$\mathbf{CHAPTER} \ \mathbf{III}$

THEOREM 1: PROOF FOR CYCLOTOMIC EXTENSIONS

Cyclotomic extensions will play an important role in the proof for cyclic extensions in Chapter 4. It will be shown (proposition 4.22) that Theorem 1 holds for every subfield of a cyclotomic extension, and (proposition 4.21) that there exist cyclotomic extensions containing subfields with prescribed properties.

If ζ_n is a primitive *n*-th root of unity, then the conjugates of ζ_n are powers ζ_n^i for 0 < i < n and *i* relatively prime to *n*. The Galois group $G(\mathbf{Q}(\zeta_n) : \mathbf{Q})$ is isomorphic to the multiplicative group \mathbf{Z}_n^* (Chapter 1, cyclotomic extensions).

LEMMA 3.1. Let n be a positive rational integer and ζ_n a primitive n-th root of unity. Rational prime p is ramified in $\mathbf{Q}(\zeta_n)/\mathbf{Q}$ only if p divides n.

PROOF. Let **O** be the ring of integers in $\mathbf{Q}(\zeta_n)$. If p is ramified in $\mathbf{Q}(\zeta_n)$ then there exists a non-trivial automorphism σ so that

$$\alpha^{\sigma} = \alpha \pmod{\wp} \quad \text{for } \alpha \in \mathbf{O}_{\wp}$$

where \wp is a prime of $\mathbf{Q}(\zeta_n)$ dividing p. If $\zeta_n^{\sigma} = \zeta_n^{\ell}$, then $\zeta_n^{\ell-1} = 1 \pmod{\wp}$. Since $\zeta_n^{\ell-1} \neq 1$ then $\zeta_n^{\ell-1}$ is a root of $x^{n-1} + \cdots + x + 1$. Setting $x = \zeta_n^{\ell-1}$ yields $n = 0 \pmod{\wp}$, so n is an element of $\wp \cap \mathbf{Z} = (p)$. Therefore p divides n.

LEMMA 3.2. If rational prime p does not divide n then p is unramified in $\mathbf{Q}(\zeta_n)$ and the action of the Artin symbol in $Q(\zeta_n)$ is

$$\left(\frac{\mathbf{Q}(\zeta_n):\mathbf{Q}}{p}\right)\zeta_n = \zeta_n^p.$$

PROOF. The Artin symbol raises ζ_n to some power ζ_n^a , where 0 < a < n, a is relatively prime to n, and $\zeta_n^a = \zeta_n^p \pmod{\wp}$, where \wp is a prime of $Q(\zeta_n)$ dividing p. Suppose that $a \neq p \pmod{n}$. Then $\zeta_n^{p-a} = 1 \pmod{\wp}$ and $\zeta_n^{p-a} \neq 1$, so ζ_n^{p-a} is a root of $x^{n-1} + \cdots + x + 1$. Setting $x = \zeta_n^{p-a}$ yields $n = 0 \pmod{\wp}$, so $(p) = \wp \cap \mathbf{Z}$ divides n. That is impossible, so $a = p \pmod{n}$.

LEMMA 3.3. Let \mathbf{k} be a finite extension of \mathbf{Q} . Let \wp be a prime of \mathbf{k} that divides rational prime p, and p does not divide n. Prime \wp is not ramified in $\mathbf{k}(\zeta_n)$, and the action of the Artin symbol for \wp is

$$\left(\frac{\mathbf{k}(\zeta_n):\mathbf{k}}{\wp}\right)\zeta_n = \zeta_n^{\mathsf{N}\wp}.$$

PROOF. By lemma 2.16, \wp is not ramified in $\mathbf{k}(\zeta_n)$, and the Artin symbol for \wp raises ζ_n to the power of p^f where f is the degree of p in extension \mathbf{k}/\mathbf{Q} , *i.e.*, to the power N \wp .

LEMMA 3.4. Let **k** be a finite extension of **Q**. Let α be an element of \mathbf{k}^* . Then

$$\prod_{\wp \mid \alpha} \mathbf{N} \wp^{a_{\wp}} = \left| \mathbf{N}_{\mathbf{k}/\mathbf{Q}} \alpha \right| \qquad \text{where } \left| \alpha \right|_{\wp} = \mathbf{N} \wp^{-a_{\wp}}.$$

PROOF. Principal fractional ideal $(\mathbf{N}_{\mathbf{k}/\mathbf{Q}}\alpha)$ is the norm $\mathbf{N}_{\mathbf{k}/\mathbf{Q}}(\alpha)$ of principal fractional ideal (α) (chapter 1, norm and trace functions). Let the prime factorization of (α) into primes of \mathbf{k} be $(\alpha) = \prod_{\wp} \wp^{a_{\wp}}$. Note that $\mathbf{N}_{\mathbf{k}/\mathbf{Q}}\wp = (p)^f = (p^f) = (\mathbf{N}_{\wp})$. Then

$$\mathbf{N}_{\mathbf{k}/\mathbf{Q}}(\alpha) = \prod_{\wp|\alpha} \mathbf{N}_{\mathbf{k}/\mathbf{Q}} \wp^{a_{\wp}} = \prod_{\wp|\alpha} (\mathbf{N}\wp)^{a_{\wp}} = \left(\prod_{\wp|\alpha} \mathbf{N}\wp^{a_{\wp}}\right).$$

Therefore $\prod_{\omega \mid \alpha} N \wp^{a_{\omega}}$ and $N_{\mathbf{k}/\mathbf{Q}} \alpha$ generate the same fractional ideal of \mathbf{Q} .

