CHAPTER I

PRELIMINARIES

Unique factorization of ideals in algebraic number fields. Let \mathbf{k} be a finite extension of the rational number field \mathbf{Q}. An integer of \mathbf{k} is an element of \mathbf{k} which satisfies a monic irreducible polynomial with coefficients in the ring of rational integers \mathbf{Z}. The integers of \mathbf{k} form a ring \mathbf{o} that is finitely generated over \mathbf{Z}. Every ideal of \mathbf{o} is finitely generated, and every prime ideal is maximal.

A subset a of \mathbf{k} is a fractional ideal of \mathbf{o} if a is an \mathbf{o}-module such that for some element γ of \mathbf{o} depending on a we have $\gamma a \subset o$. Any non-zero element α of \mathbf{k} generates a principal fractional ideal $(\alpha)=\alpha \mathbf{0}$. (If α is a root of polynomial $a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n}$ over \mathbf{Z}, then $a_{0}^{n} \alpha$ is an integer in \mathbf{k}, and $a_{0}^{n}(\alpha)=\left(a_{0}^{n} \alpha\right) \subset \mathbf{o}$.) The product of fractional ideals a and b is the fractional ideal generated by products $\alpha \beta$ with α in a and β in b. For principal fractional ideals, we have $(\alpha)(\beta)=(\alpha \beta)$. Every non-trivial fractional ideal a of \mathbf{o} is invertible: there is a fractional ideal a^{\prime} so that $a a^{\prime}=\mathbf{o}$. Non-zero principal fractional ideals are invertible because if $\alpha \neq 0$ then $(\alpha)\left(\alpha^{-1}\right)=(1)=\mathbf{o}$. In fact,

Although \mathbf{o} is not in general a unique factorization domain, every non-trivial fractional ideal \mathbf{a} of \boldsymbol{o} has a unique factorization

$$
a=p_{1}^{n_{1}} \ldots p_{k}^{n_{k}}
$$

where p_{1}, \ldots, p_{g} are distinct prime ideals of \mathbf{o} and the rational integer exponents n_{i} are non-zero (but may be positive or negative).

Valuations and completions. A valuation of field \mathbf{k} is a non-negative realvalued function ψ defined on \mathbf{k} satisfying

$$
\begin{aligned}
\psi(\alpha) & =0 \quad \text { if and only if } \alpha=0, \\
\psi(\alpha \beta) & =\psi(\alpha) \psi(\beta), \\
\psi(\alpha+\beta) & \leq \psi(\alpha)+\psi(\beta) .
\end{aligned}
$$

Valuation ψ is non-trivial if there is some α in \mathbf{k} for which $\psi(\alpha) \neq 0$ and $\psi(\alpha) \neq 1$. Two valuations ψ_{1} and ψ_{2} are equivalent if a sequence converges to zero with respect
to ψ_{1} if and only if it converges to zero with respect to ψ_{2}, in which case there is some positive real constant c such that $\psi_{1}(\alpha)=\left(\psi_{2}(\alpha)\right)^{c}$.

Valuations are classified as archimedian or non-archimedian. A valuation is nonarchimedian if it satisfies the stronger inequality

$$
\begin{equation*}
\psi(\alpha+\beta) \leq \max (\psi(\alpha), \psi(\beta)) \tag{1.1}
\end{equation*}
$$

otherwise it is archimedian. Every archimedian valuation of \mathbf{Q} is equivalent to the ordinary absolute value.

Archimedian valuations on \mathbf{k}. If \mathbf{k} is generated by α_{0} over the rational field \mathbf{Q}, let $f_{0}(x)$ be the irreducible polynomial over \mathbf{Q} satisfied by α_{0}. Over the real field \mathbf{R}, $f_{0}(x)$ splits into a product of r_{1} linear and r_{2} irreducible quadratic factors. Corresponding to the r_{1} roots of linear factors, there will be r_{1} isomorphisms $\sigma_{1}, \ldots, \sigma_{r_{1}}$ of \mathbf{k} onto subfields of \mathbf{R}. Corresponding to the r_{2} conjugate pairs of roots of quadratic factors, there will be r_{2} pairs $\left(\tau_{1}, \bar{\tau}_{1}\right), \ldots,\left(\tau_{r_{2}}, \bar{\tau}_{r_{2}}\right)$ of isomorphisms of \mathbf{k} onto subfields of the complex field \mathbf{C}. Members of each pair $\left(\tau_{j}, \bar{\tau}_{j}\right)$ differ by complex conjugation.

