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INTRODUCTION

These notes arise from a Seminar held at Harvard
and M.I.T. in the Fall of 1962. The main aim was to
establish a general formula for the index of elliptic
operators on compact manifolds. ’The reader who is pri-
marily interested in this index theorem will find here
all the raw material of the proofs. It should be
stressed however that this ig far from a final polished
version. The sectlons are presented here in the chronole-
ogical order in which they were covered in the seminar,
and we have made no attempt to reorganize them.

The first half approximately of these notes is

" concerned with Clifford algebras and X-theory, and this
will appear in TOPOLOGY as a Joint paper of Atiyah,
‘Bott and Shapiro. By no means all of this part is nec-

éséawy for the préof:of the Index theorem., In fact the
index theorem uses only the cruder aspects of Ketheory:
the 1ndex being an integer, we may ignore torsion.
Brief optlines of the index theorem can be found
in (Bull. A.M.S. (196355 p. 422-433) and in a Bourbaki
Seminar (1962/63, No. 253)9 These can be used as a

‘guide to the present more voluminous notes. We should



iie

also refer to a forthcoming paper by R. Seeley (Integro-
differential operators on vector bundles: to appear in
Trans. A.M.S.) which covers all the analytilcal background.
Since three authors are plece-wise responsible for
these notes, conslstency in notation and point of view
has been difficult to achieve. In particular we do not

guarantee all the correct signst



Lectures (1=3). The Spinor Groups, (Raoul Bott),

1, Notation, Le«, k be a commutative field and let () be &
guadratic form on the kwmodule w, Let T(' Y = X e0 T Ip e g anN0H
+ BEPE + o be the tensor algebra over &, and let I(Q) be the
two sided ideal generated by the elements x Bx « Qfz) ¢ 1in T(E),
The quotient algebra T(E)/I(0) is called the Clifford algebra of C
and is denoted by C(Q). We also define iQ 8 0 e C{Q) 10 be the
canonical map given by the composition T —s. T(E) —=C(Z), Then i,

the following proposition relative to C(Q) are not difficult to verify,

5 lwf o o 1
im t TL wed= C{0) is an injection? et deen CF AR

L2, Let ¢t E~2>Abea linear map of I into a k-algebra

L 1,

with unit A, such that for all x € &, the identily riﬁ(x) = Ofx)l is
valid, Then there exists a unique homomorphism g: c(0) —B,

such that g@ i~ =20 o (Ve refer to gé’ as the "extension' of ¢ o)

L. 3, C(Q) is the universal algebra with respect to maps ¢

:
L4, Let l?‘q"l‘(u) = 7 %’(:q Tlf@ be the fil"‘eredstfucmre in T(E), This

==y

of the type described in (L 2) .

filtericg mduces a riltering in C(), whose associated graded
algebra is isomorphic to the exterior algebra AL, on E, Thus
dim, C{) = pUm I » and 1:f {e} (1 =l 0o, n) is a base for i’,,Q_(E)éa
then 1 i:ogether with the prmlucf;s ei o ei cee €4 9 iy <ig et < 11‘? '

1 2 I
f.‘orm a 'base (3((") o
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INTRODUCTION

These notes arise from a Seminar helg at Harvard
and M.I.T. in the Fall of 1962. The main aim was to
establish a general Pormula for the index of elliptic
operators on compact manifolds., The reader who is pri-
marily interested in this index ﬁheorem will find here
all the raw material of the proofs. Tt should be
stressed however that this is fap from a final polished
version. The sectlons are Presented here in the chronol-
oglcal order in which they were covered in the seminar,
and we have made no attempt to reorganize them,

The first halrf approximately of these notes ig

" concerned with Clifford algebras and K-theory, and this
- Will appear in TOPOLOGY as g Joint paper of Atiyah,
.~ Bott and Shapiro. By no means all of this part is nec-

éSsary for the proof or the index theorem. In fact the
index theorenm uses only the ecruder aspects of K-theory:
the index belng an integer, we may ignore torsion,
 Brief outlines of the index theorem can be foung
in (Bull. A.M.S. (1963), Pe 422-433) and in a Bourbaki
Seminar (1962/63, No. 253), These can be used ag g

‘gulde to the present more voluminous notes. We shoulg
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also refer to a forthcoming paper by R. Seeley (Integro-
differential operators on vector bundles: to appear in
Trans. A.M.S.) which covers all the analytical background.
Since three authors are piece-wise responsible for
these notes; consistency in notation and point of view
has been difficult to achleve. In particular we do not

guarantee all the correct signs!



TOPOLOGY SEMINAR 1962
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Lectures (1=3). The Spinor Groups, (Raoul Bott),

I, Notation, Let k be a commutative field and let O be a
quadratic form on the k=module £, Let T(E) = Eiz% 'L = kPE

+

AR

D +°*° be the tensor algebra over E, and let I(Q) be the

two sided ideal generated by the elements x Bx = Qfx) » 1in T(E),

The quotient algebra T(E)/I(0) is called the Clifford algebra of Q
and is denoted by C(Q). We also define i ¢ E~=>C(Q) to be the
canonical map given by the composition & —u. T(E) - C(2), Then .

the following proposition‘relative to C(Q) are not difficult to verify,

Ll iyt —>C(0) is an injection, --

L2, Let ¢ & E-—>A bea linear map of ¥ into a kealgebra
with unit A, such that for all x € E, the identity ga(;x:)a = O(x)1 is
valid, Then there exists a unique horomorphism go\/: C(D) =B,

such that gw i~ =¢ « (Ve refer to a as the "extension" of o o)

L3, C(R) is the universal algebra with respect to maps ©

of the type described in (1, 2),

"‘\

l.4, Let FqT(“‘) = 'f“ : q "2 be the filtered structure in T(E), This

g

o

filtericve mc’luces a filtering im C(T), whose associated graded
algebra is isomorphic to the exterior algebra I, on &, Thus
dim,_ C() = pim & » and if {e} (:i. = 1,‘,'_ “s kn) is a base for 1Q(M), g X X
then 1 together with the products e; o ei see ey » 11 12< e & 1k" et

form a base C(('*) R




L5, Let C (") be the image of ui 80 ZI(E) in C(0)
and set (f‘*) equal to the image of 7 go leﬂ(33) in C(0).
Then this decomposition defines C({) as a S‘:Zzwgraded algebra,

That is:
a) ¢ = ) . SHo)

120, 1
b) I x €CHC), Y, € cl() then
G‘ k . *::‘:;‘a o 9. '?
xiy’j‘,c (), k=4i+§ mod?,

That the gmded structule of C(7) should not be disregarded

is mayua best brought by the followings

PROPOSITICON 1,1, Suppose that I = El@f‘z in an orthogonal

decomposition of Il relative to O, and let Qi denote the restriction

of N to J'Eli . Then there is an isomorphism

h:CO) ~ GOy é c(e,)

of the graded tensor-product of C(Q,) and C(,) with C(C) .

