal masses m and m’ each distant

r from p.

Let R equal the distance O-p, X
= O-1, y = 0-2. When the system
revolves about O as a center, the point
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p will have a linear velocity, r = ds/dt = da/dt = RW, where ds
is the element of the arc described in time dt, da is the differential
angle through which O-p turns, and W is the angular velocity.

1. Assume the rod 1-2 free to turn on p as a center.  Since m
at 1 and m’ at 2 are equal and equally distant from p, p is the center
of mass. Under these conditions E' = %4 (2m)V? =m R* W* (1).

2. Conceive rod, 1-2, to become rigorously attached at p. Then,
as O-p revolves about O with angular velocity W, 1-2 also revolves
about p with like angular velocity. By making attachment at p rigid
the system is forced to take on an additional kinetic energy, which
can be only that, which is a result of the additional motion now pos-
sessed by m at 1 and by m’ at 2, in virtue of their rotation about p
as a center. This added kinetic energy is E” = 14 (2m)r*W? =
mr® W2 (2). Hence total kinetic energy is E = E' 4+ E” =
mW2(R? 1+ r?). (3).

3. With the attachment still rigid at p, the kinetic energy of m
at 1is, plainly, E;/ = % mx* W2 (4). Likewise E” = 12 m y*
Wz (5).

.". the total kinetic energy must be E = E/ 4+ E)/ = ¥4 m W?
(x* 4+ v%). (6).
S (3) = (6),0or ¥ (x*4+v) =R 1% (7).

In (7) we have a geometric relation of some interest, but in a
particular case when x = y, that is, when line 1-2 is perpendicular
to line O-p, we have as a result x* = R? 4 1% (8).

.. sq. upon hypotenuse = sum of squares upon the two legs of a
right triangle.

Then in Vol. 33, p. 457, on March 24, 1911, Mr. Mayo D.
Hersey says: “while Mr. R. F. Deimal holds that equation (7) above
expresses a geometric fact—l am tempted to say ‘accident'—which
text books raise to the dignity of a theorem.” He further says, “Why
not let it be a simple one? For instance, if the force F whose rec-
tangular components are x and y, acts upon a particle of mass m until
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it has imparted the velocity q whose components in the same plane

are u and v, then the work done upon the particle x = %% m u? while

the work done by y = 4 m v&. But the work done by the compon-

ents is identical with the work 34 m g* done by their resultants. 1

Equating, we have %2 m q* = ¥ mu® 4 % mv? or @ =u®+ v
But the velocity components u and v are the two legs of a right tri-
angle of which g is the hypotenuse, so that here again is our Pytha-
gorean relation. :

Answering Professor Northrup—see Science, Vol. 34, p. 181,
Mr. Alexander FacFarlane, Chathem, Ontario, says: “In reply
to Dr. Northrup’s question,—is a dynamical proof possible—that

looking at the question from the point of view of vector-analysis, or

rather of the algebra of space, 1 would answer, Yes.”
But says Mr. MacFarlane, he could with ease deduce the more
general proposition (Euclid 11, 12 and 13).

His proof is merely the reverse of the following reasoning. I

look upon the x, ¥, R, r and —v of his diagram as vectors.
The kinetic energy of the first mass is 14 m (xW)* = 4 m

W2 x?; and similarly that of the second is 14 m W* y% But i I

R? 4 r* + 2 cos R rand y* = R® + (—r)?* —2 cos R 1, where

cos R 1 denotes the rectangle formed by R and the projection of r

along R. Hence 14 m W? (x* 4 y?) = % (2m) (R? 4 1) W?
— Yx 2m R? W? 4 Vix 2m r* we

Here we pass from the one to the other expression for the kinetic

energy of the system by means of the extended Pythagorean Thearem;
on theé other hand Dr. Northrup can deduce from the expression for
the kinetic energy of the system the truth of this geometric theorem.

This same principle, E = }4m v* has an important bearing on .

the fundamental principles of vector analysis; it places the orthodox
quarternionist in a corner from which there is no escape.

Because E is assumed in mathematical analysis to be positive and

T4m is positive, it follows from the established principles of analysis
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that v? must be positive; consequently, to hold that the square of a
simple vector is negative is to contradict the established conventions
of mathematical analysis.

The quarternionist tries to get out by saying that after all v
is not a velocity having direction, but merely a speed. To this I
reply that E = cos J’m vdv=1% mv? and that these expressions
v and dv are both vectors having directions which are different.

Recently (in the Bulletin of the Quarternion
Association) I have been considering what may be
called the generalization of the Pythagorean Theorem.

Let A, B, C, D, etc,, fig. 231, denote vectors hav-
ing any direction in space, and let R denote the vector
from the origin of A to the terminal of the last vector;
then the generalization of the P, T. is R* = A* + B?
+ C* 4 D 4 2(cos AB - cos AC + cos AD) + 2(cos BC
+ cos BD) 4 2(cos CD) -+ etc., Wth cos AB denotes the rec-
tangle formed by A and the projection of B parallel to A. The
theorem of P. is limited to two vectors A and B which are at right
angles to one another, giving R* = A? L B2 The extension given
in Euclid removes the condition of perpendicularity, giving R* =
A? 4+ B? + cos AB.

