

PSD

A debugger, interpreter, and viewer for a
subset of the PostScript language.

J. Scott Drader

sdrader@shaw.ca

User Manual [v0.710]

1 Overview ... 3

2 Getting started .. 4

2.1 Installation .. 4

2.2 Launching PSD... 4

2.3 Command line options ... 5

3 The debug window ... 7

3.1 Control/status panel... 8

3.2 Execution stack panel .. 9
3.2.1 An execution example .. 9
3.2.2 About execution contexts ... 11
3.2.3 Running a context to completion .. 11
3.2.4 Tail recursion.. 12

3.3 Operand stack panel .. 13

3.4 Dictionary watch panel.. 14

3.5 Console .. 14

4 Language extensions.. 15

4.1 Breakpoints... 15

4.2 Dictionary watches... 16

4.3 Output image size/resolution... 16

5 Supported PostScript operators ... 17

� ���������

PSD is an interpreter, viewer, and debugger for a subset of the PostScript language. The
goal of PSD was not provide a replacement for GhostScript/GSView as a PostScript
viewer, but rather to provide a tool to aid early stages of program development.

The interpreter supports a powerful subset of PostScript commands, but certainly does
not cover the entire Adobe specification (see section 5 for a list of supported commands).
In particular, PSD focuses on the device independent commands, and assumes that the
device being rendered to is a computer screen. While PSD does not support the entire
PostScript specification, anything that runs in PSD should run in GhostScript/GSView.

PSD is not an IDE and does not provide a source code editor. It is thus paired with a good
text editor that displays line numbers.

	
�����
���������

	�� �������������

1. Make sure the Java Runtime Environment is installed. JRE can be obtained at
http://java.sun.com/webapps/getjava/BrowserRedirect?locale=en&host=www.jav
a.com:80

2. Download the PSD zip file and extract it.
3. (Optional) Create a shortcut to the extracted jar file in a convenient location.

	�	 ��������
�����

PSD can be launched by simply executing the psd.jar file.

By default, PSD displays two windows upon launch; the debug window and the graphics
output window. Graphical output defaults to a typical 8.5” by 11” inch (612 by 792 point)
page at a resolution of 1.0 pixels per point. These defaults can be overridden by
command line options (see the next section).

	�� ���������������������

Option Effect
-fontmap Specifies location of “Fontmap.GS” file.
-fontdir Specifies location of .pfb font files.
-hidegfx PSD launches with graphics window hidden.
-pagesize <width> <height> Specifies the size of the page in points. Default

values are 612 and 792 for width and height
respectively.

-res <ratio> The resolution of the displayed image in pixels
per point. The default value is 1.0.

Note that the settings the command line options manipulate can also be changed after
start-up. The graphics window can be hidden, and there are language extensions to allow
the page size and image resolution to be specified by a program (see section 5).

� �����!�
��������

The debugger window consists of a menu, as well as several components. The
components are shown and labeled below:

In the following section, each of the above components is described in terms of what is
displayed as well any interactions that can be performed.

��� �������"�������������

The menu bar provides the following options:

Menu Option Effect
File → Open Displays a file choosing dialog to load a new file.
File → � Quit Exits PSD.

PSD’s buttons provide the following functionality:

Button/Command Effect
Reload Resets the interpreter and reloads the current file.
Next Attempts to execute only the next instruction.
Cont Attempts to execute code until any of the

following happen:
1. a new page is reached
2. a breakpoint is reached
3. the end of the file is reached
4. an error occurs

Graphics Toggles the visibility of the graphics window.

The other element of the control/status panel is the last object, which shows the object
most recently executed. An icon representing the object’s type is shown followed by a
text representation of its value. Following is a table of the icons and their corresponding
types.

Icon Type
 Array

 Boolean

 Dictionary

 Font

 Integer

 Literal Name

 Name

 Null

 Procedure

 Real

 String

 Type

In combination with the execution stack panel, the last object label is useful as an aid to
figure out where the interpreter has halted or where an error has occurred.