Recall first, that the graded tensor product of two graded
- o - T o . P
algebras A = 7 =0, 1 AY , B=s | =0, 1 B™ , is by definition the
algebra whose underlying vector space is }:’oz P=0. 1 A% Bﬁ »
9 ~"Vg

with multiplication defined by:

wex): (y,0v)= (=) uy, @x,v, x €Ci(0.), Vs @Cj(ﬁ) 5
i j joi i j ‘



A
This graded tensor product is denoted by A ® B ; and is again

a graded algebra: (A®B) =nalesl (i+j2k().

' A
Proof of the proposition, Define ¢ E w}»C(Qi) % C(QZ)
by the formula, i#(e) = e;®l+1l®e,, where ej and e, are the

orthogonal projections of IX on El and EZ o dhen
o) = (e @141 ®e2) ={0y(e) + 0,(e,)t (L) = Ofe)(l ®1).

Hence i extends to an algebra homomorphism 1 ¢ C(Q) > C(Q) @C(Q,),
by Proposition 1, Checking the behavior of ) on basis elements now
shows that i is a bijection, Note that the graded structure

entered through the formula (e; ®1+1 ®e ) = e12® L+ 1 ® eg wh:.ch

is validas e; €C (O i) e
The alcebra‘“’s C( Y) also inherit a canonical antmutomorph:.sm
from the tensor algebra T(E), Namely if x =x; ®x,°*° @x €T (E),

then the map x w2 xt s given by r— ot z

xi{‘@xZ@”' ®ka->» xk®°“ ®xz®x1

clearly defines an antiautomorphism of T(E), which preserves 1)
because 1x ®@x = O(x) o l}t =x®x = Q(x)° 1, Hence this operation
induces a well defined antiautomorphism on C({) which we also
denote by x == xt and refer to as the transpose, The transpose

is the identity map on i-(E) « C(Q).

The following two operations on C(C) will also be useful :



DEFINITIQN L.l The canonical automorphism of G(Q)

is defmed as the "extension'" of the map o : E —C(Q), given

by /Z/(x) = wlm(d . (It is clear that {oz(x)} = Qx)land so «

is well-defined by 1. 1) We denote this automorphism by «.

DEFINITION 1,2, Let x-->x be defined by the formula
R e (xt) o This "bar operation' is then an antiautomorphism

of C({),

Note: 1) The identity Cz(xt) = {Cé(x)}t holds as both are
antiautomorphisms which extend the map I~ C(C) given by

b o u"ig:\(:}{) @

2) The grading on C(f\) may be defined in terms of
a < (Q) = { x € C(0)] o) = (~1) x} =1, 2,

2, The algebrals Cr - Ve are interested in the algebras

C(f‘?k), where 01 is a negat.lve defmlte form on kw-space over the

real nurQbe;:'s. Cuite spec1f1ca11y, we let Rk denote 'the space
of k=tuples of real numbers, and define Qk(xl 2%, xk) = e zjx?{ o
Then we define Ck as the algebra C(Ck) and identié’y Rk with

For k =0, (szlRa

i~ RFCC, and Rwith R« LG, |
o K K

PROZPCCITICN 2,1, The algebra Cl is isomorphic to the

complex number. € considered as an algebra over IR, Further

k=2 G ® Cp ®ree ®C (k factors) ,




Clearly CI is generated by 1 and e s where 1 denoles
A
the real number 1 in J?Ll . Hence eiz':: =1, The formula Ck(;:' Cl ®
A\
Teoe @ Cl now follows from repeated apnlication of Proposition 1,

"Te will denote the ketuple, (0, ¢ec, 1, coo, 0) with 1 in the

iih position by e, , The e,, i<k thenform a base of RF - c

CORCLLARY , The e, , i=1, ¢¢¢, k, generate Ck

PeSAchutosied 1

multinlicatively and satisfy the relations,

(2,1) ‘ ejzm =], eiej-t«ejeimo, i?fj ,

Gy, mav be identified with the universal algebra pencrated over

IR by a unit, 1, and the symbols ey s i=1], «oe, k, subject to the

relations (2.1} .

; . . ~ s ) s
% The groups, T} , Pink), and Spin(k) . Let C, denote

the multiplicative group of invertible elements in Ck . =

DEE"INITION 3.1.  The Clifford group E‘k , is the subgr’oyup

ats

™

o : k., .. e i
\\ of those elements x & C k for which, y &R" implies o)y " ER . e m(l‘%

.
H

It is clear enoupgh that I“k is a subgroup of Ck s because

1
1(:: RY for the

. . . Sk e

is an automorphisim, Ve also write ofx)R™x
1108 ‘s - ko,

condlsion defining 1) . As ¢ and the transpose map R into

itself, it is then also evident that




PROPOSITION 3, 1.

preserve L“Ek , and respectively induce an automorphism and an

antiautornorphism of I’i{ . Hence x - % is also an antiauto~

morphism of I’ﬂk .

Lhe f*rou T comes to us wzth read wmade homomornhlsm
P 1 V

P Tkm>» /iut(“«. ) . By deflmtmn (:3(3..), x €7 is the lmear map

e
Rk iz R given by F(}:) cy= m(x) yx -, ‘Te refer to p as the

twiste adjomt representatmn of "jf‘?, on l‘?lk’ « This representation

pi turns out to be nearly faithful,

PAOPOSITION 3.2, The kernel of p: I} —= 4ut(R") is

o o
precisely IR, the multiplicative group of nonzero multiples of

1E€GC .