$$
\bar{\tau}_{j}(\alpha)=\overline{\tau_{j}(\alpha)}
$$

These $r_{1}+2 r_{2}$ isomorphisms do not depend on the choice of α_{0}. Each isomorphism σ_{i} of \mathbf{k} into \mathbf{R} determines an archimedian valuation on \mathbf{k}; the normalized valuation is defined using the ordinary real absolute value.

$$
\begin{equation*}
|\alpha|_{\sigma_{i}}=\left|\sigma_{i}(\alpha)\right| \tag{1.2}
\end{equation*}
$$

Each pair $\left(\tau_{j}, \bar{\tau}_{j}\right)$ of isomorphisms of \mathbf{k} into \mathbf{C} determines an archimedian valuation on \mathbf{k}; the normalized valuation is defined using the square of the ordinary complex absolute value.

$$
\begin{equation*}
|\alpha|_{\tau_{j}}=|\alpha|_{\bar{\tau}_{j}}=\tau_{j}(\alpha) \bar{\tau}_{j}(\alpha)=\tau_{j}(\alpha) \overline{\tau_{j}(\alpha)}=\left|\tau_{j}(\alpha)\right|^{2} \tag{1.3}
\end{equation*}
$$

Non-archimedian valuations on \mathbf{k}. Let ψ be a non-trivial non-archimedian valuation of \mathbf{k}. Every rational integer a satisfies $\psi(a) \leq 1$, because

$$
\psi(a)=\psi(1+\cdots+1) \leq \max (\psi(1), \ldots, \psi(1))=1
$$

Every integer α in o satisfies $\psi(\alpha) \leq 1$, because α is a root of a monic polynomial $x^{n}+a_{1} x^{n-1}+\cdots+a_{n}$ with rational integer coefficients and by (1.1) we have

$$
\begin{aligned}
\psi(\alpha)^{n} & \leq \max \left(\psi\left(a_{1}\right) \psi\left(\alpha^{n-1}\right), \ldots, \psi\left(a_{n-1}\right) \psi(\alpha), \psi\left(a_{n}\right)\right) \\
& \leq \max \left(\psi(\alpha)^{n-1}, \ldots, \psi(\alpha), 1\right)
\end{aligned}
$$

which is possible only if $\psi(\alpha) \leq 1$. The subset of elements α of \mathbf{o} satisfying $\psi(\alpha)<1$ is a prime ideal of \mathbf{o} which depends only of the equivalence class of ψ.

Conversely, we can construct a non-trivial non-archimedian valuation of \mathbf{k} for each prime ideal of \mathbf{o}. Let p be a prime ideal of \mathbf{o}. If α is a non-zero element of \mathbf{k}, consider fractional ideal (α). We have

$$
(\alpha)=p^{m} b
$$

where b is a (possibly trivial) fractional ideal relatively prime to p. $\operatorname{Put} \operatorname{ord}(p, \alpha)=$ m. Choose a positive real constant c. Define p-adic valuation ψ_{c} by

$$
\psi_{c}(\alpha)=\left\{\begin{array}{cc}
c^{\operatorname{ord}(p, \alpha)} & \text { for } \alpha \neq 0 \\
0 & \text { for } \alpha=0
\end{array}\right.
$$

This is a non-trivial non-archimedian valuation on \mathbf{k}; different choices for c produce equivalent valuations. Thus there is a one-to-one correspondence between equivalence classes of non-trivial non-archimedian valuations of \mathbf{k} and prime ideals of the ring \mathbf{o}.

