CHAPTER V

THEOREM 1: PROOF FOR ABELIAN EXTENSIONS

Let $G = G(\mathbf{K} : \mathbf{k})$ be the Galois group of finite abelian extension \mathbf{K}/\mathbf{k} . G is a direct product of cyclic groups.

$$G = G_1 \times \cdots \times G_r$$

Put $\overline{G_i} = G_1 \times \cdots \times G_{i-1} \times G_{i+1} \times \cdots \times G_r$. Let \mathbf{K}_i be the fixed field of $\overline{G_i}$. Then $G(\mathbf{K}_i : \mathbf{k}) = G/\hat{G_i}$ is cyclic. The fixed field of $\mathbf{K}_1\mathbf{K}_2, \dots \mathbf{K}_j$ is $\overline{G_1} \cap \cdots \cap \overline{G_j}$, and

$$\overline{G}_1 \cap \cdots \cap \overline{G}_j = \{(\sigma_1, \dots, \sigma_r) \in G_1 \times \cdots \times G_r \mid \sigma_1 = \dots = \sigma_j = 1\}$$

The fixed field of $\mathbf{K}_1 \dots \mathbf{K}_j \cap \mathbf{K}_{j+1}$ is $(\overline{G}_1 \cap \dots \cap \overline{G}_j) \overline{G}_{j+1} = G$. Therefore

$$\mathbf{K}_1 \dots \mathbf{K}_j \cap \mathbf{K}_{j+1} = \mathbf{k}$$

so

$$G(\mathbf{K}_1 \dots \mathbf{K}_j \mathbf{K}_{j+1}) \simeq G(\mathbf{K}_1 \dots \mathbf{K}_j : \mathbf{k}) \times G(\mathbf{K}_{j+1} : \mathbf{k})$$

Arguing by induction, we arrive at

$$G(\mathbf{K}_1 \dots \mathbf{K}_r : \mathbf{k}) \simeq G(\mathbf{K}_1 : \mathbf{k}) \times \dots \times G(\mathbf{K}_r : \mathbf{k})$$

This isomophism maps σ to $(\sigma_1, \ldots, \sigma_r)$ where σ_i is the restriction of σ to \mathbf{K}_i . Let E be the set of primes of \mathbf{k} containing all infinite primes and all primes which are ramified in \mathbf{K} . For $p \notin E$ the Artin symbols are defined and we have

$$\left(\frac{\mathbf{K}:\mathbf{k}}{p}\right) = \left(\left(\frac{\mathbf{K}_1:\mathbf{k}}{p}\right), \dots, \left(\frac{\mathbf{K}_r:\mathbf{k}}{p}\right)\right),\,$$

and for $\mathbf{i} \in \mathbf{I_k}\{E\}$ we have

$$\phi_{\mathbf{K}/\mathbf{k}}(\mathbf{i}) = \prod_{p \notin E} \left(\frac{\mathbf{K} : \mathbf{k}}{p}\right)^{u_p} \quad \text{where } |\mathbf{i}|_p = Np^{-u_p}$$
$$= \left(\left(\frac{\mathbf{K}_1 : \mathbf{k}}{p}\right)^{u_p}, \dots, \left(\frac{\mathbf{K}_r : \mathbf{k}}{p}\right)^{u_p}\right),$$

or

(5.1)
$$\phi_{\mathbf{K}/\mathbf{k}}(\mathbf{i}) = \left(\phi_{\mathbf{K}_1\mathbf{k}}(\mathbf{i}), \dots, \phi_{\mathbf{K}_r/\mathbf{k}}(\mathbf{i})\right).$$

The right side of (5.1) agrees with (2.1) on $\mathbf{I_k}\{E\}$, is defined for all \mathbf{i} in $\mathbf{I_k}$, and the kernel contains \mathbf{k}^* . Define $\phi_{\mathbf{K/k}}(\mathbf{i})$ on $\mathbf{I_k}$ by (5.1). Except for the proofs of the first and second fundamental inequalities, this completes the proof of theorem 1 for finite abelian extensions.