Proof: OSuppose x @Ker(p) o This irmplies

(3. 1) ef)y = vx forall y&R™ ,

(.3 dy =yt

Let eys cel, e be our orthonormal base for Rk , and write
::O = aO + elbl in terms of this basis, Here ao G,Cloc does not
1
involve ey and bl SC,{ does not involve ey - By setting vy = ey

{



Te

in (3. 2) we get vao + elb1 = elaoe;]‘ + cizble?‘ = a} - elbl . Hence

bl' = 0, That is, the expansion of ::O does not involve ey

Applying the same argument with the other basis elements we see

that xo does not involve any of them. FHence xo is a multiple of

1, Nest we write xl in the sawme forms: xl = al + elbo and set y = 6y o

Ve then obtain al + elbo = »{elal e;]‘ + eizbo efl} = al S elbo .
Ve again conclude that :{1 does not involve the e; . Hence z:l is

a multiple of 1. On the other hand xl @Cl]l:c whence xl = 0, This

sk
proves that =z = % €I and as x is invertible x €¢IR , Q. E, D,

Consider now the function N ¢ Gy -~ C, defined by 3 ol
pleceil ~

o

(3. 4)

¥ % €RF, then N % 2wy (). Thus Nx)

e Sy
O\
( PROPCOITICN 3,3, If = €T} then N(x) € )

' - o K
% & T‘k s Wwhence for every y € R we have

~l ! ! .
alx)yz - =y , vy = (o(x)y en®

Applying the transpose we obtain: (as v =y)




ty=1 t o]
() "y alz) = of:)yx

whence vy c:(::t):: — ofx)y . This implies that Ca(zct)x is in

% %
the kernel of o, and hence in B, It follows that ::toz(x) e I,

2,
s

t t . . .
whence N{x') € IR, However xx-—> x is an antiautomorphism

ok

of ”""'k into itself by Droposition 2,1, Hence N(x) €W

CORCPCIITION 3,4, N T = R is a homomorphism

/

(which commutes with «,

Proof: Nlzy) =xyy:x =x Nly)=z = N(z) o Niy) 5 N(o(x)) = ofse)xe
= o Nzz) = NG:)

FPROPOIITICN 3,5, The imape of pc the group of

. . . en K
isometries of L7,

.l ngf @l
Proof: N(P(zz) e y) = Nodz)y = 7)) = N(adx)) N{y)iN(z= ) = Nly) .

kr - S e SR , * e,
THICREM 3,1, Let Pin(k) be the kernel of N: >R

k> 1, and let C(k) denote the group of isometries of X, Then

{)lPin(lc) is a suriection of Pin(k) onto O(k) with kernel B Bt /I/ &

generated by =l @1"k ¢ We thus have the exact sequence

[
0 e Ty e Pin(k) e Of) s O




2roois e show first that e is onto, For this purpose

consider e & Rk . 17e have N(el) = =eje) =+, and

Thus, e, € Pin(k) , and (c(el) is the reflection in the hyperplane
perpendicular to €y o Applying the same argument to any ortho=-

normal base {e } in RY s we see that the unit sphere {A & lN(x) }

is in .c«m(k) wnonce all the orthogonal reilectlon in hype rpla

sqf

.‘RP are in the f‘ft 311‘1(1{} But these are well known to gcnerate

“ »r'ons1d_er ne::t the ke rnel

O(k) Thus p maps Pin(k) onto C(k.)
of this map, which clearly consists of interscction Ker e N {N(x) = 1} i 1
Thus the kernel of pll’?in(k) congists of the multiples )« 1, with

N(}\. 1) = 1@ Th.us >~z =~ +1 V‘,hich ilnplieg /\ - j;]- .

DEFINITICN 3,2, Let Spin(k) be the subgroup of Pin(k)

which maps onto SO(k) under p3 k>1,

The groups Pin(k) and Opin(k) are double coverings of C(k)
and SC(k) respectively, As such they inherit the Lie=structure of
the later grouns, One may also show that these groups are closed

subgroups of Ck and get at their Lie structure in this way.,



g
A%%M,,
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PRCPCSITION, Lot

Pin(k)" = Pin(k) N CL . Then Pin(k)

= Ui“o 1 Pin(k)i » and, Spin(k) = ?in(k)o ¢

Proof: Let x € Pin(k) , Then (:;(x) is equal to the composition

of & cextain number of reflections in hyperplanes ()(X) =Ryo cceo R,
e may choose elements Xy & Rk s such that p(xi) = Ri . Hence

X = 4%, %0, % and is therefore either in Cl('): or in C%{ o Finally

x is in Spin(k) if and only if the number is in the above decomposi=

tion of p(x) is even, But then % € Pin(k)o . The converse is

similar,

PROPCSITION 3,6, Vhen k > 2, the restriction of P to

Spin(k) is the nontrivial double covering of SO(k) .

Proof: Ii is sufficient to show that +l, ~1, the kernel of

P]Spin(k)pcan be connected by an arc in Spin(k), Such an arc is

given by

> 2t > cost + sint . ee, . 0<t<w

CCROLLARY ¢ When k> 2, Spin(k) is connected, and

when k> 3 simply connected,

This is clear from the fact that SO(k) is connected for k > 2,
and that = ,{SO(k)} = Z, if k>3,

e note finally that Spin(l) = Z, , while Pin(l) = Zy .
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Determmatlon of the a‘lgebra‘gs Cy « Inthe following

we will write IR , €, and H respectively for the real, complex
and guarternion number=ficlds, If F is any one of these fields,
F(n) will be the full matrix n X n algebra over ¥, The following

are well known identies among these:

Fln) = R@)e F, R{) @ R(m)~R(m)
R R

g - To compute the algebras Cy ‘one now proceeds as follows: h/v‘
Let Cy e the universal R-algebra generated by a unit and the
symbols e (1 =1, » k) subject to the relations (e, )2 - @e-i e, eJ

+ e; e; =0, i#j. Thus Ck may be identified with C(”Qk’)

PROPOSITION 4,1, There ex@st isomorphisms:

Proof: Ve let Rk be the space spanned by the (ei over IR)

s 1
n Ck » and denote by R k the space spanned by the e in C; .