��	 #$������������%�������

The execution stack panel provides a visualization of the interpreter’s execution stack. At
any point during execution, it provides a picture of where the interpreter is at in the
program, and how it got there.

To fully understand the behavior of the execution stack, it is necessary to have at least a
modest understanding of how PostScript execution works. Chapter 3 of the PostScript
language reference is a good place to learn more about how execution works. Tracing the
execution of simple programs is another effective means of gaining familiarity.

��	�� &���$���������$������

The example on the following page shows a program illustrating the behavior of the
execution stack. The sequence of events is as follows:

1. procedures proc1 and proc2 are parsed
2. proc1 is called
3. proc1 enters a for loop, iterating the values 0 to 4
4. each iteration passes the loop value to proc2
5. proc2 executes a breakpoint when passed the value 3

The visualization thus shows the state of the execution stack at the breakpoint. The
information displayed by the visualization is explained further in the sections following
the example.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

% proc1 passes the values the integers 0 through 4 to proc2
% (it’s a a procedure with 13 objects in it)
/proc1 {
 % this is a loop with a body procedure of 5 objects
 0 1 5 {
 /loopVal exch def
 loopVal proc2
 } for
 % the for loop isn’t the last object in the procedure
 (proc1!) =
} def

% proc2 executes a break if its argument is the number 3
% this is a procedure with 12 objects
/proc2 {
 /val exch def
 % the if statement executes a procedure with 1 element
 val 3 eq {break} if
 (proc2!) =
} def

proc1

��	�	 &!�����$�������������$���

Each row of the table represents a single execution context, where the top of the table is
the top of the stack. An execution context is a stream of objects for the interpreter to
execute. Files, loops, and procedures are examples of contexts.

The information provided about each context includes what type of context it is (Type),
how much of it has been executed so far (Position), and the file and location within that
file from which it was created (Lines, File).

In the case of an execution context with a fixed number of objects, the Position field
shows the number of objects that have been executed so far. In the case of a nested
composite objects (a procedure within a procedure for example), the size of the inner
context contributes its size to the size of the parent. This is illustrated in the example by
the size of proc1. Rather that showing length 7 (6 normal objects plus a single composite
object), the length is 13 (6 objects plus a composite object of length 7).

The Line field gives the line numbers of the beginning and end of the block of code
corresponding to the context. That is, the shown numbers are that of the ‘{‘ and ‘}’
delimiters enclosing the body of code that the context executes. Hence in the situation
shown below, the for loop has its 3 integral arguments on the 20th line, but the ‘{’
delimiter indicating the beginning of its body is on line 21 (and 21 will be the beginning
line number shown in the Line field).

20
21
22
23

 0 1 10
{
 % some other stuff here
} for

��	�� '�����
��������$����������������

The execution stack panel provides an additional means of executing the loaded program.
Double-clicking on an execution context (a row in the table) cases the interpreter to
attempt to run until that context is exhausted. This is equivalent to the functionality of the
Cont command with the completion of the chosen context as additional halting condition.
Note that this type of execution is still subject to the regular halting conditions (i.e. the
program will still halt before the context is completed if a breakpoint is reached or a
showpage command is executed).

��	�(��������������

One important concept to understand is that an execution context is removed from the
execution stack before its last object is executed. This means that if the last action of a
procedure is a call to another procedure, the first procedure will not be on the execution
stack when the 2nd is executed. This allows tail-recursive processes to run without
bloating of the execution stack.

Consider the example program; if proc1 did not have the display statement at the end, it
would not be on the execution stack at the breakpoint (only the loop it contains would
be). Furthermore, notice that the small procedure containing only the break object is not
on the stack at the time the break is executed. Instead the top context is a procedure
(proc2) at the 10th of its 12 objects, corresponding to the if statement responsible for
running the small procedure containing the break.

��� ������������%�������

The operand stack panel provides a straightforward visualization of the operand stack.
Objects on the stack are represented as an icon and text, representing their type and value
respectively (see the icon/type table in section 4.1). Arrays/procedures can be expanded
by double-clicking the icon. Below is a section of code and an example of the operand
stack visualization you can expect to see.

