CHAPTER IX

KRONECKER'S THEOREM

For each prime p of \mathbf{k} , choose a non-negative integer m_p such that $m_p = 0$ for all but a finite number of primes, m_p is 0 or 1 for real finite primes and $m_p = 0$ for complex infinite primes. A *modulus* of \mathbf{k} is a formal product

$$\mathbf{m} = \prod p^{m_p}$$

A closed subgroup H of finite index in $\mathbf{I}_{\mathbf{k}}$ is open, so there exists some modulus \mathbf{m} so that

$$H \supset \prod W_p(m_p) = W(\mathbf{m}).$$

Subgroup H is said to be defined modulo **m**. If **m**' and **m**'' are two moduli then the greatest common divisor (**m**', **m**'') is the modulus **m** where $m_p = \min(m'_p, m''_p)$. For finite and infinite primes, we have

$$W_p(m'_p)W_p(m''_p) = W_p(m_p).$$

Therefore if H is defined modulo \mathbf{m}' and \mathbf{m}'' then H is defined modulo $\mathbf{m} = (\mathbf{m}', \mathbf{m}'')$

If H is defined modulo some modulus, then there exists a modulus \mathbf{m} so that H is defined modulo \mathbf{m} and if H is defined modulo \mathbf{w} then \mathbf{m} divides \mathbf{w} . Modulus \mathbf{m} is called the *conductor* of H.

LEMMA 9.1. Take $\mathbf{k} = \mathbf{Q}(\zeta)$ where ζ is an *m*-th root of unity. Let \mathbf{m} be the modulus $(m)p_{\infty}$. Then the kernel of $\phi_{\mathbf{k}/\mathbf{Q}}$ is $\mathbf{Q}^*W(\mathbf{m})$.

PROOF. Suppose **i** in $\mathbf{I}_{\mathbf{Q}}$ is in the kernel of $\phi_{\mathbf{k}/\mathbf{Q}}$. We can write $\mathbf{i} = \alpha \mathbf{j}$ where α is in \mathbf{Q}^* and \mathbf{j} is in $\prod_p W_p(0)$, and we can choose α so that $\mathbf{j}_{p_{\infty}}$ is positive. We want to show that \mathbf{j} is in $W(\mathbf{m})$. We know that \mathbf{j} is in ker $(\phi_{\mathbf{k}/\mathbf{Q}})$ since α is. By the Chinese remainder theorem, we can choose β in \mathbf{Q}^* so that $\beta > 0$ and $\beta \mathbf{j}$ is in $W_p(m_p)$ when $m_p > 0$. We know $\phi_{\mathbf{k}/\mathbf{Q}}(\mathbf{j}) = 1$, but we can also apply (3.2) to compute $\phi_{\mathbf{k}/\mathbf{Q}}(\mathbf{j})$.

$$\phi_{\mathbf{k}/\mathbf{Q}}(\mathbf{j}) = \prod_{p \nmid \mathbf{m}} \left(\frac{\mathbf{k} : \mathbf{Q}}{p}\right)^{b_p} \qquad \text{where } |\beta \mathbf{j}|_p = p^{-b_p}$$
98

Let $\beta = \beta_1/\beta_2$ where β_1 and β_2 are relatively prime positive integers. We want to show that $\beta_1 = \beta_2 \pmod{m}$. We have

$$|\beta \mathbf{j}|_p = |\beta|_p = |\beta_1/\beta_2|_p = p^{-b'_p + b''_p}$$
 where $|\beta_1|_p = p^{-b'_p}$ and $|\beta_2|_p = p^{-b''_p}$.

Then

$$\phi_{\mathbf{k}/\mathbf{Q}}(\mathbf{j}) = \prod_{p \nmid \mathbf{m}} \left(\frac{\mathbf{k} : \mathbf{Q}}{p}\right)^{b'_p - b''_p} = \left(\prod_{p \nmid \mathbf{m}} \left(\frac{\mathbf{k} : \mathbf{Q}}{p}\right)^{b'_p}\right) \left(\prod_{p \nmid \mathbf{m}} \left(\frac{\mathbf{k} : \mathbf{Q}}{p}\right)^{b''_p}\right)^{-1}$$

