CHAPTER I

PRELIMINARIES

Unique factorization of ideals in algebraic number fields. Let \mathbf{k} be a finite extension of the rational number field \mathbf{Q} . An *integer* of \mathbf{k} is an element of \mathbf{k} which satisfies a monic irreducible polynomial with coefficients in the ring of *rational* integers \mathbf{Z} . The integers of \mathbf{k} form a ring \mathbf{o} that is finitely generated over \mathbf{Z} . Every ideal of \mathbf{o} is finitely generated, and every prime ideal is maximal.

A subset a of \mathbf{k} is a *fractional* ideal of \mathbf{o} if a is an \mathbf{o} -module such that for some element γ of \mathbf{o} depending on a we have $\gamma a \subset o$. Any non-zero element α of \mathbf{k} generates a principal fractional ideal $(\alpha) = \alpha \mathbf{o}$. (If α is a root of polynomial $a_0x^n + a_1x^{n-1} + \cdots + a_n$ over \mathbf{Z} , then $a_0^n \alpha$ is an integer in \mathbf{k} , and $a_0^n(\alpha) = (a_0^n \alpha) \subset \mathbf{o}$.) The product of fractional ideals a and b is the fractional ideal generated by products $\alpha\beta$ with α in a and β in b. For principal fractional ideals, we have $(\alpha)(\beta) = (\alpha\beta)$. Every non-trivial fractional ideal a of \mathbf{o} is invertible: there is a fractional ideal a'so that $aa' = \mathbf{o}$. Non-zero principal fractional ideals are invertible because if $\alpha \neq 0$ then $(\alpha)(\alpha^{-1}) = (1) = \mathbf{o}$. In fact,

Although \mathbf{o} is not in general a unique factorization domain, every non-trivial fractional ideal \mathbf{a} of \mathbf{o} has a unique factorization

$$a = p_1^{n_1} \dots p_k^{n_k}$$

where p_1, \ldots, p_g are distinct prime ideals of **o** and the rational integer exponents n_i are non-zero (but may be positive or negative).

Valuations and completions. A valuation of field \mathbf{k} is a non-negative realvalued function ψ defined on \mathbf{k} satisfying

$$\begin{split} \psi(\alpha) &= 0 \quad \text{if and only if } \alpha = 0, \\ \psi(\alpha\beta) &= \psi(\alpha)\psi(\beta), \\ \psi(\alpha+\beta) &\leq \psi(\alpha) + \psi(\beta). \end{split}$$

Valuation ψ is non-trivial if there is some α in **k** for which $\psi(\alpha) \neq 0$ and $\psi(\alpha) \neq 1$. Two valuations ψ_1 and ψ_2 are equivalent if a sequence converges to zero with respect

to ψ_1 if and only if it converges to zero with respect to ψ_2 , in which case there is some positive real constant c such that $\psi_1(\alpha) = (\psi_2(\alpha))^c$.

Valuations are classified as *archimedian* or *non-archimedian*. A valuation is non-archimedian if it satisfies the stronger inequality

(1.1)
$$\psi(\alpha + \beta) \le \max(\psi(\alpha), \psi(\beta)),$$

otherwise it is archimedian. Every archimedian valuation of \mathbf{Q} is equivalent to the ordinary absolute value.

Archimedian valuations on \mathbf{k} . If \mathbf{k} is generated by α_0 over the rational field \mathbf{Q} , let $f_0(x)$ be the irreducible polynomial over \mathbf{Q} satisfied by α_0 . Over the real field \mathbf{R} , $f_0(x)$ splits into a product of r_1 linear and r_2 irreducible quadratic factors. Corresponding to the r_1 roots of linear factors, there will be r_1 isomorphisms $\sigma_1, \ldots, \sigma_{r_1}$ of \mathbf{k} onto subfields of \mathbf{R} . Corresponding to the r_2 conjugate pairs of roots of quadratic factors, there will be r_2 pairs $(\tau_1, \bar{\tau}_1), \ldots, (\tau_{r_2}, \bar{\tau}_{r_2})$ of isomorphisms of \mathbf{k} onto subfields of the complex field \mathbf{C} . Members of each pair $(\tau_j, \bar{\tau}_j)$ differ by complex conjugation.

$$\bar{\tau}_j(\alpha) = \overline{\tau_j(\alpha)}$$

These $r_1 + 2r_2$ isomorphisms do not depend on the choice of α_0 . Each isomorphism σ_i of **k** into **R** determines an archimedian valuation on **k**; the *normalized* valuation is defined using the ordinary real absolute value.

