
CHAPTER III

THEOREM 1: PROOF FOR CYCLOTOMIC EXTENSIONS

Cyclotomic extensions will play an important role in the proof for cyclic exten-
sions in Chapter 4. It will be shown (proposition 4.22) that Theorem 1 holds for
every subfield of a cyclotomic extension, and (proposition 4.21) that there exist
cyclotomic extensions containing subfields with prescribed properties.

If ζn is a primitive n-th root of unity, then the conjugates of ζn are powers ζi
n for

0 < i < n and i relatively prime to n. The Galois group G
(

Q(ζn) : Q
)

is isomorphic
to the multiplicative group Z∗

n (Chapter 1, cyclotomic extensions).

Lemma 3.1. Let n be a positive rational integer and ζn a primitive n-th root of
unity. Rational prime p is ramified in Q(ζn)/Q only if p divides n.

Proof. Let O be the ring of integers in Q(ζn). If p is ramified in Q(ζn) then
there exists a non-trivial automorphism σ so that

ασ = α(mod ℘) for α ∈ O℘

where ℘ is a prime of Q(ζn) dividing p. If ζσ
n = ζ`

n, then ζ`−1
n = 1(mod ℘). Since

ζ`−1
n 6= 1 then ζ`−1

n is a root of xn−1 + · · · + x + 1. Setting x = ζ`−1
n yields

n = 0(mod ℘), so n is an element of ℘ ∩ Z = (p). Therefore p divides n.

Lemma 3.2. If rational prime p does not divide n then p is unramified in Q(ζn)
and the action of the Artin symbol in Q(ζn) is

(

Q(ζn) : Q

p

)

ζn = ζp
n.

Proof. The Artin symbol raises ζn to some power ζa
n, where 0 < a < n, a is

relatively prime to n, and ζa
n = ζp

n(mod ℘), where ℘ is a prime of Q(ζn) dividing
p. Suppose that a 6= p(mod n). Then ζp−a

n = 1(mod ℘) and ζp−a
n 6= 1, so ζp−a

n is a
root of xn−1 + · · · + x+ 1. Setting x = ζp−a

n yields n = 0(mod ℘), so (p) = ℘ ∩ Z

divides n. That is impossible, so a = p(mod n).
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Lemma 3.3. Let k be a finite extension of Q. Let ℘ be a prime of k that divides
rational prime p, and p does not divide n. Prime ℘ is not ramified in k(ζn), and
the action of the Artin symbol for ℘ is

(

k(ζn) : k

℘

)

ζn = ζN℘
n .

Proof. By lemma 2.16, ℘ is not ramified in k(ζn), and the Artin symbol for ℘
raises ζn to the power of pf where f is the degree of p in extension k/Q, i.e., to
the power N℘.

Lemma 3.4. Let k be a finite extension of Q. Let α be an element of k∗. Then

∏

℘|α

N℘a℘ =
∣

∣Nk/Qα
∣

∣ where |α|℘ = N℘−a℘ .

Proof. Principal fractional ideal (Nk/Qα) is the norm Nk/Q(α) of principal
fractional ideal (α) (chapter 1, norm and trace functions). Let the prime factoriza-
tion of (α) into primes of k be (α) =

∏

℘ ℘
a℘ . Note that Nk/Q℘ = (p)f = (pf ) =

(N℘). Then

Nk/Q(α) =
∏

℘|α

Nk/Q℘
a℘ =

∏

℘|α

(

N℘
)a℘

=





∏

℘|α

N℘a℘



 .

Therefore
∏

℘|α N℘a℘ and Nk/Qα generate the same fractional ideal of Q.

Remark. In proposition 3.5, primes of k will be denoted by ℘ and rational
primes by p.

Proposition 3.5. Let k be a finite extension of Q, and let K = k(ζn) be a
cyclotomic extension of k. Let E contain all infinite primes of k and all finite
primes which are ramified in K. For γ of k∗, define

ψ(γ) =
∏

℘/∈E

(

K : k

℘

)c℘

, where |γ|℘ = (N℘)−c℘ .

Let the factorization of n into rational primes be n =
∏

pnp . For each prime p
dividing n, we have (p) =

∏

℘e℘ in o. Set m℘ = e℘np. For real infinite primes of
k, set m℘ = 1. If γ ∈W℘(m℘) for ℘ ∈ E then ψ(γ) = 1.
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Proof. Let us first show that the conclusion holds for an element α in o∗.
Suppose α is in W℘(m℘) for ℘ in E. Then ℘ divides (α) only if ℘ is not in E. Using
lemma 3.3 and lemma 3.1, if |α|℘ = N℘−c℘ then

ψ(α)ζn =
∏

℘/∈E

(

K : k

℘

)c℘

ζn = ζ

∏

℘/∈E
N℘c℘

n = ζ

∏

℘|α
N℘c℘

n .