Since \mathbf{o} is finitely generated over \mathbf{Z} and prime ideals of \mathbf{o} are maximal, the quotient ring \mathbf{o} / p is a finite field. Let $\mathrm{N} p$ be the number of elements in \mathbf{o} / p. The normalized p-adic valuation of \mathbf{k} is defined by

$$
|\alpha|_{p}=(\mathrm{N} p)^{-\operatorname{ord}(p, \alpha)} \quad \text { for } \alpha \neq 0
$$

The concept of prime of \mathbf{k} is generalized to mean equivalence class of non-trivial valuations on \mathbf{k}. We have non-archimedian finite primes of \mathbf{k} corresponding to prime ideals of ring \mathbf{o}, and archimedian infinite primes defined by (1.2) and (1.3). Taking the product over all primes p using normalized valuations, we have

$$
\prod_{p}|\alpha|_{p}=1 \quad \text { for } \alpha \in \mathbf{k}, \alpha \neq 0
$$

Completion of \mathbf{k} with respect to a non-trivial valuation. An infinite sequence $\left\{\alpha_{i}\right\}$ of elements of \mathbf{k} is Cauchy with respect to valuation ψ on \mathbf{k} if and only if $\lim _{i, j \rightarrow \infty}\left(\psi\left(\alpha_{i}-\alpha_{j}\right)\right)=0$. The set of Cauchy sequences forms a ring, in which the set of sequences converging to zero is a maximal ideal. The quotient ring \mathbf{k}_{p} is a field that depends only on the prime p determined by ψ. The valuation can be extended to \mathbf{k}_{p} by defining $\psi\left(\left\{\alpha_{i}\right\}\right)=\lim _{i \rightarrow \infty} \psi\left(\alpha_{i}\right)$ (the right side converges in $\mathbf{R})$. Then \mathbf{k}_{p} is complete with respect to the extended valuation. There is a natural isomorphism $\sigma: \mathbf{k} \rightarrow \mathbf{k}_{p}$ mapping each element of \mathbf{k} to a constant sequence.

If p is archimedian then \mathbf{k}_{p} is isomorphic to the real field \mathbf{R} or the complex field \mathbf{C}, depending whether the valuation is defined by (1.2) or (1.3). If p is nonarchimedian then \mathbf{k}_{p} is the field of p-adic numbers. Since the p-adic valuation takes a discrete set of values, a basic neighborhood $U_{m}\left(\alpha_{0}\right)$ of α_{0} in \mathbf{k}_{p}, defined for $m>0$ by

$$
U_{m}\left(\alpha_{0}\right)=\left\{\alpha \in \mathbf{k}_{p}| | \alpha-\left.\alpha_{0}\right|_{p}<(N p)^{m}\right\}=\left\{\alpha \in \mathbf{k}_{p}| | \alpha-\left.\alpha_{0}\right|_{p} \leq(N p)^{m-1}\right\},
$$

has the property of being both open and closed. The ring \mathbf{o}_{p} of p-adic integers defined by

$$
\mathbf{o}_{p}=\left\{\left.\alpha \in \mathbf{k}_{p}| | \alpha\right|_{p} \leq 1\right\}
$$

has the following properties. (1) \mathbf{o} is contained in \mathbf{o}_{p} and is dense in \mathbf{o}_{p}. (2) Every ideal of \mathbf{o}_{p} is principal. (3) The only prime ideal of \mathbf{o}_{p} is $p=\left\{\left.\alpha \in \mathbf{o}_{p}| | \alpha\right|_{p}<1\right\}$. (4) The only proper ideals of \mathbf{o}_{p} are p, p^{2}, p^{3}, \ldots (5) \mathbf{o}_{p} is open, closed and compact; (6) \mathbf{o}_{p} / p is a finite field isomorphic to \mathbf{o} / p. (Note: symbol p denotes ideals of both \mathbf{o} and \mathbf{o}_{p}, but the context will resolve any ambiguity.)

Ideles over \mathbf{k}. Consider the product $\prod_{p} \mathbf{k}_{p}^{*}$ over all primes of \mathbf{k}. If \mathbf{i} is an element of the product then \mathbf{i}_{p} is its p-th coordinate. Let $\left|\mathbf{i}_{p}\right|_{p}$ be denoted simply by $|\mathbf{i}|_{p}$. The Idele group $\mathbf{I}_{\mathbf{k}}$ is defined by

$$
\mathbf{I}_{\mathbf{k}}=\left\{\left.\mathbf{i} \in \prod_{p} \mathbf{k}_{p}^{*}|\quad| \mathbf{i}\right|_{p}=1 \quad \text { for all but a finite number of primes } p\right\}
$$