(1.2)
$$|\alpha|_{\sigma_i} = |\sigma_i(\alpha)|$$

Each pair $(\tau_j, \bar{\tau}_j)$ of isomorphisms of **k** into **C** determines an archimedian valuation on **k**; the *normalized* valuation is defined using the square of the ordinary complex absolute value.

(1.3)
$$|\alpha|_{\tau_j} = |\alpha|_{\bar{\tau}_j} = \tau_j(\alpha)\bar{\tau}_j(\alpha) = \tau_j(\alpha)\overline{\tau_j(\alpha)} = |\tau_j(\alpha)|^2$$

Non-archimedian valuations on **k**. Let ψ be a non-trivial non-archimedian valuation of **k**. Every rational integer a satisfies $\psi(a) \leq 1$, because

$$\psi(a) = \psi(1 + \dots + 1) \le \max(\psi(1), \dots, \psi(1)) = 1.$$

Every integer α in **o** satisfies $\psi(\alpha) \leq 1$, because α is a root of a monic polynomial $x^n + a_1 x^{n-1} + \cdots + a_n$ with rational integer coefficients and by (1.1) we have

$$\psi(\alpha)^n \le \max\left(\psi(a_1)\psi(\alpha^{n-1}),\ldots,\psi(a_{n-1})\psi(\alpha),\psi(a_n)\right)$$

$$\le \max\left(\psi(\alpha)^{n-1},\ldots,\psi(\alpha),1\right),$$

which is possible only if $\psi(\alpha) \leq 1$. The subset of elements α of **o** satisfying $\psi(\alpha) < 1$ is a prime ideal of **o** which depends only of the equivalence class of ψ .

Conversely, we can construct a non-trivial non-archimedian valuation of \mathbf{k} for each prime ideal of \mathbf{o} . Let p be a prime ideal of \mathbf{o} . If α is a non-zero element of \mathbf{k} , consider fractional ideal (α). We have

$$(\alpha) = p^m b$$

where b is a (possibly trivial) fractional ideal relatively prime to p. Put $\operatorname{ord}(p, \alpha) = m$. Choose a positive real constant c. Define p-adic valuation ψ_c by

$$\psi_c(\alpha) = \begin{cases} c^{\operatorname{ord}(p,\alpha)} & \text{for } \alpha \neq 0\\ 0 & \text{for } \alpha = 0. \end{cases}$$

This is a non-trivial non-archimedian valuation on \mathbf{k} ; different choices for c produce equivalent valuations. Thus there is a one-to-one correspondence between equivalence classes of non-trivial non-archimedian valuations of \mathbf{k} and prime ideals of the ring \mathbf{o} .

Since **o** is finitely generated over **Z** and prime ideals of **o** are maximal, the quotient ring \mathbf{o}/p is a finite field. Let Np be the number of elements in \mathbf{o}/p . The normalized p-adic valuation of **k** is defined by

$$|\alpha|_p = (Np)^{-\operatorname{ord}(p,\alpha)} \quad \text{for } \alpha \neq 0.$$

The concept of *prime* of \mathbf{k} is generalized to mean *equivalence class of non-trivial* valuations on \mathbf{k} . We have non-archimedian *finite* primes of \mathbf{k} corresponding to prime ideals of ring \mathbf{o} , and archimedian *infinite* primes defined by (1.2) and (1.3). Taking the product over all primes p using normalized valuations, we have

$$\prod_{p} |\alpha|_{p} = 1 \quad \text{for } \alpha \in \mathbf{k}, \alpha \neq 0.$$

Completion of k with respect to a non-trivial valuation. An infinite sequence $\{\alpha_i\}$ of elements of k is Cauchy with respect to valuation ψ on k if and only if $\lim_{i,j\to\infty} (\psi(\alpha_i - \alpha_j)) = 0$. The set of Cauchy sequences forms a ring, in which the set of sequences converging to zero is a maximal ideal. The quotient ring \mathbf{k}_p is a field that depends only on the prime p determined by ψ . The valuation can be extended to \mathbf{k}_p by defining $\psi(\{\alpha_i\}) = \lim_{i\to\infty} \psi(\alpha_i)$ (the right side converges in **R**). Then \mathbf{k}_p is complete with respect to the extended valuation. There is a natural isomorphism $\sigma : \mathbf{k} \to \mathbf{k}_p$ mapping each element of \mathbf{k} to a constant sequence.