REMARK. In proposition 3.5, primes of **k** will be denoted by \wp and rational primes by p.

PROPOSITION 3.5. Let \mathbf{k} be a finite extension of \mathbf{Q} , and let $\mathbf{K} = \mathbf{k}(\zeta_n)$ be a cyclotomic extension of \mathbf{k} . Let E contain all infinite primes of \mathbf{k} and all finite primes which are ramified in \mathbf{K} . For γ of \mathbf{k}^* , define

$$\psi(\gamma) = \prod_{\wp \notin E} \left(\frac{\mathbf{K} : \mathbf{k}}{\wp} \right)^{c_{\wp}}, \quad where \ |\gamma|_{\wp} = (\mathbf{N}\wp)^{-c_{\wp}}.$$

Let the factorization of n into rational primes be $n = \prod p^{n_p}$. For each prime p dividing n, we have $(p) = \prod \wp^{e_{\wp}}$ in **o**. Set $m_{\wp} = e_{\wp}n_p$. For real infinite primes of **k**, set $m_{\wp} = 1$. If $\gamma \in W_{\wp}(m_{\wp})$ for $\wp \in E$ then $\psi(\gamma) = 1$. PROOF. Let us first show that the conclusion holds for an element α in \mathbf{o}^* . Suppose α is in $W_{\wp}(m_{\wp})$ for \wp in E. Then \wp divides (α) only if \wp is not in E. Using lemma 3.3 and lemma 3.1, if $|\alpha|_{\wp} = \mathrm{N}\wp^{-c_{\wp}}$ then

$$\psi(\alpha)\zeta_n = \prod_{\wp \notin E} \left(\frac{\mathbf{K} : \mathbf{k}}{\wp}\right)^{c_\wp} \zeta_n = \zeta_n^{\prod_{\wp \notin E} N_{\wp}^{c_\wp}} = \zeta_n^{\prod_{\wp \mid \alpha} N_{\wp}^{c_\wp}}.$$

Applying lemma 3.4, we have

$$\psi(\alpha)\zeta_n = \zeta_n^{|\mathbf{N}_{\mathbf{k}/\mathbf{Q}}\alpha|}.$$

Since the norm is the product of local norms, at $p = p_{\infty}$ we have

$$\mathbf{N}_{\mathbf{k}/\mathbf{Q}}\alpha = \prod_{\wp|p_{\infty}} \mathbf{N}_{\mathbf{k}_{\wp}/\mathbf{Q}_{p_{\infty}}}\alpha.$$

Since we have chosen $m_{\wp} = 1$ at all real infinite primes, every local norm in the above product is positive. Therefore $\mathbf{N}_{\mathbf{k}/\mathbf{Q}}\alpha > 0$, so we have

$$\psi(\alpha)\zeta_n = \zeta_n^{\mathbf{N}_{\mathbf{k}/\mathbf{Q}}\alpha}$$

If \wp is a finite prime in E and α is in $W_{\wp}(e_{\wp}n_p)$, then $(\alpha - 1) = \wp^{e_{\wp}n_p} = (p)^{n_p}$, so $\alpha = 1 + p^{n_p}\alpha'$ for α' in \mathbf{o}_{\wp} . We therefore have $\mathbf{N}_{\mathbf{k}/\mathbf{Q}}\alpha = 1 \pmod{p^{n_p}}$. This holds for every rational prime dividing n, so $\mathbf{N}_{\mathbf{k}/\mathbf{Q}}\alpha = 1 \pmod{n}$. We conclude that $\psi(\alpha)\zeta_n = \zeta_n$, so $\psi(\alpha) = 1$.

For the general case, suppose that γ is in \mathbf{k}^* and in $W\wp(m_{\wp})$ for \wp in E. If we can find a positive rational integer b so that b is in $W_{\wp}(m_{\wp})$ for \wp in E and γb is in \mathbf{o}^* , then $\alpha = \gamma b$ is also in $W\wp(m_{\wp})$ for \wp in E. We have already shown $\psi(\alpha) = 1$, and the same argument applies to b, so $\psi(b) = 1$. Therefore $\psi(\gamma) = \psi(\alpha)\psi(b)^{-1} = 1$.