Define $|\mathbf{i}|$ by

$$
|\mathbf{i}|=\prod_{p}|\mathbf{i}|_{p} \quad \text { for } \mathbf{i} \in \mathbf{I}_{\mathbf{k}}
$$

and define subgroup $\mathbf{I}_{\mathbf{k}}^{0}$ by

$$
\mathbf{I}_{\mathbf{k}}^{0}=\left\{\mathbf{i} \in \mathbf{I}_{\mathbf{k}}|\quad| \mathbf{i} \mid=1\right\}
$$

The multiplicative group \mathbf{k}^{*} is a subgroup of $\mathbf{I}_{\mathbf{k}}^{0}$ because of product formula (1.4).
For the topology of $\mathbf{I}_{\mathbf{k}}$, let E be any finite set of primes containing all infinite primes; for each prime p in E let ϵ_{p} be a positive real number. Then a basic neighborhood of idele \mathbf{i}_{0} is the set

$$
\begin{aligned}
U\left(E,\left\{\epsilon_{p}\right\}\right)=\left\{\mathbf{i} \in \mathbf{I}_{\mathbf{k}} \mid\right. & \left|\mathbf{i}\left(\mathbf{i}_{0}\right)^{-1}\right|_{p}=1 \text { if } p \notin E ; \\
& \left.\left|\mathbf{i}\left(\mathbf{i}_{0}\right)^{-1}-1\right|_{p}<\epsilon_{p} \text { and }\left|\left(\mathbf{i}_{0}\right) \mathbf{i}^{-1}-1\right|_{p}<\epsilon_{p} \text { if } p \in E\right\} .
\end{aligned}
$$

Arithmetic in a finite extension of \mathbf{k}. Let \mathbf{K} / \mathbf{k} be a finite extension of degree n. The ring \mathbf{O} of integers in \mathbf{K} is a free \mathbf{o}-module of degree n. A prime ideal p of \mathbf{o} generates an ideal $p \mathbf{O}$ of \mathbf{O} which splits into a finite product

$$
p=\wp_{1}^{e_{1}} \cdots \wp_{g}^{e_{g}}
$$

where \wp_{1}, \ldots, \wp_{g} are distinct primes ideals of \mathbf{O}. Each \wp_{i}-adic valuation of \mathbf{K} extends the p-adic valuation of \mathbf{k}, so $\mathbf{K}_{\wp_{i}}$ is an extension of \mathbf{k}_{p}.

There is a correspondence between the splitting of p in \mathbf{K} and the splitting of a generating polynomial in \mathbf{k}_{p}. Let $\mathbf{K}=\mathbf{k}(\alpha)$, and let α be a root of monic irreducible polynomial $f(x)$ with coefficients in \mathbf{k}. Suppose that \wp_{i}, \ldots, \wp_{g} are the distinct primes of \mathbf{K} dividing p. For each \wp_{i}, let $\sigma_{i}: \mathbf{K} \rightarrow \mathbf{K}_{\wp_{i}}$ be the natural isomorphism. Let $f_{i}(x)$ be the monic irreducible polynomial over \mathbf{k}_{p} satisfied by $\sigma_{i}(\alpha)$. Then the polynomials $f_{1}(x), \ldots, f_{g}(x)$ are all distinct, and

$$
f(x)=f_{1}(x) \ldots f_{g}(x)
$$

Element $\sigma_{i}(\alpha)$ generates $\mathbf{K}_{\wp_{i}}$ over \mathbf{k}_{p}, so $\left[\mathbf{K}_{\wp_{i}}: \mathbf{k}_{p}\right]=\operatorname{deg}\left(f_{i}(x)\right)$, and

$$
\begin{equation*}
[\mathbf{K}: \mathbf{k}]=\sum_{i=1}^{g}\left[\mathbf{K}_{\wp_{i}}: \mathbf{k}_{p}\right] \tag{1.4}
\end{equation*}
$$

Except for a finite number of ramified primes p, all of the exponents e_{i} are equal to 1 . A prime for which all of the e_{i} are equal to one is unramified in \mathbf{K}. Each of the finite fields $\mathbf{O}_{\wp_{i}} / \wp_{i}$ is a finite extension of finite field \mathbf{o}_{p} / p; Let f_{i} be the degree of this extension.