Applying lemma 3.4, we have

ψ(α)ζn = ζ
|Nk/Qα|
n .

Since the norm is the product of local norms, at p = p∞ we have

Nk/Qα =
∏

℘|p∞

Nk℘/Qp∞
α.

Since we have chosen m℘ = 1 at all real infinite primes, every local norm in the
above product is positive. Therefore Nk/Qα > 0, so we have

ψ(α)ζn = ζ
Nk/Qα
n .

If ℘ is a finite prime in E and α is in W℘(e℘np), then (α − 1) = ℘e℘np = (p)np ,
so α = 1 + pnpα′ for α′ in o℘. We therefore have Nk/Qα = 1(mod pnp). This
holds for every rational prime dividing n, so Nk/Qα = 1(mod n). We conclude that
ψ(α)ζn = ζn, so ψ(α) = 1.

For the general case, suppose that γ is in k∗ and in W℘(m℘) for ℘ in E. If we can
find a positive rational integer b so that b is in W℘(m℘) for ℘ in E and γb is in o∗,
then α = γb is also in W℘(m℘) for ℘ in E. We have already shown ψ(α) = 1, and
the same argument applies to b, so ψ(b) = 1. Therefore ψ(γ) = ψ(α)ψ(b)−1 = 1.

To find b, we will have γb in o∗ if b is divisible by sufficiently high powers of
rational primes p that are divisible by the primes ℘ which occur to negative powers
in the factorization of (α) in o. (None of those ℘ are in E.) In addition, b will be
in W℘(m℘) for the finite primes in E if b − 1 divisible by sufficiently high powers
of primes p that are divisible by finite primes in E. By lemma 2.2, there exists a
rational integer satisfying the congruences. Let b be a positive solution by adding
a large multiple of all the prime powers occurring in the congruences. Then b is in
W℘(m℘) for all primes of E.

Remark. We return to the usual notation: ℘ and p denote primes of K and k,
respectively.
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Proposition 3.6. Let k be a finite extension of Q, and let K = k(ζn) be a
cyclotomic extension of k. Homomorphism φK/k of (2.1) can be extended to a
continuous homomorphism of Ik to G[K : k] whose kernel contains k∗.

Proof. Let E consist of all infinite primes of k and all finite primes that are
ramified in K. Choose integers mp for p in E so that the conditions of proposition
3.5 are satisfied. φK is defined on Ik{E} by (2.1). Let i be any idele in Ik. By
lemma 2.5, and using the notation of remark 2.2, we can choose α in k∗ so that αi
is in Wp(mp) for p in E. Define φK/k by

(3.1) φK/k(i) =
∏

p/∈E

(

K : k

p

)ap

where |α i|p = Np−ap .

The kernel contains k∗, because if i is in k∗ then choose α = i−1. The definition
agrees with (2.1) when i is in Ik{E} because we can take α = 1.

We must show that the above definition of φK does not depend on the choice
of α. Suppose that β also satisfies βi ∈ Wp(mp) for p in E. Then αi = γ(βi)
where γ = (αi)(βi)−1, so γ is an element of k∗ and is in Wp(mp) for p in E. Let
|βi|p = Np−bp and |γ|p = Np−cp for p in E. By proposition 3.5, ψ(γ) = 1, so

∏

p/∈E

(

K : k

p

)ap

=
∏

p/∈E

(

K : k

p

)bp+cp

=
∏

p/∈E

(

K : k

p

)bp
∏

p/∈E

(

K : k

p

)cp

=
∏

p/∈E

(

K : k

p

)bp

,

showing that β and α produce the same value of φK(i).

Remark. When the base field k is the rational number field Q and K = Q(ζn),
the set E consists of primes dividing n and the real infinite prime p∞. The integers
m℘ become simply mp = np for finite primes in E and mp∞

= 1. The definition of
φK/Q is as follows. If i is any idele in IQ, choose α in Q∗ so that αi is in Wp(np)
for p in E. Let n be the modulus (n)p∞. Then

(3.2) φK/Q(i) =
∏

p-n

(

K : Q

p

)ap

where |α i|p = p−ap .

This will be of use in the proof of Kronecker’s theorem (chapter 9).