124

8 §
Consider the linear map ) : R k+2 ~>C) ®C, defined by

ﬁ 3 }“ °
! e, ® eje, L<i i k
M) = |
l ®e; peol<i<e

Then it is easily seen that 1) satiéfies 'the universal property (1,1)
for C; and hence extends to an algebra homomorphism ) ¢ C;wz
i Ck ® C; . As the map takes basis elements into basis
elements and the space in guestion have equal dimension, it follows
that 1 is a bijection, If we now replace the dashed symbols by

the undashed ones and apply the same argument we obtain the

second isomorphism,

Now it is clear that o 1 L0
R C ~ R4+ 14

' 1]
3 Cz ::‘ H{(Z) @

Hence repeated application of (4,1) and (4. 2) yields the folkklowing

tables (Gee Table 1 on page 12,)

'f’ -,
Note that (4.1) implies Cy=Cy 3 Ckx Cram ®Cy 3 Cpyg
~Cy ®Cg, further Cg =R, , whence if C; = F(m) then,
Cits ~F(lbm) , Thus both columns are in a quite definite sense
of period 8, If we move up eight steps, the field is left unaltered,

while the dimension is multiplied by 16 , Note also the considerably



'130

siorpler behavior of the complexifications of these algebras,
which of course can be interpreted as the Clifford algebra of
hk - over the complex~numbers, Over the complex field, the

periodicity starts with 2,

TABLE |

;K Sy , C;c
! ¢ ] moar S Cc+ e ’ (LZWW
2 n:~ 12(2) ’ %@.Q T
2 | mAE (z}' o e m(\%a
¢ | H(2) zz»z(z) C4)
5 03(") F(2) + E**(Z) @(4) + o:(A >
6 | L\(S) 0w ©s)
T R(8) HR(S)' f T(e) a(8) +Q}(8>
8 12(16) 2(15) C(L6) v

s N

—

5, Clifford modules, We will now gegcribe the set of R —and

C~modules for the algebra's C, , Wéiwrite M(Ck) for the free ’
abdlian group generated by the irreducible Z?;zmgraded Ckwmodules,
and N(C?{) for the corresponding group generated by the ungraded
Cg =modules, The corresponding objects for the complex |

algebras Cp @ € are denoted by ME(C,) and 1H(Cp)
S kg
\:;



14,

PROPOSITION 5.1, Let 2 3 M ~> MC be the functor
0

‘ !
which assigns to a graded Ckwmodule, M=M 4+ M the ungraded

Cg: =rnodule MO . Then R induces isornorphisms

) o
(5.1 M(Cy) ~ N(Cy) ) A

H
i

1\\ ) .

0

Proofs If M is an (ungraded!) Clznmodules let

s = ¢, @ M,

The leis action of Gy on C) then defines S(MO) as a graded C) ~module,
“Te now assert that 5 ¢ R and R ¢ 3 are naturally isomorphic to

the identity, In the first case the isomorphism is induced by the
"module~map" Cp ® I\/IO w3 M , while in the second case the map

0 0

M” ==>-1® M~ induces the isomowrphism .

“Te of course also have the corresponding formula:

C ¢, 0
(5. 2) MEC) ~NO(CR) .

PROPOSGITION 5,2, Let ¢ Rk — Cl‘iﬂ be defined by

g i=], eee, k, Then ()o extends to yield an

L A

fsomorphism Gy ~Cy .y o o R

i
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Hence ¢ e stends ,

2
Proofs @(ei)
Ag it maps basis elements onto basis elements the extension is

an isomorphism,

In view of these two propositions and Table 1 , we may now

write down the group M(Ck) etc, , explicitly , This is done in
Table 2, where we also tabulate the following quantities:

et ie Gy W}Ck 4 Pbe the inclusion which extends the
inclusion Ry == 2 ., let i M(C, +1) —> M(C,) be the

’«?A

induced homombrnhism, and set A, cokernel of i

D/I(Ck) e Ak =5 1)

¢ k
‘»&N Caphna

Similarly define. A% as M°(Cy)/1* {M(C - 3 tinajt
’ y defing,. 3 as MU(C/T { (k,,l)} ally |

e LN

k
H

ek _,,\,.5&
define ak[a ] as the! I = [iL] dimension o§ 1‘\/1 f;when M is

peae—

irreducible graded module for C, , [Ck R @]

Most of the entries in Table 2 follow directly from Table 1,

because the algebras IF'(n) are simple and hence have only one

class or irreducible modules, the one given by the action of
I{n) on the n-tuples of elements in ¥, The only entries which

still need clarification are therefore, Aé}n , and Ac?n .

Before explaining this entry observe that if M= n® + a s then M*;;Ml
+ Mom.i,e,the module obtained from M by merely interchanging labels -
is again a graded module, This operation therefore induces an

involution on M(Ck) and MC(Ck) which we again denote by % .



A‘i{
o | 1
4 0 2
4 z 2
8 0 4
6 12(8) Zotol 8 |la+z | @ 4
7 |l (8) + 12(8) | s = 0 8
& 1°.(16) ZAZolm |8 lz+z |z | o8
i Vs i = A4 : = 15
Myse = My £1<+8 "1 ! PktB > ay
c c c _ A€ c B I
Mypa = Mo BApgp = A0 0 ap, = 23 .

PROPOCITION 5,3, Let = and y be the classes of the

two distinct irreducible graded modules in M(CAH) . Then

(5.3) 2 =y, ¥y =x .

16,

COROLLARY . A, =17, Indeedif z generates I\I’I(C‘_Iémg,’ii
= T

then z° =z as there is only one irreducible praded rodule for

- % o o B
Cpnit + Hence, as (i%z)" =1%(a")

a dimension count,

we see that {i"z=x+y, by



}

1T

Propogition 5,3 follows from the following lemma which is quite
straight-forward and will be left to the reader.
LaMMA 5,1, Let vy Qilk y, v £0 and Aly) equalto

the inner avtomorphism of CL’ induced by y ., Thus Aly) - w

= yw'y'ml . Ve also write A(y) for the induced automorphisim on

. \ . . 0
l‘./.Z(Ck) . Similarly Ao(‘y) denotes the restriction of A(y) to Cy

. ' 0
as well as the induced automorphism on N(CJk) . Then we have

g

Here 3 M(Ck) WN(Ck) is the functor introduced earlier, and

0 Ck~1 i C,c s the map introduced in Proposition 4, 2, while

! I3

. J . o
2 is the canonical automorphism of Ck o

It now follows from these is omorphisms, that % on M(Cén)

s

Eorresponds to the action of ¢ on the ungraded modules of

G Now the center of Cénwl is spanned by 1 and w = ey

dn=1 °

o 2 s
Further w— = +1, rence the projection of C,

o ae

Can-1-°

‘on the two ideals which make up Gy .y is (14+w)/2 and (1 - w)/2,

Hence ¢« interchanges thesc, and thercfore clearly interchanges
£ 3

N

the two irreducible C dnl rné\}%lesw

= Z proceeds in an entively

Finally, the evoluation

analogous fashion,

2
£

i
ey

PR




6.  The rultiplicaiive properties of the Clifford modules,

If M and N are graded Ck and CL’ modules, respectively,
then their graded tensor product M ® I is in a natural way a
graded module of C ®C, ., By definition (M® Ny = 1% @ NO
s et and (MEN)! =M en + M @n®, the action of