$$
f_{i}=\left[\mathbf{O}_{\wp_{i}} / \wp_{i}: \mathbf{o}_{p} / p\right]
$$

Then $\left[\mathbf{K}_{\wp_{i}}: \mathbf{k}_{p}\right]=e_{i} f_{i}$, and

$$
n=e_{1} f_{1}+\ldots e_{g} f_{g}
$$

$\mathbf{O}_{\wp_{i}}$ is a free \mathbf{o}_{p}-module of degree $e_{i} f_{i}$. For each $\mathbf{K}_{\wp}=\mathbf{K}_{\wp_{i}}$ over \mathbf{k}_{p}, with $e=e_{i}$ and $f=f_{i}$, a basis may be found as follows. Choose elements $\omega_{1}, \ldots, \omega_{f}$ of \mathbf{O}_{\wp} which map to a basis of \mathbf{O}_{\wp} / \wp over \mathbf{o}_{p} / p. Choose an element π of \mathbf{O}_{\wp} which generates ideal \wp (which is a principle ideal of \mathbf{O}_{\wp}). Then the ef products $\pi^{j} \omega_{k}$, where $0 \leq j<e$ and $1 \leq k \leq f$, are a basis of \mathbf{K}_{\wp} over \mathbf{k}_{p} and of \mathbf{O}_{\wp} over \mathbf{o}_{p}.

Norm and Trace functions. Extension field \mathbf{K} is an n-dimensional vector space over \mathbf{k}. For each α in \mathbf{K}, the operation of multiplication by α defines a linear
transformation $T_{\alpha}: \mathbf{K} \rightarrow \mathbf{K}$, where $T_{\alpha}(\beta)=\alpha \beta$. The norm $\mathbf{N}_{\mathbf{K} / \mathbf{k}}$ and trace $\mathbf{S}_{\mathbf{K} / \mathbf{k}}$ are functions from \mathbf{K} to \mathbf{k} defined by

$$
\mathbf{N}_{\mathbf{K} / \mathbf{k}}(\alpha)=\operatorname{det}\left(T_{\alpha}\right), \quad \mathbf{S}_{\mathbf{K} / \mathbf{k}}(\alpha)=\operatorname{trace}\left(T_{\alpha}\right)
$$

If \mathbf{L} is an intermediate subfield, $\mathbf{K} \supset \mathbf{L} \supset \mathbf{k}$, then we have

$$
\mathbf{N}_{\mathbf{K} / \mathbf{k}} \alpha=\mathbf{N}_{\mathbf{L} / \mathbf{k}} \mathbf{N}_{\mathbf{K} / \mathbf{L}} \alpha .
$$

For each prime p of \mathbf{k}, let \wp_{1}, \ldots, \wp_{g} be the primes of \mathbf{K} which divide p, and let $\sigma_{i}: \mathbf{K} \rightarrow \mathbf{K}_{\wp_{i}}$ be the natural isomorphism. If α of \mathbf{K}, then

$$
\begin{equation*}
\mathbf{N}_{\mathbf{K} / \mathbf{k}}(\alpha)=\prod_{i=1}^{g} \mathbf{N}_{\mathbf{K}_{\wp_{i}} / \mathbf{k}_{p}}\left(\sigma_{i}(\alpha)\right) \quad \quad \mathbf{S}_{\mathbf{K} / \mathbf{k}}(\alpha)=\sum_{i=1}^{g} \mathbf{S}_{\mathbf{K}_{\wp_{i}} / \mathbf{k}_{p}}\left(\sigma_{i}(\alpha)\right) \tag{1.5}
\end{equation*}
$$

If α is identified with $\sigma_{i}(\alpha)$ then we may write $\mathbf{N}_{\mathbf{K} / \mathbf{k}}(\alpha)=\prod_{\wp \mid p} \mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}}(\alpha)$ and $\mathbf{S}_{\mathbf{K} / \mathbf{k}}(\alpha)=\sum_{\wp \mid p} \mathbf{S}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}}(\alpha)$. Finally, for any element β in $\mathbf{K}_{\wp_{i}}$ we have

$$
\left|\mathbf{N}_{\mathbf{K}_{\wp_{i}} / \mathbf{k}_{p}} \beta\right|_{p}=|\beta|_{\wp_{i}} .
$$

