CHAPTER IX

KRONECKER'S THEOREM

For each prime p of \mathbf{k}, choose a non-negative integer m_{p} such that $m_{p}=0$ for all but a finite number of primes, m_{p} is 0 or 1 for real finite primes and $m_{p}=0$ for complex infinite primes. A modulus of \mathbf{k} is a formal product

$$
\mathbf{m}=\prod p^{m_{p}}
$$

A closed subgroup H of finite index in $\mathbf{I}_{\mathbf{k}}$ is open, so there exists some modulus \mathbf{m} so that

$$
H \supset \prod W_{p}\left(m_{p}\right)=W(\mathbf{m}) .
$$

Subgroup H is said to be defined modulo \mathbf{m}. If \mathbf{m}^{\prime} and $\mathbf{m}^{\prime \prime}$ are two moduli then the greatest common divisor $\left(\mathbf{m}^{\prime}, \mathbf{m}^{\prime \prime}\right)$ is the modulus \mathbf{m} where $m_{p}=\min \left(m_{p}^{\prime}, m_{p}^{\prime \prime}\right)$. For finite and infinite primes, we have

$$
W_{p}\left(m_{p}^{\prime}\right) W_{p}\left(m_{p}^{\prime \prime}\right)=W_{p}\left(m_{p}\right)
$$

Therefore if H is defined modulo \mathbf{m}^{\prime} and $\mathbf{m}^{\prime \prime}$ then H is defined modulo $\mathbf{m}=$ ($\mathbf{m}^{\prime}, \mathbf{m}^{\prime \prime}$)

If H is defined modulo some modulus, then there exists a modulus \mathbf{m} so that H is defined modulo \mathbf{m} and if H is defined modulo \mathbf{w} then \mathbf{m} divides \mathbf{w}. Modulus \mathbf{m} is called the conductor of H.

Lemma 9.1. Take $\mathbf{k}=\mathbf{Q}(\zeta)$ where ζ is an m-th root of unity. Let \mathbf{m} be the modulus $(m) p_{\infty}$. Then the kernel of $\phi_{\mathbf{k} / \mathbf{Q}}$ is $\mathbf{Q}^{*} W(\mathbf{m})$.

Proof. Suppose \mathbf{i} in $\mathbf{I}_{\mathbf{Q}}$ is in the kernel of $\phi_{\mathbf{k} / \mathbf{Q}}$. We can write $\mathbf{i}=\alpha \mathbf{j}$ where α is in \mathbf{Q}^{*} and \mathbf{j} is in $\prod_{p} W_{p}(0)$, and we can choose α so that $\mathbf{j}_{p_{\infty}}$ is positive. We want to show that \mathbf{j} is in $W(\mathbf{m})$. We know that \mathbf{j} is in $\operatorname{ker}\left(\phi_{\mathbf{k} / \mathbf{Q}}\right)$ since α is. By the Chinese remainder theorem, we can choose β in \mathbf{Q}^{*} so that $\beta>0$ and $\beta \mathbf{j}$ is in $W_{p}\left(m_{p}\right)$ when $m_{p}>0$. We know $\phi_{\mathbf{k} / \mathbf{Q}}(\mathbf{j})=1$, but we can also apply (3.2) to compute $\phi_{\mathbf{k} / \mathbf{Q}}(\mathbf{j})$.

$$
\phi_{\mathbf{k} / \mathbf{Q}}(\mathbf{j})=\prod_{p \nmid \mathbf{m}}\left(\frac{\mathbf{k}: \mathbf{Q}}{p}\right)^{b_{p}} \quad \text { where }|\beta \mathbf{j}|_{p}=p^{-b_{p}}
$$

Let $\beta=\beta_{1} / \beta_{2}$ where β_{1} and β_{2} are relatively prime positive integers. We want to show that $\beta_{1}=\beta_{2}(\bmod m)$. We have

$$
|\beta \mathbf{j}|_{p}=|\beta|_{p}=\left|\beta_{1} / \beta_{2}\right|_{p}=p^{-b_{p}^{\prime}+b_{p}^{\prime \prime}} \quad \text { where }\left|\beta_{1}\right|_{p}=p^{-b_{p}^{\prime}} \text { and }\left|\beta_{2}\right|_{p}=p^{-b_{p}^{\prime \prime}}
$$

Then

$$
\phi_{\mathbf{k} / \mathbf{Q}}(\mathbf{j})=\prod_{p \nmid \mathbf{m}}\left(\frac{\mathbf{k}: \mathbf{Q}}{p}\right)^{b_{p}^{\prime}-b_{p}^{\prime \prime}}=\left(\prod_{p \nmid \mathbf{m}}\left(\frac{\mathbf{k}: \mathbf{Q}}{p}\right)^{b_{p}^{\prime}}\right)\left(\prod_{p \nmid \mathbf{m}}\left(\frac{\mathbf{k}: \mathbf{Q}}{p}\right)^{b_{p}^{\prime \prime}}\right)^{-1}
$$