-~
Cp ® 2312 on M®N being given by ¢

ey mon)= (). m)ely.n), yec}
(6.1)

"Te also have the isomorphisin o g Csz e Clk ® ('32
14

define& by the linear extensions of the maps

‘ei@)l 1< 1<k

wk, Q(ei)
. ]‘®ek+i k<i<n

. ~ o s R R
The operation (M, N} —3 M@ N -z 0, IZ(M @ N) is easily
2
seen to give rise to a pairing

M(C,,) gm(cﬂ)w«%wcku)

and thus induces a Zrgraded ring structure on the direct.sum

M, = .;,;(83 M(Ck) . We denote this product by (u,v) ~>u+ v,

It is clearly associative,

18.
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PROPCIITION 6,1, The following formulae are valid for

u € I\/I(Ck) v e M(CJZ)

(6, 1) e v)* = we v

is even

o e »
if k£ is odd |
(6. 3) i i* M(Ck) — M(Ckwl) is the restricted homomorph= |
ism, as definedin ( ), then
e &
fue i v) =i (ue v) qa>1,

The formulae (6, 1) and (6. 3) follow immediately fraj the

definitions,

Proof of 6, 2, » We'have the diagram :
ef p, y

e
C oy

! Py, k
ted
£7 7k

where T is the isomorphism %X ®y ~—u (ml)pqy ®x, x €C£ s ¥V QC% .

oy w ], .
Now the composition G, g © T o cpﬂ,k : Ck-}-JZ ch-!«.e is an



20,

auvtornorphism ¢ of Ckﬂz , which clearly is the linear extension

of the map which permutes the first }Q’: elements of the basis

{e;} with the last

elermcnts

Thus o ls the r..oxnpommon of kf inner aui‘ognorphlsms by elemen“té\

f&i laj

in Ry = 0, It followg therefore from (5. 4) that the effect of ¢~ on

FAS

M(Ck) is equal to the effect of the operation () applied é@@ times ,

If we combine this with the fact that T ‘(M & M) ~ M ® N, whence

b N % B3 A
Ne M) = ¢ ¢ s {M®N
(ﬁf.),k( ® ) o (pk’g) ( ) ¢
we obtain the desired formula,

CCHOLLARY 1, Let )& M(Cg) be the class of an irreducible

graded module of Co . Then multiplication by ) induces an

isomorphism 1 M(C,) > M(Ckﬁug) .

M ¢ This follows from our table of the Ay s in all cases
except when k = 4n, In that case let %, v be the generators
corresponding to the two irreducible graded modules of Cy . Then
we know that =™ = y, Now )+ x€ l\/i(-3k+8) is the class of one
of the irreducible graded modules of Ck+8 by a dimension count,
Hence by (6.§;) ey o= AMx™) = (7@:)* corresponds to the other

generator,
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CORCLLARY 2, The image of i¥ 1 My —s M, is

[EOSARN

an ideal, and hence the quotient ring A, = 55380 Ay inberits

a ring structure from M, ,

This follows from (6, 3). The element ) above projects

into a class =~ again called ) = in A8 s and we clearly have:

PROFPOSITICN 6,2, Multiplication by )\ induces an

isomorphism A‘k NA'1<+8 s k=0 ,.. .

s

The complete ring=structure of Ay is given by

VHIEOREM 6,1, A, is the anticommutative graded ring

generated by a unit 1 € AO ’ an@ bv elemcnts f'f@ Al o i €A4 s

\ €Ay with relations : 26 =0, £°=0, n =4y,

Sroof ¢ As A, = Zin 9 it is clear that 2£ =0, From the

fact that a) =1, and a, = 2, we conclude that {g‘f generates AZ .

- . . 2 .
There remains the computation of 117, To settle this case we

introduce a notion whi;:h will be of use later in any case, Let
k=4n, and let (1= (o= e "t ey, o Th’e\az;’as we alfready remarl;ed;
the center of Cii is generated by 1 and w, whence, as (;,52 =+, |
the projection of C; on its two ideals is given by (1 ¥+ ¢)/2 . It
follows that if M is an irveducible graded Ckumodule, then (o
acts on MO as the scalar € = +1, In general we call a graded

~module for C, an €-module, (€= +1)if w actsas € on M ,
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Mow because e W= =18 it follows irmamediately that if M is
an ¢~=module, then M* is a (~€)~module - i,e., v acts as «¢
on l\/i1 , and finally, that if M is an e€~module and M' an e'-module

FAN
for Ck then M® M' is an ¢ €'=module for C?k o

"Tith this understood, let 1 be the class of an irreducible

C, =module Min A Then M is of type €. Hence M @ M is

4: @
of type €Z = +1 in CS « Now if €A8 is chosen as the class of
the irreducible (+1)=module 7 of Cg it follows that M ® Mz 477

by a dimension count, and so finally that p.z = 4,

The corresponding propositions for the complex modules
are clearly also valid, Thus we may define I\/I,!c: and Ag; , and
now already the generator pc corresponding to an irreducible
MC(CZ) module yields periodicity. In fact the following is checked

readily .