These formulae hold for all primes of \mathbf{k}, both finite and infinite. We can now show that the product formula holds in the extension field. For α in \mathbf{K}, we have

$$
\begin{equation*}
\prod_{\wp}|\alpha|_{\wp}=\prod_{p}\left(\prod_{\wp \mid p}\left|\mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \alpha\right|_{p}\right)=\prod_{p}\left|\mathbf{N}_{\mathbf{K} / \mathbf{k}} \alpha\right|_{p}=1 \tag{1.6}
\end{equation*}
$$

A norm for ideals can also be defined. If a is an ideal of \mathbf{O} then $\mathbf{N}_{\mathbf{K} / \mathbf{k}} a$ is the ideal of \mathbf{o} generated by all elements $\mathbf{N}_{\mathbf{K} / \mathbf{k}} \alpha$ for α in \mathbf{O}. For principal ideal $a=(\alpha)$, we have $\mathbf{N}_{\mathbf{K} / \mathbf{k}} a=\left(\mathbf{N}_{\mathbf{K} / \mathbf{k}} \alpha\right)$. For each prime ideal \wp_{i} of \mathbf{O} dividing prime p of \mathbf{o}, a fundamental property of the norm is

$$
\mathbf{N}_{\mathbf{K} / \mathbf{k} \wp_{i}}=p^{f_{i}}
$$

The different $\delta_{\mathbf{K} / \mathbf{k}}$ is an ideal of \mathbf{O} determined by defining its inverse to be

$$
\delta_{\mathbf{K} / \mathbf{k}}^{-1}=\left\{\alpha \in \mathbf{K} \mid \beta \in \mathbf{O} \Longrightarrow \mathbf{S}_{\mathbf{K} / \mathbf{k}}(\alpha \beta) \in \mathbf{o}\right\}
$$

and the discriminant $\mathbf{D}_{\mathbf{K} / \mathbf{k}}$ is the norm $\mathbf{N}_{\mathbf{K} / \mathbf{k}} \delta_{\mathbf{K} / \mathbf{k}}$ of the different. A prime of \mathbf{k} is ramified in \mathbf{K} if and only if it divides the discriminant. Suppose that x_{1}, \ldots, x_{n}
forms an integral basis of \mathbf{O} over \mathbf{o}. The discriminant is the following principal ideal.

$$
\mathbf{D}_{\mathbf{K} / \mathbf{k}}=\left(\operatorname{det}\left(\mathbf{S}_{\mathbf{K} / \mathbf{k}}\left(x_{i} x_{j}\right)\right)\right)
$$

For each \wp of \mathbf{K}, the local different $\delta_{\mathbf{K}_{\wp} / \mathbf{k}_{p}}$ is determined by its inverse

$$
\delta_{\mathbf{K}_{\wp} / \mathbf{k}_{p}}^{-1}=\left\{\alpha \in \mathbf{K}_{\wp} \mid \beta \in \mathbf{O}_{\wp} \Longrightarrow \mathbf{S}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}}(\alpha \beta) \in \mathbf{o}_{p}\right\},
$$

and the local discriminant $\mathbf{D}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}}$ is the norm $\mathbf{N}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}} \delta_{\mathbf{K}_{\wp} / \mathbf{k}_{p}}$ of the local different. Then p ramifies in \mathbf{K}_{\wp} if and only if it divides $\mathbf{D}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}}$, which is equivalent to saying $\mathbf{D}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}}$ is not trivial. If x_{1}, \ldots, x_{m} is an integral basis of \mathbf{O}_{\wp} over \mathbf{o}_{p}, then

$$
\mathbf{D}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}}=\left(\operatorname{det}\left(\mathbf{S}_{\mathbf{K}_{\wp} / \mathbf{k}_{p}}\left(x_{i} x_{j}\right)\right)\right)
$$