If p is archimedian then \mathbf{k}_p is isomorphic to the real field \mathbf{R} or the complex field \mathbf{C} , depending whether the valuation is defined by (1.2) or (1.3). If p is nonarchimedian then \mathbf{k}_p is the field of p-adic numbers. Since the p-adic valuation takes a discrete set of values, a basic neighborhood $U_m(\alpha_0)$ of α_0 in \mathbf{k}_p , defined for m > 0by

$$U_m(\alpha_0) = \left\{ \alpha \in \mathbf{k}_p \mid |\alpha - \alpha_0|_p < (Np)^m \right\} = \left\{ \alpha \in \mathbf{k}_p \mid |\alpha - \alpha_0|_p \le (Np)^{m-1} \right\},$$

has the property of being both open and closed. The ring \mathbf{o}_p of *p*-adic integers defined by

$$\mathbf{o}_p = \left\{ \alpha \in \mathbf{k}_p \mid |\alpha|_p \le 1 \right\}$$

has the following properties. (1) **o** is contained in \mathbf{o}_p and is dense in \mathbf{o}_p . (2) Every ideal of \mathbf{o}_p is principal. (3) The only prime ideal of \mathbf{o}_p is $p = \{\alpha \in \mathbf{o}_p \mid |\alpha|_p < 1\}$. (4) The only proper ideals of \mathbf{o}_p are p, p^2, p^3, \ldots (5) \mathbf{o}_p is open, closed and compact; (6) \mathbf{o}_p/p is a finite field isomorphic to \mathbf{o}/p . (Note: symbol p denotes ideals of both \mathbf{o} and \mathbf{o}_p , but the context will resolve any ambiguity.)

Ideles over k. Consider the product $\prod_p \mathbf{k}_p^*$ over all primes of \mathbf{k} . If \mathbf{i} is an element of the product then \mathbf{i}_p is its *p*-th coordinate. Let $|\mathbf{i}_p|_p$ be denoted simply by $|\mathbf{i}|_p$. The *Idele group* \mathbf{I}_k is defined by

$$\mathbf{I_k} = \big\{ \mathbf{i} \in \prod_p \mathbf{k}_p^* \mid |\mathbf{i}|_p = 1 \quad \text{for all but a finite number of primes } p \big\}.$$

Define $|\mathbf{i}|$ by

$$|\mathbf{i}| = \prod_p |\mathbf{i}|_p \quad \text{for } \mathbf{i} \in \mathbf{I}_k,$$

and define subgroup $\mathbf{I}_{\mathbf{k}}^{0}$ by

$$\mathbf{I}_{\mathbf{k}}^{0} = \left\{ \mathbf{i} \in \mathbf{I}_{\mathbf{k}} \mid |\mathbf{i}| = 1 \right\}.$$

The multiplicative group \mathbf{k}^* is a subgroup of $\mathbf{I}^0_{\mathbf{k}}$ because of product formula (1.4).

For the topology of $\mathbf{I}_{\mathbf{k}}$, let E be any finite set of primes containing all infinite primes; for each prime p in E let ϵ_p be a positive real number. Then a basic neighborhood of idele \mathbf{i}_0 is the set

$$U(E, \{\epsilon_p\}) = \left\{ \mathbf{i} \in \mathbf{I}_{\mathbf{k}} \mid |\mathbf{i}(\mathbf{i}_0)^{-1}|_p = 1 \text{ if } p \notin E; \\ |\mathbf{i}(\mathbf{i}_0)^{-1} - 1|_p < \epsilon_p \text{ and } |(\mathbf{i}_0)\mathbf{i}^{-1} - 1|_p < \epsilon_p \text{ if } p \in E \right\}.$$

Arithmetic in a finite extension of k. Let \mathbf{K}/\mathbf{k} be a finite extension of degree *n*. The ring **O** of integers in **K** is a free **o**-module of degree *n*. A prime ideal p of **o** generates an ideal $p\mathbf{O}$ of **O** which splits into a finite product

$$p = \wp_1^{e_1} \dots \wp_g^{e_g},$$

where \wp_1, \ldots, \wp_g are distinct primes ideals of **O**. Each \wp_i -adic valuation of **K** extends the *p*-adic valuation of **k**, so \mathbf{K}_{\wp_i} is an extension of \mathbf{k}_p .

