CHAPTER III

THEOREM 1: PROOF FOR CYCLOTOMIC EXTENSIONS

Cyclotomic extensions will play an important role in the proof for cyclic extensions in Chapter 4. It will be shown (proposition 4.22) that Theorem 1 holds for every subfield of a cyclotomic extension, and (proposition 4.21) that there exist cyclotomic extensions containing subfields with prescribed properties.

If ζ_{n} is a primitive n-th root of unity, then the conjugates of ζ_{n} are powers ζ_{n}^{i} for $0<i<n$ and i relatively prime to n. The Galois group $G\left(\mathbf{Q}\left(\zeta_{n}\right): \mathbf{Q}\right)$ is isomorphic to the multiplicative group \mathbf{Z}_{n}^{*} (Chapter 1, cyclotomic extensions).

Lemma 3.1. Let n be a positive rational integer and ζ_{n} a primitive n-th root of unity. Rational prime p is ramified in $\mathbf{Q}\left(\zeta_{n}\right) / \mathbf{Q}$ only if p divides n.

Proof. Let \mathbf{O} be the ring of integers in $\mathbf{Q}\left(\zeta_{n}\right)$. If p is ramified in $\mathbf{Q}\left(\zeta_{n}\right)$ then there exists a non-trivial automorphism σ so that

$$
\alpha^{\sigma}=\alpha(\bmod \wp) \quad \text { for } \alpha \in \mathbf{O}_{\wp}
$$

where \wp is a prime of $\mathbf{Q}\left(\zeta_{n}\right)$ dividing p. If $\zeta_{n}^{\sigma}=\zeta_{n}^{\ell}$, then $\zeta_{n}^{\ell-1}=1(\bmod \wp)$. Since $\zeta_{n}^{\ell-1} \neq 1$ then $\zeta_{n}^{\ell-1}$ is a root of $x^{n-1}+\cdots+x+1$. Setting $x=\zeta_{n}^{\ell-1}$ yields $n=0(\bmod \wp)$, so n is an element of $\wp \cap \mathbf{Z}=(p)$. Therefore p divides n.

Lemma 3.2. If rational prime p does not divide n then p is unramified in $\mathbf{Q}\left(\zeta_{n}\right)$ and the action of the Artin symbol in $Q\left(\zeta_{n}\right)$ is

$$
\left(\frac{\mathbf{Q}\left(\zeta_{n}\right): \mathbf{Q}}{p}\right) \zeta_{n}=\zeta_{n}^{p} .
$$

Proof. The Artin symbol raises ζ_{n} to some power ζ_{n}^{a}, where $0<a<n, a$ is relatively prime to n, and $\zeta_{n}^{a}=\zeta_{n}^{p}(\bmod \wp)$, where \wp is a prime of $Q\left(\zeta_{n}\right)$ dividing p. Suppose that $a \neq p(\bmod n)$. Then $\zeta_{n}^{p-a}=1(\bmod \wp)$ and $\zeta_{n}^{p-a} \neq 1$, so ζ_{n}^{p-a} is a root of $x^{n-1}+\cdots+x+1$. Setting $x=\zeta_{n}^{p-a}$ yields $n=0(\bmod \wp)$, so $(p)=\wp \cap \mathbf{Z}$ divides n. That is impossible, so $a=p(\bmod n)$.

Lemma 3.3. Let \mathbf{k} be a finite extension of \mathbf{Q}. Let \wp be a prime of \mathbf{k} that divides rational prime p, and p does not divide n. Prime \wp is not ramified in $\mathbf{k}\left(\zeta_{n}\right)$, and the action of the Artin symbol for \wp is

$$
\left(\frac{\mathbf{k}\left(\zeta_{n}\right): \mathbf{k}}{\wp}\right) \zeta_{n}=\zeta_{n}^{\mathrm{N} \wp} .
$$

Proof. By lemma 2.16, \wp is not ramified in $\mathbf{k}\left(\zeta_{n}\right)$, and the Artin symbol for \wp raises ζ_{n} to the power of p^{f} where f is the degree of p in extension \mathbf{k} / \mathbf{Q}, i.e., to the power $\mathrm{N} \wp$.