Splitting and inertial subgroups in normal extensions. Let σ be an automorphism in the Galois group $G(\mathbf{K}: \mathbf{k})$ of normal extension \mathbf{K} / \mathbf{k}. Let \wp_{1}, \ldots, \wp_{g} be the prime ideals of \mathbf{O} which divide p. The image $\sigma \wp_{i}$ of \wp_{i} is a prime ideal of \mathbf{O} and contains p; therefore $\sigma \wp_{i}$ is one of the \wp_{j}. For each pair \wp_{i} and \wp_{j}, there is some automorphism σ so that $\sigma \wp_{i}=\wp_{j}$. Therefore there are rational integers e and f depending only on p so that

$$
e=e_{1}=\cdots=e_{g} \quad \text { and } \quad f=f_{1}=\cdots=f_{g}
$$

The set $S_{\wp_{i}}$ of automorphisms which leave \wp_{i} invariant is the splitting group of \wp_{i}.

$$
S_{\wp_{i}}=S_{\wp_{i}}(\mathbf{K}: \mathbf{k})=\left\{\sigma \in G(\mathbf{K}: \mathbf{k}) \mid \sigma \wp_{i}=\wp_{i}\right\}
$$

Each subgroup $S_{\wp_{i}}$ has index g in $G(\mathbf{K}: \mathbf{k})$, so $S_{\wp_{i}}$ has order ef. Automorphisms in $S_{\wp_{i}}$ are precisely those which can be extended to the completion $\mathbf{K}_{\wp_{i}}$, so $S_{\wp_{i}}(\mathbf{K}: \mathbf{k})$ is the Galois group of $\mathbf{K}_{\wp_{i}}$ over \mathbf{k}_{p}.

$$
S_{\wp_{i}}=S_{\wp_{i}}(\mathbf{K}: \mathbf{k})=G\left(\mathbf{K}_{\wp_{i}}: \mathbf{k}_{p}\right)
$$

There is a natural homomorphism of $S_{\wp_{i}}$ to the Galois group of finite field $\mathbf{O}_{\wp_{i}} / \wp_{i}$ over \mathbf{o}_{p} / p.

$$
S_{\wp_{i}} \rightarrow G\left(\mathbf{O}_{\wp_{i} i} / \wp_{i}: \mathbf{o}_{p} / p\right) .
$$

The kernel I_{\wp} is the inertial subgroup of \wp_{i}. The degree of the finite field extension is f, so the inertial subgroup has order e.

$$
I_{\wp}=I_{\wp}(\mathbf{K}: \mathbf{k})=\left\{\sigma \in S_{\wp}(\mathbf{K}: \mathbf{k}) \mid \sigma \alpha=\alpha\left(\bmod \wp_{i}\right) \text { for all } \alpha \in \mathbf{O}_{\wp_{i}}\right\} .
$$

If p is unramified in \mathbf{K} then the inertial subgroup of \wp_{i} is trivial and the splitting group $S_{\wp_{i}}$ is isomorphic to $G\left(\mathbf{O}_{\wp_{i}} / \wp_{i}: \mathbf{o}_{p} / p\right)$.

Splitting and inertial subfields. In a normal extension \mathbf{K} / \mathbf{k}, the parameters e, f and g of finite prime \wp may be determined from the splitting subgroup $S=S_{\wp}$ and inertial subgroup $I=I_{\wp}$ of Galois group G.

$$
e=[I:\{1\}] \quad f=[S: I] \quad g=[G: S]
$$

Two subfields of particular interest are the fixed field of S, or splitting field \mathbf{Z}, and the fixed field of I, or inertial field \mathbf{T}. Let p^{\prime} be the prime of \mathbf{Z} which \wp divides. Since $G(\mathbf{K}: \mathbf{Z})=S$ then every automorphism σ in $G(\mathbf{K}: \mathbf{Z})$ satisfies $\sigma \wp=\wp$, so $S_{\wp}(\mathbf{K}: \mathbf{Z})=G(\mathbf{K}: \mathbf{Z})$, and

$$
G\left(\mathbf{K}_{\wp}: \mathbf{Z}_{p^{\prime}}\right)=S_{\wp}(\mathbf{K}: \mathbf{Z})=G(\mathbf{K}: \mathbf{Z})==S_{\wp}(\mathbf{K}: \mathbf{k})=G\left(\mathbf{K}_{\wp}: \mathbf{k}_{p}\right)
$$

and therefore

$$
\mathbf{Z}_{p^{\prime}}=\mathbf{k}_{p}
$$

\mathbf{Z} / \mathbf{k} has degree g, and p splits completely into g primes in \mathbf{Z}.
As to \mathbf{T}, let \wp^{\prime} be the prime of that field which \wp divides. We have $G(\mathbf{K}: \mathbf{T})=$ $I \subset S$, so every automorphism in $G(\mathbf{K}: \mathbf{T})$ is in the splitting group $S_{\wp}(\mathbf{K}: \mathbf{T})$ and acts trivially modulo \wp. We have

$$
I_{\wp}(\mathbf{K}: \mathbf{T})=S_{\wp}(\mathbf{K}: \mathbf{T})=G(\mathbf{K}: \mathbf{T})=I
$$