There is a correspondence between the splitting of p in \mathbf{K} and the splitting of a generating polynomial in \mathbf{k}_p . Let $\mathbf{K} = \mathbf{k}(\alpha)$, and let α be a root of monic irreducible polynomial f(x) with coefficients in \mathbf{k} . Suppose that \wp_i, \ldots, \wp_g are the distinct primes of \mathbf{K} dividing p. For each \wp_i , let $\sigma_i : \mathbf{K} \to \mathbf{K}_{\wp_i}$ be the natural isomorphism. Let $f_i(x)$ be the monic irreducible polynomial over \mathbf{k}_p satisfied by $\sigma_i(\alpha)$. Then the polynomials $f_1(x), \ldots, f_g(x)$ are all distinct, and

$$f(x) = f_1(x) \dots f_g(x).$$

Element $\sigma_i(\alpha)$ generates \mathbf{K}_{\wp_i} over \mathbf{k}_p , so $[\mathbf{K}_{\wp_i} : \mathbf{k}_p] = \deg(f_i(x))$, and

(1.4)
$$[\mathbf{K}:\mathbf{k}] = \sum_{i=1}^{g} [\mathbf{K}_{\wp_i}:\mathbf{k}_p]$$

Except for a finite number of *ramified* primes p, all of the exponents e_i are equal to 1. A prime for which all of the e_i are equal to one is *unramified in* **K**. Each of the finite fields \mathbf{O}_{\wp_i}/\wp_i is a finite extension of finite field \mathbf{o}_p/p ; Let f_i be the degree of this extension.

$$f_i = [\mathbf{O}_{\wp_i} / \wp_i : \mathbf{o}_p / p]$$

Then $[\mathbf{K}_{\wp_i} : \mathbf{k}_p] = e_i f_i$, and

$$n = e_1 f_1 + \dots e_g f_g.$$

 \mathbf{O}_{\wp_i} is a free \mathbf{o}_p -module of degree $e_i f_i$. For each $\mathbf{K}_{\wp} = \mathbf{K}_{\wp_i}$ over \mathbf{k}_p , with $e = e_i$ and $f = f_i$, a basis may be found as follows. Choose elements $\omega_1, \ldots, \omega_f$ of \mathbf{O}_{\wp} which map to a basis of \mathbf{O}_{\wp}/\wp over \mathbf{o}_p/p . Choose an element π of \mathbf{O}_{\wp} which generates ideal \wp (which is a principle ideal of \mathbf{O}_{\wp}). Then the *ef* products $\pi^j \omega_k$, where $0 \leq j < e$ and $1 \leq k \leq f$, are a basis of \mathbf{K}_{\wp} over \mathbf{k}_p and of \mathbf{O}_{\wp} over \mathbf{o}_p .

Norm and Trace functions. Extension field **K** is an *n*-dimensional vector space over **k**. For each α in **K**, the operation of multiplication by α defines a linear

transformation $T_{\alpha} : \mathbf{K} \to \mathbf{K}$, where $T_{\alpha}(\beta) = \alpha\beta$. The norm $\mathbf{N}_{\mathbf{K}/\mathbf{k}}$ and trace $\mathbf{S}_{\mathbf{K}/\mathbf{k}}$ are functions from \mathbf{K} to \mathbf{k} defined by

$$\mathbf{N}_{\mathbf{K}/\mathbf{k}}(\alpha) = \det(T_{\alpha}), \qquad \mathbf{S}_{\mathbf{K}/\mathbf{k}}(\alpha) = \operatorname{trace}(T_{\alpha}).$$

If **L** is an intermediate subfield, $\mathbf{K} \supset \mathbf{L} \supset \mathbf{k}$, then we have

$$\mathbf{N}_{\mathbf{K}/\mathbf{k}}\alpha = \mathbf{N}_{\mathbf{L}/\mathbf{k}}\mathbf{N}_{\mathbf{K}/\mathbf{L}}\alpha.$$

For each prime p of \mathbf{k} , let \wp_1, \ldots, \wp_g be the primes of \mathbf{K} which divide p, and let $\sigma_i : \mathbf{K} \to \mathbf{K}_{\wp_i}$ be the natural isomorphism. If α of \mathbf{K} , then