Lemma 3.4. Let \mathbf{k} be a finite extension of \mathbf{Q}. Let α be an element of \mathbf{k}^{*}. Then

$$
\prod_{\wp \mid \alpha} \mathrm{N}_{\wp} \wp_{\wp}^{a_{\wp}}=\left|\mathbf{N}_{\mathbf{k} / \mathbf{Q}} \alpha\right| \quad \text { where }|\alpha|_{\wp}=\mathrm{N}_{\wp} \wp^{-a_{\wp}} \text {. }
$$

Proof. Principal fractional ideal $\left(\mathbf{N}_{\mathbf{k} / \mathbf{Q}} \alpha\right)$ is the norm $\mathbf{N}_{\mathbf{k} / \mathbf{Q}}(\alpha)$ of principal fractional ideal (α) (chapter 1, norm and trace functions). Let the prime factorization of (α) into primes of \mathbf{k} be $(\alpha)=\prod_{\wp} \wp^{a_{\wp}}$. Note that $\mathbf{N}_{\mathbf{k} / \mathbf{Q} \wp}=(p)^{f}=\left(p^{f}\right)=$ $(\mathrm{N} \wp)$. Then

$$
\mathbf{N}_{\mathbf{k} / \mathbf{Q}}(\alpha)=\prod_{\wp \mid \alpha} \mathbf{N}_{\mathbf{k} / \mathbf{Q}} \wp^{a_{\wp}}=\prod_{\wp \mid \alpha}\left(\mathrm{N}_{\wp}\right)^{a_{\wp}}=\left(\prod_{\wp \mid \alpha} \mathrm{N}_{\wp^{a_{\wp}}}\right) .
$$

Therefore $\prod_{\wp \mid \alpha} \mathrm{N} \wp^{a_{\wp}}$ and $\mathbf{N}_{\mathbf{k} / \mathbf{Q}} \alpha$ generate the same fractional ideal of \mathbf{Q}.

Remark. In proposition 3.5, primes of \mathbf{k} will be denoted by \wp and rational primes by p.

Proposition 3.5. Let \mathbf{k} be a finite extension of \mathbf{Q}, and let $\mathbf{K}=\mathbf{k}\left(\zeta_{n}\right)$ be a cyclotomic extension of \mathbf{k}. Let E contain all infinite primes of \mathbf{k} and all finite primes which are ramified in \mathbf{K}. For γ of \mathbf{k}^{*}, define

$$
\psi(\gamma)=\prod_{\wp \notin E}\left(\frac{\mathbf{K}: \mathbf{k}}{\wp}\right)^{c_{\wp}}, \quad \text { where }|\gamma|_{\wp}=\left(\mathrm{N}_{\wp}\right)^{-c_{\wp}} .
$$

Let the factorization of n into rational primes be $n=\prod p^{n_{p}}$. For each prime p dividing n, we have $(p)=\prod_{\wp} e_{\wp}$ in \mathbf{o}. Set $m_{\wp}=e_{\wp} n_{p}$. For real infinite primes of \mathbf{k}, set $m_{\wp}=1$. If $\gamma \in W_{\wp}\left(m_{\wp}\right)$ for $\wp \in E$ then $\psi(\gamma)=1$.

Proof. Let us first show that the conclusion holds for an element α in \mathbf{o}^{*}. Suppose α is in $W_{\wp}\left(m_{\wp}\right)$ for \wp in E. Then \wp divides (α) only if \wp is not in E. Using lemma 3.3 and lemma 3.1, if $|\alpha|_{\wp}=\mathrm{N}_{\wp}{ }^{-c_{\wp}}$ then

$$
\psi(\alpha) \zeta_{n}=\prod_{\wp \notin E}\left(\frac{\mathbf{K}: \mathbf{k}}{\wp}\right)^{c_{\wp}} \zeta_{n}=\zeta_{n}^{\prod_{\wp \notin E} \mathrm{~N}_{\wp}^{c_{\wp}}}=\zeta_{n}^{\prod_{\wp \mid \alpha} \mathrm{N}_{\wp} c_{\wp}} .
$$