\mathbf{K} / \mathbf{T} is completely ramified, having degree e and ramification index e.
Artin symbol. The Galois group $G\left(\mathbf{O}_{\wp_{i}} / \wp_{i}: \mathbf{o}_{p} / p\right)$ is cyclic of order f generated by automorphism $\bar{\alpha} \rightarrow \bar{\alpha}^{\mathrm{N} p}$. If p is unramified then for each \wp_{i} dividing p there exists a unique automorphism σ_{i} in $S\left(\wp_{i}\right)$ defined by the property

$$
\sigma_{i} \alpha=\alpha^{\mathrm{N} p}\left(\bmod \wp_{i}\right) \quad \alpha \in \mathbf{O}_{\wp_{i}}
$$

This distinguished generator of $S\left(\wp_{i}\right)$ is the Frobenius automorphism $\left(\frac{\mathbf{K}: \mathbf{k}}{\wp_{i}}\right)$.
If \wp_{i} and \wp_{j} are two primes in \mathbf{O} dividing p then there is an automorphism τ in $G(\mathbf{K}: \mathbf{k})$ such that $\tau \wp_{i}=\wp_{j}$. Then $S\left(\wp_{j}\right)=\tau S\left(\wp_{i}\right) \tau^{-1}$ and

$$
\tau \sigma_{i} \tau^{-1} \alpha=\alpha^{\mathrm{N} p}\left(\bmod \wp_{j}\right) \quad \alpha \in \mathbf{O}_{\wp_{j}}
$$

The Frobenius automorphisms for primes of \mathbf{K} dividing p are therefore conjugate.

$$
\left(\frac{\mathbf{K}: \mathbf{k}}{\wp_{j}}\right)=\tau\left(\frac{\mathbf{K}: \mathbf{k}}{\wp_{i}}\right) \tau^{-1}
$$

When $G(\mathbf{K}: \mathbf{k})$ is abelian the groups $S\left(\wp_{i}\right)$ coincide and the Frobenius automorphisms $\left(\frac{\mathbf{K}: \mathbf{k}}{\wp_{i}}\right)$ coincide. There is a unique automorphism σ_{0} in $G(\mathbf{K}: \mathbf{k})$ depending only on p such that

$$
\begin{equation*}
\alpha^{\sigma_{0}}=\alpha^{\mathrm{N} p}(\bmod \wp) \quad \alpha \in \mathbf{O}_{\wp} \text { for all primes } \wp \text { of } \mathbf{O} \text { dividing } p . \tag{1.7}
\end{equation*}
$$

The automorphism satisfying the above condition is the Artin symbol $\left(\frac{\mathrm{K}: \mathbf{k}}{p}\right)$.

Cyclotomic extensions. The cyclotomic extension of \mathbf{Q} generated by n-th roots of unity is the splitting field of $x^{n}-1$. The irreducible polynomial over \mathbf{Z} satisfied by primitive n-th roots of unity has degree $\varphi(n)$ (the number of residue classes modulo n that are relatively prime to n). If ζ is a primitive n-th root of unity then a complete set of conjugates consists of all ζ^{i} where i runs through a set of representatives for the distinct residue classes modulo n that are relatively prime to n. The Galois group $G(\mathbf{Q}(\zeta): \mathbf{Q})$ is isomorphic to the group \mathbf{Z}_{n}^{*} of integers relatively prime to n. If $j \in \mathbf{Z}_{n}^{*}$ then the automorphism σ determined by j does not depend on the choice of ζ because if $\zeta^{\sigma}=\zeta^{j}$ then $\left(\zeta^{i}\right)^{\sigma}=\left(\zeta^{i}\right)^{j}$.