(1.5)
$$\mathbf{N}_{\mathbf{K}/\mathbf{k}}(\alpha) = \prod_{i=1}^{g} \mathbf{N}_{\mathbf{K}_{\wp_{i}}/\mathbf{k}_{p}} \left(\sigma_{i}(\alpha) \right) \qquad \mathbf{S}_{\mathbf{K}/\mathbf{k}}(\alpha) = \sum_{i=1}^{g} \mathbf{S}_{\mathbf{K}_{\wp_{i}}/\mathbf{k}_{p}} \left(\sigma_{i}(\alpha) \right).$$

If α is identified with $\sigma_i(\alpha)$ then we may write $\mathbf{N}_{\mathbf{K}/\mathbf{k}}(\alpha) = \prod_{\wp|p} \mathbf{N}_{\mathbf{K}_\wp/\mathbf{k}_p}(\alpha)$ and $\mathbf{S}_{\mathbf{K}/\mathbf{k}}(\alpha) = \sum_{\wp|p} \mathbf{S}_{\mathbf{K}_\wp/\mathbf{k}_p}(\alpha)$. Finally, for any element β in \mathbf{K}_{\wp_i} we have

$$\left| \mathbf{N}_{\mathbf{K}_{\wp_i}/\mathbf{k}_p} \beta \right|_p = \left| \beta \right|_{\wp_i}.$$

These formulae hold for all primes of \mathbf{k} , both finite and infinite. We can now show that the product formula holds in the extension field. For α in \mathbf{K} , we have

(1.6)
$$\prod_{\wp} |\alpha|_{\wp} = \prod_{p} \left(\prod_{\wp|p} \left| \mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_{p}} \alpha \right|_{p} \right) = \prod_{p} \left| \mathbf{N}_{\mathbf{K}/\mathbf{k}} \alpha \right|_{p} = 1$$

A norm for ideals can also be defined. If a is an ideal of **O** then $\mathbf{N}_{\mathbf{K}/\mathbf{k}}a$ is the ideal of **o** generated by all elements $\mathbf{N}_{\mathbf{K}/\mathbf{k}}\alpha$ for α in **O**. For principal ideal $a = (\alpha)$, we have $\mathbf{N}_{\mathbf{K}/\mathbf{k}}a = (\mathbf{N}_{\mathbf{K}/\mathbf{k}}\alpha)$. For each prime ideal \wp_i of **O** dividing prime p of **o**, a fundamental property of the norm is

$$\mathbf{N}_{\mathbf{K}/\mathbf{k}}\wp_i = p^{f_i}.$$

The different $\delta_{\mathbf{K}/\mathbf{k}}$ is an ideal of **O** determined by defining its inverse to be

$$\delta_{\mathbf{K}/\mathbf{k}}^{-1} = \left\{ \alpha \in \mathbf{K} \mid \beta \in \mathbf{O} \Longrightarrow \mathbf{S}_{\mathbf{K}/\mathbf{k}}(\alpha\beta) \in \mathbf{o} \right\},\$$

and the discriminant $\mathbf{D}_{\mathbf{K}/\mathbf{k}}$ is the norm $\mathbf{N}_{\mathbf{K}/\mathbf{k}}\delta_{\mathbf{K}/\mathbf{k}}$ of the different. A prime of \mathbf{k} is ramified in \mathbf{K} if and only if it divides the discriminant. Suppose that x_1, \ldots, x_n

forms an integral basis of \mathbf{O} over \mathbf{o} . The discriminant is the following principal ideal.

$$\mathbf{D}_{\mathbf{K}/\mathbf{k}} = \left(\det \left(\mathbf{S}_{\mathbf{K}/\mathbf{k}}(x_i x_j) \right) \right)$$

For each \wp of **K**, the local different $\delta_{\mathbf{K}_{\wp}/\mathbf{k}_{\wp}}$ is determined by its inverse

$$\delta_{\mathbf{K}_{\wp}/\mathbf{k}_{p}}^{-1} = \left\{ \alpha \in \mathbf{K}_{\wp} \mid \beta \in \mathbf{O}_{\wp} \Longrightarrow \mathbf{S}_{\mathbf{K}_{\wp}/\mathbf{k}_{p}}(\alpha\beta) \in \mathbf{o}_{p} \right\},\$$