We have

$$
\left(\prod_{p \nmid \mathbf{m}}\left(\frac{\mathbf{k}: \mathbf{Q}}{p}\right)^{b_{p}^{\prime}}\right) \zeta=\zeta^{\prod_{p \nmid \mathbf{m}} p^{b_{p}^{\prime}}}=\zeta^{\beta_{1}}
$$

and

$$
\left(\prod_{p \nmid \mathbf{m}}\left(\frac{\mathbf{k}: \mathbf{Q}}{p}\right)^{b_{p}^{\prime \prime}}\right) \zeta=\zeta^{\prod_{p \nmid \mathbf{m}} p^{p_{p}^{\prime \prime}}}=\zeta^{\beta_{2}}
$$

since $\beta_{1}>0$ and $\beta_{2}>0$. This shows $\phi_{\mathbf{k} / \mathbf{Q}}(\mathbf{j})$ is the result of applying $\zeta \rightarrow \zeta^{\beta_{1}}$ followed by the inverse of applying $\zeta \rightarrow \zeta^{\beta_{2}}$. Let $\beta_{2} \beta_{2}^{\prime}=1(\bmod m)$. The inverse of $\zeta \rightarrow \zeta^{\beta_{2}}$ is $\zeta \rightarrow \zeta^{\beta_{2}^{\prime}}$, so $\phi_{\mathbf{k} / \mathbf{Q}}(\mathbf{j}) \zeta=\zeta^{\beta_{1} \beta_{2}^{\prime}}$. Since $\phi_{\mathbf{k} / \mathbf{Q}}(\mathbf{j})=1$ we conclude that $\beta_{1} \beta_{2}^{\prime}=1(\bmod m)$, and therefore $\beta_{1}=\beta_{2}(\bmod m)$.

For each finite prime p dividing m, we have $\beta_{1}=\beta_{2}\left(\bmod p^{m_{p}}\right)$, so $\beta_{1} \beta_{2}^{-1}$ is in $W_{p}\left(m_{p}\right)$. Therefore β is in $W_{p}\left(m_{p}\right)$. Since $\beta \mathbf{j}$ is in $W_{p}\left(m_{p}\right)$, we conclude that \mathbf{j}_{p} is in $W_{p}\left(m_{p}\right)$.

For finite primes p not dividing m, we have \mathbf{j}_{p} in $W_{p}(0)$, and since $\mathbf{j}_{p_{\infty}}$ is positive we have $\mathbf{j}_{p_{\infty}}$ in $W_{p_{\infty}}(1)$. This shows that \mathbf{j} is in $W(\mathbf{m})$, and therefore $\mathbf{i}=\alpha \mathbf{j}$ is in $\mathbf{Q}^{*} W(\mathbf{m})$. This shows that $\operatorname{ker}\left(\phi_{\mathbf{k} / \mathbf{Q}}\right) \subset \mathbf{Q}^{*} W(\mathbf{m})$.

The converse is easy. Suppose \mathbf{j} is in $W(\mathbf{m})$. Applying (3.2) we have

$$
\phi_{\mathbf{k} / \mathbf{Q}}(\mathbf{j})=\prod_{p \nmid \mathbf{m}}\left(\frac{\mathbf{k}: \mathbf{Q}}{p}\right)^{0}=1
$$

since $|\mathbf{j}|_{p}=1$ for finite primes that do not divide m. This shows that $W(\mathbf{m}) \subset$ $\operatorname{ker}\left(\phi_{\mathbf{k} / \mathbf{Q}}\right)$, so $\mathbf{Q}^{*} W(\mathbf{m}) \subset \operatorname{ker}\left(\phi_{\mathbf{k} / \mathbf{Q}}\right)$.

Proposition 9.2 (Kronecker's theorem). Every abelian extension of the rational numbers is contained in a cyclotomic extension.

Proof. Let \mathbf{T} be an abelian extension of \mathbf{Q}. By Theorem $1, \phi_{\mathbf{T} / \mathbf{Q}}$ is defined and $\operatorname{ker}\left(\phi_{\mathbf{T} / \mathbf{Q}}\right)$ is a closed subgroup of finite index in $\mathbf{I}_{\mathbf{Q}}$. Let \mathbf{n} be the conductor of the kernel of $\phi_{\mathbf{T} / \mathbf{Q}}$. Then $\operatorname{ker}\left(\phi_{\mathbf{T} / \mathbf{Q}}\right)$ contains $\mathbf{Q}^{*} W(\mathbf{n})$. Choose $\mathbf{n}^{\prime}=(n) p_{\infty}$ where n is the positive integer so that $(n)=\prod_{p \text { finite }} p^{n_{p}}$. Then \mathbf{n} divides \mathbf{n}^{\prime} because \mathbf{n} is either (n) or $(n) p_{\infty}$. Put $\mathbf{k}=\mathbf{Q}(\zeta)$ where ζ is an n-th root of unity. Then, $\operatorname{ker}\left(\phi_{\mathbf{k} / \mathbf{Q}}\right)=\mathbf{Q}^{*} W\left(\mathbf{n}^{\prime}\right)$ by lemma 9.1,

$$
\operatorname{ker}\left(\phi_{\mathbf{T} / \mathbf{Q}}\right) \supset \mathbf{Q}^{*} W(\mathbf{n}) \supset \mathbf{Q}^{*} W\left(\mathbf{n}^{\prime}\right)=\operatorname{ker}\left(\phi_{\mathbf{k} / \mathbf{Q}}\right)
$$

so $\mathbf{T} \subset \mathbf{k}$ by proposition 2.15.