THZOREM 6,2, The ring Af is isomorphic to the

polynorial ring Z[n°] .




e,

k& O e

For k = 24 we have wz = (ml.)"lZ . Hence if M is an irreducible . ’,f

“/e consider again the element /1 =e co. e

complex graded Cﬁ,{«-module then (3 acts on MO as the complex

scalar ¢ = .i i'e, Ve call a complex graded Ckwmodule an Lo

¢=module if ¢ acts as € on l\/IO . Let ""(,:(7.

e MC(C 5) denote

the generator given by an irreducible izs«module‘ Then """'(?(Z = (ﬁ;}'g

C . c P g s : i s
when My =

Comparing our conventions in the real and complex cases

4

we see¢ that if M is a real e-module for Cap then M ®, C is
a complex (~1)"¢~module for Cup v ‘Now we choose 1 &A, to

be the class of an irreducible (~l)=module, Then in the

. c . cps s 50,612
hor.omorphism A, —= A, given by complexification {4 -~ 2(
! Pt P )
“ £

oy

SK fror g

7. Relation with Grassmann alpebra, (Michael Atiyah). §

Let & be a Buclidean space of dimension k., “Je write

C(E) for the Clifford algebra of -0 where Q is the quadratic

form of the Fuclidean metric, and then define Pin(E), Spin(T)
and P Pin() ~> O(T) as in Jection 3, As already observed

we have an algebra filtration
R=C(E)ycC(E)ycres aC(E), = cE) ,

and the associated graded algebra may be identified with the

exterior algebra A(E). Thus

0 4 2 NPE) .
C(E),/C(E),. = N(E)



The two elements € Pin(E) such

LIEMME 7.1,
«1 define penerators of C(-ZE)k/C(E)k,.l .

that ofc) =

Proofs If ey ** s €y is an orthonormal basis of I
toee, 00 ey and these are generators as

then (v =
o 3

required, ¢u 7 (-

denoted by (L), such that

(i) (3(!.:3(73‘7)) = -1
. (1)  (B) defines a positive generator of /*k(g‘) .

Putting C(f}'if)]‘{mp = o%?"i”}(:,)p we get another filtration

of C(T) by subspaces:

(®) .

it
<

EF el coE)

o O

4 ahas

o~

In terms of an orthonormal basis €y €py 00y ©y WE have

e, see &,

C(Z) = space spanned by e,
o, © space sp yoeg gttt oy
C(z)yY = space spanned by eil e, with = > p.
N C(e)° we get a decorposition

Putting  FC(T) E,C(E)p

c(n) = @ Po(m
p

with r < p

), isomorphisms PC(Z) = fP(E), and hence

o o -y d E3re) o 2 o 3
an isomorphism C(Z) = /(). This isomorphism is a natural

jsororphism of graded vector spaces (not.

ras), C(E)

and {(%) being regarded as functors of the oriented Euclidean

.
i

space i,
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Let w, ¢ C(E) C(E)O = R be the projection given

by this decomposition, and define an inner product in C(E) by

ay) = woly)

In terms of an orthonormal oriented basis €9 *7 7y €y We

find

)
(¢}
Y
e
£
o)
@
[¢4
e
@
o
~
i

= 0 if (il"“' ir)ié(jl°°°js)

1

1 if (ilgaair):(j]‘“’“js) °

Hence this is positive definite, Moreover the decomposition

C(E) = @P C(2) is orthogonal with respect to this inner product,

For any { €L Clifford multiplication by % (on the left)

gives a map

Po(E) —- PHo(i) @ Plo(m)

and hence a map

IR fo) pe— A.pH(E) + !\.pm‘l(E) .

4 f Pl B

(O

| [ EV

AR

The first compoknent of this is justithe; exterior product y ~>x AV,

The second component will be denoted by y ~=>x vy itis

called the interior product, It maps ~P(E) - ;’*;p"]“(E) .

LEMMA 7.2, For x€E, y€/.P(®), z¢€ Pl

(xVy,z) = =y, x Az) .
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Eroof: Take an orthonormal base with x = ey and

let yxela+b z::elc+d. Then XVV:""‘asX/\Zﬁeld

sothat (xvy, z) = =(a,d) = =(y, x Az) ‘

;
P« I - Ve i Mf

" I we complexify C(E), /(E) and take the induced

Hermitian inner products then the above identifies still hold,
Let k = 2f and consider C(E) &, C (or A(E) ®n C) as
a left C(E)~module (the lzft regular representation)., Since w(E)

is in the center of C(E), satisfies w(Z)% = (-1)% and

x &€l

it f-llows that the eigenspaces of (i) will define a Zz~grading

¢

on /(1) ®s C. More precisely

L (E) ®RC = A(O) + m/\g}-)

where /\SO) corresponds to the eigenvalue iﬁ s ,/\m(l) to the
eigenvalue ~--ij2 . We shall refer to this Z,-graded complesx

raodule of C(IL) as the w-regular module and denote it by

]{’“(E), From its definition we see that _/‘;_(O) is an i'Q-:module
in the sense of Section 6 and hence, by a dimension count, we
deduce

PRCPCSITICN 7.1, If dim £ = 20 then the w-regular

4 c (C ’ .-i\’
u,ﬂél,% .

module of C(%) defines the element 2
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The following is left to the reader:

PROPOSITICON 7,2, If IE = ®Ei’ dim Ei = 221 then
we have a natural isomorphism of Zn=graded vector spacess

A (F) = e b (7).

Write NP = AP(E) @, C for brevity. Then we see that

NP + NP s invariant under w (p #4) with eigenspaces

Colpe@® e

f gk 5 8
[ (EARI I

it

fl(g) n (N @ Nk"p) = {x @ imﬂwxlx e NP}

i

A P @ NEP) = fx @ -l |x € NP}

N™ is invariant under (»v and so decomposes into

b

;-."(ﬂo) {x e N |efx) = 34 xr

1§

./‘.(13 {x € ! | wx) = wi’zx} .

I

A0) LA o 0 ()
: Yy )

£ 4

v(»f {ad ’xd /*« o oo
IR T . ©) .