Applying lemma 3.4, we have

$$
\psi(\alpha) \zeta_{n}=\zeta_{n}^{\left|\mathbf{N}_{\mathrm{k} / \mathbf{Q}} \alpha\right|}
$$

Since the norm is the product of local norms, at $p=p_{\infty}$ we have

$$
\mathbf{N}_{\mathbf{k} / \mathbf{Q}} \alpha=\prod_{\wp \mid p_{\infty}} \mathbf{N}_{\mathbf{k}_{\wp} / \mathbf{Q}_{p_{\infty}}} \alpha
$$

Since we have chosen $m_{\wp}=1$ at all real infinite primes, every local norm in the above product is positive. Therefore $\mathbf{N}_{\mathbf{k} / \mathbf{Q}} \alpha>0$, so we have

$$
\psi(\alpha) \zeta_{n}=\zeta_{n}^{\mathbf{N}_{\mathbf{k} / \mathbf{Q}} \alpha}
$$

If \wp is a finite prime in E and α is in $W_{\wp}\left(e_{\wp} n_{p}\right)$, then $(\alpha-1)=\wp^{e_{\wp} n_{p}}=(p)^{n_{p}}$, so $\alpha=1+p^{n_{p}} \alpha^{\prime}$ for α^{\prime} in \mathbf{o}_{\wp}. We therefore have $\mathbf{N}_{\mathbf{k} / \mathbf{Q}} \alpha=1\left(\bmod p^{n_{p}}\right)$. This holds for every rational prime dividing n, so $\mathbf{N}_{\mathbf{k} / \mathbf{Q}} \alpha=1(\bmod n)$. We conclude that $\psi(\alpha) \zeta_{n}=\zeta_{n}$, so $\psi(\alpha)=1$.

For the general case, suppose that γ is in \mathbf{k}^{*} and in $W \wp\left(m_{\wp}\right)$ for \wp in E. If we can find a positive rational integer b so that b is in $W_{\wp}\left(m_{\wp}\right)$ for \wp in E and γb is in \mathbf{o}^{*}, then $\alpha=\gamma b$ is also in $W \wp\left(m_{\wp}\right)$ for \wp in E. We have already shown $\psi(\alpha)=1$, and the same argument applies to b, so $\psi(b)=1$. Therefore $\psi(\gamma)=\psi(\alpha) \psi(b)^{-1}=1$.

To find b, we will have γb in \mathbf{o}^{*} if b is divisible by sufficiently high powers of rational primes p that are divisible by the primes \wp which occur to negative powers in the factorization of (α) in \mathbf{o}. (None of those \wp are in E.) In addition, b will be in $W_{\wp}\left(m_{\wp}\right)$ for the finite primes in E if $b-1$ divisible by sufficiently high powers of primes p that are divisible by finite primes in E. By lemma 2.2, there exists a rational integer satisfying the congruences. Let b be a positive solution by adding a large multiple of all the prime powers occurring in the congruences. Then b is in $W_{\wp}\left(m_{\wp}\right)$ for all primes of E.

Remark. We return to the usual notation: \wp and p denote primes of \mathbf{K} and \mathbf{k}, respectively.

Proposition 3.6. Let \mathbf{k} be a finite extension of \mathbf{Q}, and let $\mathbf{K}=\mathbf{k}\left(\zeta_{n}\right)$ be a cyclotomic extension of \mathbf{k}. Homomorphism $\phi_{\mathbf{K} / \mathbf{k}}$ of (2.1) can be extended to a continuous homomorphism of $\mathbf{I}_{\mathbf{k}}$ to $G[\mathbf{K}: \mathbf{k}]$ whose kernel contains \mathbf{k}^{*}.