To find b, we will have γb in \mathbf{o}^* if b is divisible by sufficiently high powers of rational primes p that are divisible by the primes \wp which occur to negative powers in the factorization of (α) in **o**. (None of those \wp are in E.) In addition, b will be in $W_{\wp}(m_{\wp})$ for the finite primes in E if b-1 divisible by sufficiently high powers of primes p that are divisible by finite primes in E. By lemma 2.2, there exists a rational integer satisfying the congruences. Let b be a positive solution by adding a large multiple of all the prime powers occurring in the congruences. Then b is in $W_{\wp}(m_{\wp})$ for all primes of E.

REMARK. We return to the usual notation: \wp and p denote primes of **K** and **k**, respectively.

PROPOSITION 3.6. Let \mathbf{k} be a finite extension of \mathbf{Q} , and let $\mathbf{K} = \mathbf{k}(\zeta_n)$ be a cyclotomic extension of \mathbf{k} . Homomorphism $\phi_{\mathbf{K}/\mathbf{k}}$ of (2.1) can be extended to a continuous homomorphism of $\mathbf{I}_{\mathbf{k}}$ to $G[\mathbf{K}:\mathbf{k}]$ whose kernel contains \mathbf{k}^* .

PROOF. Let *E* consist of all infinite primes of **k** and all finite primes that are ramified in **K**. Choose integers m_p for *p* in *E* so that the conditions of proposition 3.5 are satisfied. ϕ_K is defined on $\mathbf{I_k}\{E\}$ by (2.1). Let **i** be any idele in $\mathbf{I_k}$. By lemma 2.5, and using the notation of remark 2.2, we can choose α in \mathbf{k}^* so that $\alpha \mathbf{i}$ is in $W_p(m_p)$ for *p* in *E*. Define $\phi_{\mathbf{K}/\mathbf{k}}$ by

(3.1)
$$\phi_{\mathbf{K}/\mathbf{k}}(\mathbf{i}) = \prod_{p \notin E} \left(\frac{\mathbf{K} : \mathbf{k}}{p}\right)^{a_p} \quad \text{where } |\alpha \mathbf{i}|_p = Np^{-a_p}.$$

The kernel contains \mathbf{k}^* , because if \mathbf{i} is in \mathbf{k}^* then choose $\alpha = \mathbf{i}^{-1}$. The definition agrees with (2.1) when \mathbf{i} is in $\mathbf{I}_{\mathbf{k}}\{E\}$ because we can take $\alpha = 1$.

We must show that the above definition of $\phi_{\mathbf{K}}$ does not depend on the choice of α . Suppose that β also satisfies $\beta \mathbf{i} \in W_p(m_p)$ for p in E. Then $\alpha \mathbf{i} = \gamma(\beta \mathbf{i})$ where $\gamma = (\alpha \mathbf{i})(\beta \mathbf{i})^{-1}$, so γ is an element of \mathbf{k}^* and is in $W_p(m_p)$ for p in E. Let $|\beta \mathbf{i}|_p = Np^{-b_p}$ and $|\gamma|_p = Np^{-c_p}$ for p in E. By proposition 3.5, $\psi(\gamma) = 1$, so

$$\begin{split} \prod_{p \notin E} \left(\frac{\mathbf{K} : \mathbf{k}}{p} \right)^{a_p} &= \prod_{p \notin E} \left(\frac{\mathbf{K} : \mathbf{k}}{p} \right)^{b_p + c_p} = \prod_{p \notin E} \left(\frac{\mathbf{K} : \mathbf{k}}{p} \right)^{b_p} \prod_{p \notin E} \left(\frac{\mathbf{K} : \mathbf{k}}{p} \right)^{c_p} \\ &= \prod_{p \notin E} \left(\frac{\mathbf{K} : \mathbf{k}}{p} \right)^{b_p}, \end{split}$$

showing that β and α produce the same value of $\phi_{\mathbf{K}}(\mathbf{i})$.

REMARK. When the base field **k** is the rational number field **Q** and $\mathbf{K} = \mathbf{Q}(\zeta_n)$, the set *E* consists of primes dividing *n* and the real infinite prime p_{∞} . The integers m_{\wp} become simply $m_p = n_p$ for finite primes in *E* and $m_{p_{\infty}} = 1$. The definition of $\phi_{\mathbf{K}/\mathbf{Q}}$ is as follows. If **i** is any idele in $\mathbf{I}_{\mathbf{Q}}$, choose α in \mathbf{Q}^* so that $\alpha \mathbf{i}$ is in $W_p(n_p)$ for *p* in *E*. Let **n** be the modulus $(n)p_{\infty}$. Then

(3.2)
$$\phi_{\mathbf{K}/\mathbf{Q}}(\mathbf{i}) = \prod_{p \nmid \mathbf{n}} \left(\frac{\mathbf{K} : \mathbf{Q}}{p} \right)^{a_p} \quad \text{where } |\alpha \mathbf{i}|_p = p^{-a_p}.$$

This will be of use in the proof of Kronecker's theorem (chapter 9).