5 % an integer
3.2 % a float value
(somestring) % a string
10 10 eq % produces a Boolean
{ 2 add } % a procedure
[[1 2] 3 4 5] % nested arrays

��(���������)�������������

The dictionary watch panel allows tracking of values associated with dictionary keys.
The table contains a key/name column (Name), as well as a column that displays the
value associated with the key (Value). Values are displayed in a way very similar to that
of the operand stack visualization. As with the operand stack, arrays and procedures can
be expanded by clicking on their corresponding icons. Watches are added by using the
“watch” language extension (described in section 5).

/square watch
/pi watch

/square { dup mul } def % a procedure
/pi 3.14 def % a real value

/someName watch % leave this name undefined

��* ��������

The console is the place where PostScript output is piped to, and also where important
messages from the interpreter can be seen. Messages are color coded. The colors
correspond to messages as follows:

Color Message Type
Black PostScript output (i.e. output from the “pstack” command)
Green alerts and warnings
Red errors
Blue general messages

(���
��
���$���������

PSD extends the PostScript language to allow for standard debugging constructs. The
extensions allow for breakpoints, watches, and configuration of the graphical output.

To allow a program to run in both PSD and GhostScript/GSView, the file psd.inc can be
included at the beginning of the program. It provides empty stubs so the extension
commands have no effect on the program when run in GhostScript. The PSD include file
is ignored by the PSD run operator, such that the stubs do not overwrite the PSD
implementation of commands. Note that using the names of the language extension
commands in your program is not recommended.

(�� +���%�������

The break language extension allows one to specify an arbitrary location for the
interpreter to halt.

Command break

Parameters -
Effect Halts the interpreter.

A second extension nbreak allows the user to “name” the breakpoint so that multiple
breakpoints in a program can be easily distinguished.

Command <name> nbreak

Parameters name of the breakpoint (literal name)
Effect Halts the interpreter and displays the name in the console.

Breakpoints are useful in several situations. Placing several breakpoints at intervals in an
errant section of code allows one to watch how the interpreter state is affected by each
interval of code, and hopefully narrow the potentially problematic section to a smaller
section of code.

(�	 ���������)���������

The watch command takes a literal name, and adds it to the dictionary watch window.
The value associated with the key is updated every time the interpreter stops (i.e.
breakpoints, showpage commands, errors, etc).

Command <name> watch

Parameters name to add (literal name)
Effect Adds the name to the dictionary watch panel.

(�� ����������
����,�"�����������

Page size and the resolution of the image upon which the page is rendered to on the
computer screen can be adjusted by the pagesize and resolution commands. Both
commands reset the interpreter and reload the program if their requested state requires the
graphics window to be reinitialized (and are most naturally placed at the beginning of a
program).

Command <width> <height> pagesize

Parameters desired image width and height in pixels (real or int)
Effect If the page is currently set to a different size, it is resized, the

interpreter is reset, and the current file is reloaded. The
command has no effect if the page is already set to the
specified size.

Command <ratio> resolution

Parameters ratio of pixels to inches, where the default is 1.0 (real or int)
Effect If the current image resolution is different than requested, the

image is reinitialized, the interpreter is reset, and the current
file is reloaded. The command has no effect if the image is
already set to the specified resolution.

* �������������������������������

[for roll
] forall rotate
<< ge round
= get run
== getinterval scale
>> grestore scalefont
abs gsave setdash
add gt setfont
aload identmatrix setgray
and idiv setlinecap
arc if setlinejoin
arcn ifelse setlinewidth
array index setmatrix
astore invertmatrix setrgbcolor
atan itransform shfill
begin le show
bind length showpage
ceiling lineto sin
closepath ln sqrt
concat load stack
copy log stringwidth
cos loop stroke
currentlinewidth lt sub
currentmatrix mod transform
currentpoint moveto translate
curveto mul truncate
cvi ne
cvs neg
def newpath
dict not
div or
dup pop
end print
eq pstack
exch put
exec quit
exit rand
exp rcurveto
fill repeat
findfont rlineto
floor rmoveto