Space geometry gives R? = A* + B* L C? when A, B, C are
othogonal, and R? = A? 4 B? - C* + 2 cos AB + 2 cos AC +

2 ¢os BC when that condition is removed.

Further, space-algebra gives a complementary theorem, never
dreamed of by either Pythagoras or Euclid.

Let V denote in magnitude and direction the resultant of the
directed areas enclosed between the broken lines A4+B+C+D
and the resultant line R, and let sin AB denote in direction and
magnitude the area enclosed between A and the projection of B which
is perpendicular to A; then the complementary theorem is
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4V = 2(sin AB + sin AC + sin AD 4+ ) - 2(sin BC - sin
BD 4+ ) 4 2(sinCD 4~ ) + ete.

THE PYTHAGOREAN CURIOSITY

The following is reported to have been taken from

a note book of Mr. John Waterhouse, an engineer of

N. Y. City. It appeared in print, in a N. Y. paper. -?"1
in July, 1899. Upon the sides of the right triangle, 2004
fig. 232, construct the squares Al, BN, and CE., Con- 4
nect the points E and H, I and M, and / |
N and D. Upon these lines construct / I
the squares EG, MK and NP, and con- ,’ |
nect the points P and F, G and K, and L |
L and O. The following truths are !
demonstrable. ’
1. Square BN = ! : 4
square CE - square
AJ. (Eudid): i1 Ly
2. Triangle HAE = il S
triangle IBM = tri-
angle DCN = triangle A o
CAB, since HA = BI ’ ;
and EA = MY, FA  / FL-?-“"-,E \
= DC and HA = ity |
TR A TR : 4
and EA = CA, ‘
3. Lines HI and GK are parallel, for, since angle GHI = angle
IBM, .". triangle HGI = triangle BMI, whence IG = IM = IK.
Again extend HI to H’ making IH” = IH, and draw H'K, whence
triangle IHG = triangle TH’K, each having two sides and the in-
cluded angle respectively equal. .". the distances from G and K to
the line HH” are equal. .’. the lines HI and GK are parallel, In
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like manner it may be shown that DE and PF, also MN and LO;
are parallel.

4. GK = 4HI, for HI = TU = GT = UV = VK (since VK
is homologous to BI in the equal triangles VKI and BIM).

In like manner it can be shown that PF — 4DE. That LO =
4MN is proven as follows: triangles LWM and IVK are equal;
therefore the homologous sides WM and VK are equal, Like-
wise OX and QD are equal each being equal to MN. Now in tri.
WJX, MJ and XN = NJ; therefore M and N are the middle
points of W] and X]J; therefore WX = 2MN; therefore LO =
4MN.

5. The three trapezoids HIGK, DEPF and MNLO are each equal
to 5 times the triangle CAB. The 5 triangles composing the trape-
zoid HIGK are each equal to the triangle CAB, each having the
same base and altitude as triangle CAB. In like manner it may be
shown that the trapezoid DEPF, so also the trapezoid MNLO, equals
5 times the triangle CAB.

6. The square MK - the square NP = 5 times the square EG or
BN. For the square on MI = the square on MY -} the square on
YI 4+ (2AB)? - AC* = 4AB? + AC?; and the square on ND
4 the square on NZ 4 the square ZD — AB? 4 (2AC)* = AB®
-+ 4AC2 Therefore the square MK - the square NP — 5AB?
+ SAC? = 5(AB*® - AC?) = 5BC* = 5 times the square BN.
7. The bisector of the angle A’ passes through the vertex A; for
AS — AT. But the bisector of the angle B’ or C’, does not pass
through the vertex B, or C. Otherwise BU would equal BU’,
whence NU” - U”M would equal NM 4 U”M’; that is, the sum
of the two legs of a right triangle would equal the hypotenuse - the
perpendicular upon the hypotenuse from the right angle. But this is
impossible. - Therefore the bisector of the angle B’ does not pass
through the vertex B.

8. The square on LO = the sum of the squares on PF and GK;

[201]




THE PYTHAGOREAN PROPOSITION

for LO : PF : GK = BC : CA : AB.
9. Etc, ete.
See Casey’s Sequel to Euclid, 1900, Part I, p. 16.

PYTHAGOREAN MAGIC SQUARES

One

The sum of any row, col-
umn or diagonal of the square

1 F L g 233 AK is 125; hence the sum of all

g e the numbers in the square is 625.
wXg ; 3 4 HACn o The sum of any row, column or
eX v ) : Y ) 8! A diagonal of square GH is 46, and

O MA "‘& W8 of HD is 147; hence the sum of
WY T\ all the numbers in the square

A 15106 33 30 4B GH is 184, and in the square

HD is 441. Therefore the ma-
gic square AK (625) — the ma-
gic square HD (441) - the
magic square HG (184).