and the local discriminant $\mathbf{D}_{\mathbf{K}_{\wp}/\mathbf{k}_{p}}$ is the norm $\mathbf{N}_{\mathbf{K}_{\wp}/\mathbf{k}_{p}}\delta_{\mathbf{K}_{\wp}/\mathbf{k}_{p}}$ of the local different. Then p ramifies in \mathbf{K}_{\wp} if and only if it divides $\mathbf{D}_{\mathbf{K}_{\wp}/\mathbf{k}_{p}}$, which is equivalent to saying $\mathbf{D}_{\mathbf{K}_{\wp}/\mathbf{k}_{p}}$ is not trivial. If x_{1}, \ldots, x_{m} is an integral basis of \mathbf{O}_{\wp} over \mathbf{o}_{p} , then

$$\mathbf{D}_{\mathbf{K}_{\wp}/\mathbf{k}_{p}} = \left(\det\left(\mathbf{S}_{\mathbf{K}_{\wp}/\mathbf{k}_{p}}(x_{i}x_{j})\right)\right)$$

Splitting and inertial subgroups in normal extensions. Let σ be an automorphism in the Galois group $G(\mathbf{K} : \mathbf{k})$ of normal extension \mathbf{K}/\mathbf{k} . Let \wp_1, \ldots, \wp_g be the prime ideals of \mathbf{O} which divide p. The image $\sigma \wp_i$ of \wp_i is a prime ideal of \mathbf{O} and contains p; therefore $\sigma \wp_i$ is one of the \wp_j . For each pair \wp_i and \wp_j , there is some automorphism σ so that $\sigma \wp_i = \wp_j$. Therefore there are rational integers e and f depending only on p so that

$$e = e_1 = \dots = e_g$$
 and $f = f_1 = \dots = f_g$.

The set S_{\wp_i} of automorphisms which leave \wp_i invariant is the *splitting group* of \wp_i .

$$S_{\wp_i} = S_{\wp_i}(\mathbf{K} : \mathbf{k}) = \left\{ \sigma \in G(\mathbf{K} : \mathbf{k}) \mid \sigma_{\wp_i} = \wp_i \right\}$$

Each subgroup S_{\wp_i} has index g in $G(\mathbf{K} : \mathbf{k})$, so S_{\wp_i} has order ef. Automorphisms in S_{\wp_i} are precisely those which can be extended to the completion \mathbf{K}_{\wp_i} , so $S_{\wp_i}(\mathbf{K} : \mathbf{k})$ is the Galois group of \mathbf{K}_{\wp_i} over \mathbf{k}_p .

$$S_{\wp_i} = S_{\wp_i}(\mathbf{K} : \mathbf{k}) = G\left(\mathbf{K}_{\wp_i} : \mathbf{k}_p\right)$$

There is a natural homomorphism of S_{\wp_i} to the Galois group of finite field \mathbf{O}_{\wp_i}/\wp_i over \mathbf{o}_p/p .

$$S_{\wp_i} \to G\left(\mathbf{O}_{\wp_i} / \wp_i : \mathbf{o}_p / p\right).$$

The kernel I_{\wp} is the *inertial subgroup of* \wp_i . The degree of the finite field extension is f, so the inertial subgroup has order e.

$$I_{\wp} = I_{\wp}(\mathbf{K} : \mathbf{k}) = \{ \sigma \in S_{\wp}(\mathbf{K} : \mathbf{k}) \mid \sigma \alpha = \alpha \pmod{\wp_i} \text{ for all } \alpha \in \mathbf{O}_{\wp_i} \}.$$

If p is unramified in **K** then the inertial subgroup of \wp_i is trivial and the splitting group S_{\wp_i} is isomorphic to $G(\mathbf{O}_{\wp_i}/\wp_i:\mathbf{o}_p/p)$.

Splitting and inertial subfields. In a normal extension \mathbf{K}/\mathbf{k} , the parameters e, f and g of finite prime \wp may be determined from the splitting subgroup $S = S_{\wp}$ and inertial subgroup $I = I_{\wp}$ of Galois group G.

$$e = [I : \{1\}]$$
 $f = [S : I]$ $g = [G : S]$

Two subfields of particular interest are the fixed field of S, or splitting field \mathbf{Z} , and the fixed field of I, or inertial field \mathbf{T} . Let p' be the prime of \mathbf{Z} which \wp divides. Since $G(\mathbf{K} : \mathbf{Z}) = S$ then every automorphism σ in $G(\mathbf{K} : \mathbf{Z})$ satisfies $\sigma \wp = \wp$, so $S_{\wp}(\mathbf{K} : \mathbf{Z}) = G(\mathbf{K} : \mathbf{Z})$, and

$$G(\mathbf{K}_{\wp}:\mathbf{Z}_{p'}) = S_{\wp}(\mathbf{K}:\mathbf{Z}) = G(\mathbf{K}:\mathbf{Z}) == S_{\wp}(\mathbf{K}:\mathbf{k}) = G(\mathbf{K}_{\wp}:\mathbf{k}_{p})$$

and therefore

$$\mathbf{Z}_{p'} = \mathbf{k}_p.$$

 \mathbf{Z}/\mathbf{k} has degree g, and p splits completely into g primes in \mathbf{Z} .