Proof. Let E consist of all infinite primes of \mathbf{k} and all finite primes that are ramified in \mathbf{K}. Choose integers m_{p} for p in E so that the conditions of proposition 3.5 are satisfied. ϕ_{K} is defined on $\mathbf{I}_{\mathbf{k}}\{E\}$ by (2.1). Let \mathbf{i} be any idele in $\mathbf{I}_{\mathbf{k}}$. By lemma 2.5, and using the notation of remark 2.2, we can choose α in \mathbf{k}^{*} so that $\alpha \mathbf{i}$ is in $W_{p}\left(m_{p}\right)$ for p in E. Define $\phi_{\mathbf{K} / \mathbf{k}}$ by

$$
\begin{equation*}
\phi_{\mathbf{K} / \mathbf{k}}(\mathbf{i})=\prod_{p \notin E}\left(\frac{\mathbf{K}: \mathbf{k}}{p}\right)^{a_{p}} \quad \text { where }|\alpha \mathbf{i}|_{p}=\mathrm{N} p^{-a_{p}} \tag{3.1}
\end{equation*}
$$

The kernel contains \mathbf{k}^{*}, because if \mathbf{i} is in \mathbf{k}^{*} then choose $\alpha=\mathbf{i}^{-1}$. The definition agrees with (2.1) when \mathbf{i} is in $\mathbf{I}_{\mathbf{k}}\{E\}$ because we can take $\alpha=1$.

We must show that the above definition of $\phi_{\mathbf{K}}$ does not depend on the choice of α. Suppose that β also satisfies $\beta \mathbf{i} \in W_{p}\left(m_{p}\right)$ for p in E. Then $\alpha \mathbf{i}=\gamma(\beta \mathbf{i})$ where $\gamma=(\alpha \mathbf{i})(\beta \mathbf{i})^{-1}$, so γ is an element of \mathbf{k}^{*} and is in $W_{p}\left(m_{p}\right)$ for p in E. Let $|\beta \mathbf{i}|_{p}=\mathrm{N} p^{-b_{p}}$ and $|\gamma|_{p}=\mathrm{N} p^{-c_{p}}$ for p in E. By proposition $3.5, \psi(\gamma)=1$, so

$$
\begin{aligned}
\prod_{p \notin E}\left(\frac{\mathbf{K}: \mathbf{k}}{p}\right)^{a_{p}} & =\prod_{p \notin E}\left(\frac{\mathbf{K}: \mathbf{k}}{p}\right)^{b_{p}+c_{p}}=\prod_{p \notin E}\left(\frac{\mathbf{K}: \mathbf{k}}{p}\right)^{b_{p}} \prod_{p \notin E}\left(\frac{\mathbf{K}: \mathbf{k}}{p}\right)^{c_{p}} \\
& =\prod_{p \notin E}\left(\frac{\mathbf{K}: \mathbf{k}}{p}\right)^{b_{p}}
\end{aligned}
$$

showing that β and α produce the same value of $\phi_{\mathbf{K}}(\mathbf{i})$.
Remark. When the base field \mathbf{k} is the rational number field \mathbf{Q} and $\mathbf{K}=\mathbf{Q}\left(\zeta_{n}\right)$, the set E consists of primes dividing n and the real infinite prime p_{∞}. The integers m_{\wp} become simply $m_{p}=n_{p}$ for finite primes in E and $m_{p_{\infty}}=1$. The definition of $\phi_{\mathbf{K} / \mathbf{Q}}$ is as follows. If \mathbf{i} is any idele in $\mathbf{I}_{\mathbf{Q}}$, choose α in \mathbf{Q}^{*} so that $\alpha \mathbf{i}$ is in $W_{p}\left(n_{p}\right)$ for p in E. Let \mathbf{n} be the modulus $(n) p_{\infty}$. Then

$$
\begin{equation*}
\phi_{\mathbf{K} / \mathbf{Q}}(\mathbf{i})=\prod_{p \nmid \mathbf{n}}\left(\frac{\mathbf{K}: \mathbf{Q}}{p}\right)^{a_{p}} \quad \text { where }|\alpha \mathbf{i}|_{p}=p^{-a_{p}} \tag{3.2}
\end{equation*}
$$

This will be of use in the proof of Kronecker's theorem (chapter 9).