Now take £ =1, E = R™ with basis € €y Then Ag is

generated by e; - ie, and ﬁ(? by ey *ie, . If 5C(2) is

represented in the usual way by rotations through 8

elm«w%n ey cos 8 + ezsin@

€5 ~e151n9+ezcose R
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then e, = de, —> (cos & +1i sin @:()(e1 - de,) ., Hence e, = ie,
is a weight vector with weight +$;; in the usual notation,

Similarly e, +ie, has weight -x, and so (for £ =1) we have

From this and (7, 2) we deduce

PROPOSITION 7.3, Let A0+ A1) denote the

¢~regular module of the Clifford algebra C, (k = 24), Then

regarding these as SO(k)~modules we have

4
en(A® - My = [T (¥ - o™

i=1

where we use the Borel-Hirzebruch formalism,

Remark: Since | 15.2“1 (™1 = e7%i) = ZQTT x; + higher terms

we get from (7. 3) another proof of (7, 1),

8, Jequences of bundles, In this and succeeding sections

we shall show how one can give é Grothendieck~type definition

for the relative groups K(X,Y). This will apply equally to real

or complex vector bundles and we will just refer to vector bundles,
For simplicity we shall work in the category of finite

C7~complexes (and pairs of comiplexes),

¥ Y X we shall consider the set Cn(X‘,Y) of sequences



o
" B n=1 \
A9 B (O b E o J,L:nml ¢ 8 9 ]Ll

where the Ei are vector bundles on X, the 6, are homormorph-

isms defined on ¥ and the sequenced is exact on ¥, An iso-

in (fn will mean a diagram

' . ‘ -
morphisin T ew> I
Vi

65
I, T e
i il
6!
i
T -—31 nensemmon i toneives Et P
i 3=l

in which the vertical arrows are isomorphisms on X and the
squares commute on Y,

@ s o g L3
An elementary sequence in 611 is one in which

n, = @I, ‘ 6, = r some i
i jel 0 : L fo e i
Ejmo for jAi, i-1,

The direct sum I (b ¥ of two sequences is defined in the

obvious way, /e consider now the following equivalence

relation:

DIEFINI TI ON 8,1, B~ F <==p there exist elementary

sequences ?3", e Cn so that

E@®P @o®mp' Z2ren @.. ® 0%,

B

In other words this is the equivalence relation generated by

isomorphism and addition of elementary sequences, The set




30,

of equivalence classes will be denoted by Ln(}i,Y), The

operation B induces on l"n an abelian semi=-group structure,

¥ Y =§ wewrite L (X)=1L (X,7).

I me Z‘fn then we can consider the sequence in [

n+l
obtained from % by just defining Enﬂ =0, Inthis way we get
inclusions
81 By Ez >, e o & }, Cn AN
and we put U = Kco = lim En . These induce homomorphisms

e 1y ° oo B ] St
Ll B Ly e Ln
and it is clear that
L = L = lim L
(o8] PR ¢}

is obtained from (¢ by an equivalence relation as above applied

now to sequences of finite but unbounded length.

LEMMA 8,1 Let I, I be vector bundles on X and

fi:lles I a monomorphism on Y, Thenif dim F > dim E

+dim X, f can be extended to a monomorphism on X and any

two such extensions are homotcpm rel, Y,

Proof: Consider the fibre bundle Mon(E, F) on ¥ whose
fibre at x €I is the space of all monomorphisms Ey R IF‘X . This

fibre. is
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m =dim T, and so it is (o - m ~ 1)-connected. Hence cross-sections

can be extended and are all homotopic if

dimX<n-m-1 = dim¥P-dim & -1 ,

3 i S ET% I %( [

But a cross~section of Mon(ll, F) is just a global monomorphism

D e

LEMMA 8,2, Ln(X, V) I‘"‘nH(X’ Y) is an isomorphism

for nzl,

Proof; Let {fnﬂ denote the subsetl of Cj:nﬂ consisting

of sequences [ such that

1+dimX

(1) | dim & >dim E_

If n>1 then givenany I € Zi;n-fﬂl we can add an elementary sequence

to it so that it will satisfy (1). Hence Cn»i—l ~s L. is surjective,

Now let & € 5114—1 y then by Lemma 8,1, 0, 4 can be extended to

+1

3 = 1 %
a monomorphism o, on the whole of ¥, Put £ = Coker ¢ s

- o : ‘ P, 2P =
let 2 denote the elcrpgntary sequences with ol n = B

1 v P Oh-1 9. .
B2 (0 B P B =R R s e B s 0)

where Pn is defined by the commutative diagram on Y :

i
i) e [
n n
i
% l o
o) .
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A splitting of the exact sequence on X

gt 1

1 .

mﬂ:tm;,;,  EDR oy 1) e | ‘
ntl n n e /)

0 e IT

then defines an isomorphism in €n+1

i 2 . . .
If 6“n+1 is another extension of 6n+1 leading to a sequence E |

| V]

then by Lemma 8,1, 'En = E;; and this isomorphism can be taken

to extend the given one on Y, i,e., the diagram

g
'Eil m.,.,..ﬁﬁm §D:
n n=1
) t
Cn

r" s R—r ()

n n-}

_" a4 ,..,“ { o v 3
commutes on Y, Hence B =7 in Z‘n we have a well-defined

ot . . s
map I > T from the isomorphism classes in t]’nﬂ to the
isomorphism classes in Zi’n . Moreover, if
Y om Qe ) e () @ e R, e R, | oeed i<
Q=0 S Q=0 , R=0—>R, Re ;=0 (i < n)

are elementary sequences, then

=~ Fo)

H 13
Zeog) = r, (TR TEOR.

Hence the class of &' in Ln depends only on the class of E in Ln-{-l .
o = . T = .
Since Cn+1 — Ln-H 1s surjective it follows that = —>- 1 induces

a map Ln-i-l e Ln . From its construction it is immediate that



is the

its composition in either direction with Ln e Ln+1

identity, and this completes the proof,

From Lemma 8.2 we deduce, by induction on n, and

then passing to the limit:

PRCPOSITION 8.1, The homomorphisms LI(XQ V) e Ln(}{s Y

are orphisms for 1<n<ow.

9, Iuler characteristics.

DEFINITICN 9,1, An'"Fuler characteristic! for ‘zfn is a

natural homomorphism

X+ L (%, ¥) —> K(X, Y)

which for Y =@ is given by
= i
) = - z, o
X (@ =5 7 ('3
i=0

Remark: It is clear that, if ¥ =@, F —s (1) I,

gives a well~defined map Ln(}{) — R(X)

LIEMMA 9,1, Let )( be an Tuler characteristic for

C

1 @hen

bR
[}

X ¢ LI(X) > K(

A
(e}
e

is an isomorphism,




Proof: X is an epimorphism by definition of K(X) .