As to **T**, let \wp' be the prime of that field which \wp divides. We have $G(\mathbf{K} : \mathbf{T}) = I \subset S$, so every automorphism in $G(\mathbf{K} : \mathbf{T})$ is in the splitting group $S_{\wp}(\mathbf{K} : \mathbf{T})$ and acts trivially modulo \wp . We have

$$I_{\wp}(\mathbf{K}:\mathbf{T}) = S_{\wp}(\mathbf{K}:\mathbf{T}) = G(\mathbf{K}:\mathbf{T}) = I.$$

 \mathbf{K}/\mathbf{T} is completely ramified, having degree e and ramification index e.

Artin symbol. The Galois group $G(\mathbf{O}_{\wp_i}/\wp_i:\mathbf{o}_p/p)$ is cyclic of order f generated by automorphism $\bar{\alpha} \to \bar{\alpha}^{Np}$. If p is unramified then for each \wp_i dividing p there exists a unique automorphism σ_i in $S(\wp_i)$ defined by the property

$$\sigma_i \alpha = \alpha^{Np} (\text{mod } \wp_i) \qquad \alpha \in \mathbf{O}_{\wp_i}.$$

This distinguished generator of $S(\wp_i)$ is the Frobenius automorphism $\left(\frac{\mathbf{K}:\mathbf{k}}{\wp_i}\right)$.

If \wp_i and \wp_j are two primes in **O** dividing p then there is an automorphism τ in $G(\mathbf{K}:\mathbf{k})$ such that $\tau \wp_i = \wp_j$. Then $S(\wp_j) = \tau S(\wp_i)\tau^{-1}$ and

$$\tau \sigma_i \tau^{-1} \alpha = \alpha^{Np} (\text{mod } \wp_j) \qquad \alpha \in \mathbf{O}_{\wp_i}.$$

The Frobenius automorphisms for primes of \mathbf{K} dividing p are therefore conjugate.

$$\left(\frac{\mathbf{K}:\mathbf{k}}{\wp_j}\right) = \tau \left(\frac{\mathbf{K}:\mathbf{k}}{\wp_i}\right) \tau^{-1}$$

When $G(\mathbf{K} : \mathbf{k})$ is abelian the groups $S(\wp_i)$ coincide and the Frobenius automorphisms $\left(\frac{\mathbf{K}:\mathbf{k}}{\wp_i}\right)$ coincide. There is a unique automorphism σ_0 in $G(\mathbf{K}:\mathbf{k})$ depending only on p such that

(1.7)
$$\alpha^{\sigma_0} = \alpha^{Np} \pmod{\wp} \quad \alpha \in \mathbf{O}_{\wp} \text{ for all primes } \wp \text{ of } \mathbf{O} \text{ dividing } p.$$

The automorphism satisfying the above condition is the Artin symbol $\left(\frac{\mathbf{K}:\mathbf{k}}{p}\right)$.

Cyclotomic extensions. The cyclotomic extension of \mathbf{Q} generated by *n*-th roots of unity is the splitting field of $x^n - 1$. The irreducible polynomial over \mathbf{Z} satisfied by primitive *n*-th roots of unity has degree $\varphi(n)$ (the number of residue classes modulo *n* that are relatively prime to *n*). If ζ is a primitive *n*-th root of unity then a complete set of conjugates consists of all ζ^i where *i* runs through a set of representatives for the distinct residue classes modulo *n* that are relatively prime to *n*. The Galois group $G(\mathbf{Q}(\zeta) : \mathbf{Q})$ is isomorphic to the group \mathbf{Z}_n^* of integers relatively prime to *n*. If $j \in \mathbf{Z}_n^*$ then the automorphism σ determined by *j* does not depend on the choice of ζ because if $\zeta^{\sigma} = \zeta^j$ then $(\zeta^i)^{\sigma} = (\zeta^i)^j$.