Formulated by the author,
July, 1900.

i« ay| 23 av a1
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The square AK is compos-
ed of 3 magic squares, 5%, 15%
and 252 The square HD is
a magic square each number of
which is a square. The square
HG is a magic square formed
from the first 16 numbers. Fur-
thermore, observe that the sum
of the nine square numbers in
the square HD equals 48* or
2304, a square number.

Formulated by the author,
July, 1900.

T.hre;

The sum of all the num-
bers in square (AK = 325) +-
the sum of all the numbers in
square (HD = 189) - the
sum of all the numbers in
square (HG -} 136).
Square AK is made up of 13,
SIS0 (300130 and 5.0 (B
X 13) ; square HD is made up
of 21, 3 X (3 X 21), and
square HG is made up of 4 <
34 — each row, column and
diagonal, and the sum of the
four inner numbers.

Two

F.x FLgléJ{

WXy

18 | 1u |33 |30 |31
a7 22]a7 |23
a0 g pes i
19 ]2yl2312v]32
(o) MAA S0 R ELASER S

| o] 3]s |iv|K

Many other magic squares of this type giving 325, 189 and 136
for the sums of AK, HD and HG respectively may be formed.
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This one was formed by Prof, Paul A. Towne, of West Edmes-

ton, N. Y.

Four

The sum of numbers in sq.
(AK = 625) = the sum of

3 isF ig.zab.
AN numbers in sq. (HD = 441)

I I3 :

ZOé D X ~+ the sum of numbers in sq.
FAXDANZXED  (HG = 184).

\,}ﬁ .qus‘ Sq.AKgEvesl)((l)(Z.’i);
: : 3X (3X25);and 5 X (5
A 14132 (31 |3y /3 X 25), as elements; sq. HD
20f22| 27|24 |50 gives 1 > (1 X 49);3 % (3
W agf2s) o 2 49) as elements; and sq. HG

712 |23] 26] 33 givesl X46and3}(46,as
|| ta| w fas |k e[cments_.

This one also was formed
by Professor Towne, of West

Edmeston, N. Y. Many of this type may be formed. See fig. 233,

above, for one of my own of this type.

Also see Mathematical essays and Recreations, by Herman Schu-
bert, in The Open Court Publishing Co., Chicago, 1898, p. 39, for
an extended theory of The Magic Square.
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Five
Observe the following series:
The sum of the inner 4 numbers is 12 ¢ 202; of the 16-square,
2% 3% 202; of the 36-square, 32 3¢ 202; of the 64-square, 4* ¢ 202;
and of the 100-square, 5% » 202.

2
ARG
AL @
A N\ 0
ny qﬂ oy 4 a 'lvu' W \
A AN NI L DO
W) X N\ X
X PG X3 YOVALE)
() W ¢ 5 N 4 5 5 5
IAX W a5 AR N\
3 WX EXCieX o Wit (il
4 € 5 o 3 % 5 4 i ¢
W 2 4l %) ¥ W M
X AN Wl
NS0 LGN
% U‘ f) A (0
A\ ) o % o\
4 A

-~

2 (73] 7 |87) 18|90 | ¢ |wv|vs
15 ja0 ) 73|74 |30 | 75 |32 |vo|is | 2
Folaa )34 ey |y |es|vi|aa| 79| 1
g |7¥ Lholua| e | 57w for |23 )92
5251635053 |safur as |7 | 6
y | 77) 52|54 |47 luw ] 5 | 9z| 20 | 97
G 29 |99 |55 a4 | 45| s 62| 72 |0
3l Le¥]37[60 30 [35 |67 a0 ] 9%
50| wafax |27 70 ]2 es|ai o | &
foo| & |Fq || &3] 7| ¥5|13) 2 ‘?70.

“On the hypotenuse and legs of the right angled triangle, ESL,
are constructed the concentric magic squares of 100, 64, 36 and 16.
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“The sum of the two numbers at the extremities of the diagonals, and )

of all lines, horizontal and diagonal, and of the two numbers equally
distant from the extremities, is 101. The sum of the numbers in
the diagonals and lines of each of the four concentric magic squares
is 101 multiplied by half the number of cells in boundary lines; that
is, the summations are 101 > 2; 101 X 3; 101 X 4; 101 X 5.
The sum of the 4 central numbers is 101 > 2.
* the sum of the numbers in the square (SO = 505 X 10 = 5050)
— the sum of the numbers in the square (EM = 303 X 6 =1818)
—} the sum of the numbers in the square (EI = 404 < 8 = 3232).
5052 = 303% + 4042

Notice that in the above diagram the concentric magic squares
on the legs is identical with the central concentric magic squares on
the hypotenuse,” Professor Paul A. Towne, West Edmeston, N. Y.

An indefinite number of magic squares of this type are readily
formed.

FINAL THOUGHT
Is it an all-embracing truth?

The generalization of the Pythagorean Theorem so as to conform
to and include the data of geometries other than that of Euclid, as
was done by Riemann in 1854, and later, 1915, by Einstein in formu-
lating and positing the general theory of relativity, seems to show
that the truth implied in this theorem is destined to become the funda-
mental factor in harmonizing past, present and future theories rela-
tive to the underlying laws of our universe.
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