We have

$$\left(\prod_{p \nmid \mathbf{m}} \left(\frac{\mathbf{k} : \mathbf{Q}}{p}\right)^{b'_p}\right) \zeta = \zeta^{\prod_{p \nmid \mathbf{m}} p^{b'_p}} = \zeta^{\beta_1}$$

and

$$\left(\prod_{p \nmid \mathbf{m}} \left(\frac{\mathbf{k} : \mathbf{Q}}{p}\right)^{b_p''}\right) \zeta = \zeta^{\prod_{p \nmid \mathbf{m}} p^{b_p''}} = \zeta^{\beta_2}$$

since $\beta_1 > 0$ and $\beta_2 > 0$. This shows $\phi_{\mathbf{k}/\mathbf{Q}}(\mathbf{j})$ is the result of applying $\zeta \to \zeta^{\beta_1}$ followed by the inverse of applying $\zeta \to \zeta^{\beta_2}$. Let $\beta_2 \beta'_2 = 1 \pmod{m}$. The inverse of $\zeta \to \zeta^{\beta_2}$ is $\zeta \to \zeta^{\beta'_2}$, so $\phi_{\mathbf{k}/\mathbf{Q}}(\mathbf{j})\zeta = \zeta^{\beta_1\beta'_2}$. Since $\phi_{\mathbf{k}/\mathbf{Q}}(\mathbf{j}) = 1$ we conclude that $\beta_1\beta'_2 = 1 \pmod{m}$, and therefore $\beta_1 = \beta_2 \pmod{m}$.

For each finite prime p dividing m, we have $\beta_1 = \beta_2 \pmod{p^{m_p}}$, so $\beta_1 \beta_2^{-1}$ is in $W_p(m_p)$. Therefore β is in $W_p(m_p)$. Since $\beta \mathbf{j}$ is in $W_p(m_p)$, we conclude that \mathbf{j}_p is in $W_p(m_p)$.

For finite primes p not dividing m, we have \mathbf{j}_p in $W_p(0)$, and since $\mathbf{j}_{p_{\infty}}$ is positive we have $\mathbf{j}_{p_{\infty}}$ in $W_{p_{\infty}}(1)$. This shows that \mathbf{j} is in $W(\mathbf{m})$, and therefore $\mathbf{i} = \alpha \mathbf{j}$ is in $\mathbf{Q}^*W(\mathbf{m})$. This shows that $\ker(\phi_{\mathbf{k}/\mathbf{Q}}) \subset \mathbf{Q}^*W(\mathbf{m})$.

The converse is easy. Suppose **j** is in $W(\mathbf{m})$. Applying (3.2) we have

$$\phi_{\mathbf{k}/\mathbf{Q}}(\mathbf{j}) = \prod_{p \nmid \mathbf{m}} \left(\frac{\mathbf{k} : \mathbf{Q}}{p}\right)^0 = 1$$

since $|\mathbf{j}|_p = 1$ for finite primes that do not divide m. This shows that $W(\mathbf{m}) \subset \ker(\phi_{\mathbf{k}/\mathbf{Q}})$, so $\mathbf{Q}^*W(\mathbf{m}) \subset \ker(\phi_{\mathbf{k}/\mathbf{Q}})$.

PROPOSITION 9.2 (KRONECKER'S THEOREM). Every abelian extension of the rational numbers is contained in a cyclotomic extension.

PROOF. Let **T** be an abelian extension of **Q**. By Theorem 1, $\phi_{\mathbf{T}/\mathbf{Q}}$ is defined and ker $(\phi_{\mathbf{T}/\mathbf{Q}})$ is a closed subgroup of finite index in $\mathbf{I}_{\mathbf{Q}}$. Let **n** be the conductor of the kernel of $\phi_{\mathbf{T}/\mathbf{Q}}$. Then ker $(\phi_{\mathbf{T}/\mathbf{Q}})$ contains $\mathbf{Q}^*W(\mathbf{n})$. Choose $\mathbf{n}' = (n)p_{\infty}$ where n is the positive integer so that $(n) = \prod_{p \text{ finite }} p^{n_p}$. Then **n** divides \mathbf{n}' because **n** is either (n) or $(n)p_{\infty}$. Put $\mathbf{k} = \mathbf{Q}(\zeta)$ where ζ is an *n*-th root of unity. Then, ker $(\phi_{\mathbf{k}/\mathbf{Q}}) = \mathbf{Q}^*W(\mathbf{n}')$ by lemma 9.1,

$$\ker\left(\phi_{\mathbf{T}/\mathbf{Q}}\right) \supset \mathbf{Q}^* W(\mathbf{n}) \supset \mathbf{Q}^* W(\mathbf{n}') = \ker\left(\phi_{\mathbf{k}/\mathbf{Q}}\right),$$

so $\mathbf{T} \subset \mathbf{k}$ by proposition 2.15.