Suppose Y (%) =0, then E & F for some F(in fact

F can be taken trivial)., Hence if

is the elementary sequence defined by F, B P P is isomorphic
to the elementary sequence defined by El ® F., Hence E ~0in
7?1(3?3) and so T = 0 in LI(X)‘ To conclude we need the following

elementary lemma:

LEMMA 9,2, Let A be a semi-group with an identity

element 1, B a group, ¢ : A —> B an epimorphism with (pal(l) = 1,

Then ¢ is an isomorphism,

Proof: It is sufficient to prove that A is a group, i.e.,
has inverses, Let a €A, then from the hypotheses there exists

a' €A so that

o) = @)
‘Hence

ol-a') = p@): o@") =1,
and so aa' =1 as required.

LEMMA 9,3, Let X be an Fuler characteristic for Zfl ’

and let Y be a point, Then

A s Ly(X, ¥) — KX, Y)

is an isomorphism,
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Proof: Consider the diagram

sufficient to show the exactness of the top line, Now ﬁoz = 0

obviously and so we have to show

il
o

(1) a"Yo)

0 then EE€Ima .

it

(1) if p(r)

We consider (ii) first, Since Y is a point, and X : LI(Y) = K(Y),

ﬁ’(E) = 0 is equivalent to
dim E|Y = dim E4|Y .
But then we can certainly find an isomorphism
ot E|Y M'EOIY .

Showing that © €Im(e) . Finally we consider (i), Thus let

)
E = (0 » T

J.Jl

be an element of EL(X,Y) and suppose () =0 in LI(E
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Then X aF) =0 in K(X), and hence, if we suppose dim E ;2 dim X

(as we may), there is an isomorphism

T e 331 e T

° .¢-0

-1

on the whole of X, Then 6T @Aut(E |¥)., Since 7{ is a point this

au.tomorphlsm is “homo’copm to the 1dent1ty and hence can be extended
to an element P € Aut'(Eo) . Then pT: B —> E, is an isomorph-
ism extending ¢ . This shows that E represents 0 in Ll(X, Y) as

required,

LIoMMA 9.4, Let X be an Tuler characteristic for ‘(fl P

then X is an equivalence of functors L, —>K.,

Proof: Consider, for any pair (¥, Y), the commuiative

diagram

L (x/Y, Y/Y) MKW% K(X/Y, ¥/Y)

1(“3 Y) X > K("«a‘ )

Since 1 is an isomorphism (by definition) and X on the top line
is an isomorphism by (9. 3) it will be sufficient (by (9. 2)) to prove
that ¢ is an epimorphism, Now any element £ of LI(X’Y) can

be represented by a sequence

mo= (0 B9 m 0)




where S‘EO is a prod{ict bundle, But then we can define a "collapsed
bundle" T“; = ,/6" over X/Y anda collapsed sequence E' e Zfl(X/Y, Y/Y)
defining an element &' € L,(X/Y, Y/Y). Then &= ot and so

¢ is an epimorphism,

LTMMA 9.5, Let -, ')(s be two Euler characteristics

for Cy. Then X = X' .

Proof: Let T = X' ’le (which is well=defined by (9. 4)).
This is a natural automorphism of K(¥X,Y) which is the identity when
Y = ¢, Replacing ¥ by %/Y and considering the exact sequence for

(X/Y, Y/Y) we deduce that T =1, i,e., that X' = XA .

From Lemma 9.5 and Proposition 8.1 we deduce

EMMA 9,6, There is a bijective correspondence

(Xy —>X,) between Tuler characteristics for [, and &, such

that the diagram

|

N
n

'7(1 Xn

commutes,

These lemmas show that there is at most one Euler character-
istic, In the next section we shall prove that it exists by giving a

direct construetion,
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10, The difference bundle, Given a pair (X,Y) define

X, =X x{i} i=0,1, A=X,Uy X, (obtained by identifying

y x {0} and y x {1} for all vy €Y), Then we have retractions

%
N,

so that we get split exact sequences:

13
0 - K(A, Xi) mﬁ%@“} K(A) s

-

K(Xi) —— !

Also, if we regard the index 1 € Zz, we have maps
65 : (XDY) e (As Xi'l'l)

which induce isomorphisms

6y ¢ KA, X)) —>K(X,Y) |

Now let & € ‘C’l(X,Y) ‘,:

- o, '
Z = (0 E, > > 0),

and construct the vector bundle F on A by putting Ei on Xi and
identifying on Y by o . It is clear that the isomorphism class of F
depends only on the isomorphism class of E in Z‘fl(.X, Y). Let
F,=m3(5). Then F[X, = F, andso F - F, €Ker j, . We define

an element d(E) € K(X, Y) by
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Oy e®ham) = F-F, .

It is clear that d is additive:

a(Ez @ E') = a(E&) + =" .

Also if E is elementary F = ¥, so that d(¥) = 0, Hence d induces

a homomorphism
d s Ll(}{sv Y) s K(X, Y)

which is clearly natural, Moreover if Y =¢ A = Xg X F =By

(disjoint rum), F, = I + E; and so

d(E) = E mEl,

Thus d is an Euler characteristic in the sense of Seetion 9, The

existence of this d together with the lemmas of Section 9 lead to

the following proposition,

PROPOSITION 10,1, For any integer n withl1<n < co

there exists a unique natural homomorphism

& Ln(x, Y) s (X, Y)

which, for Y = ¢ , is given by

Moreover 7% is an isomorphism,

N

.

+ B

1
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The unique X given by (10,1) will be referred to as the

Fuler characteristic, From (9, 6) we see that we may effectively *

identify the X for different n,

Two elements E, F € C (X, Y)are called homotopie |

if they are isomorphic to the restrictions to X X {O} and X x {1}

of an element in (”fn(X XI, Y x1I),

PROPOSITION 10.2. Homotopic elements in 17, (X, ¥)

define the same eclement in L, (X, Y).

Proof: This follows at once from (10, 1) and the homotopy

incariance of XK(3, Y).
B e

i

Proposition 10, 1 shows that we could take L (X, Y)
(for any n > 1) as a definition of K(X, Y). This would be a Grothendieck - \

~._type definition,

We shallnow give a method for constructing the inverse of
oz Ly, ¥) — Ln(X, Y), If Ee€ an(}’;, Y), then by introducing
metrics we can define the adjoint sequence E* with maps 6’242 Eimlw Ei .

Consider the sequence
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% ¢ .
ey ego ego oer) = (0105 & °4 " 933 SyoytO5esm ot )

Since, on Y, we have the decomposition

| * o ~
* fara o) @ 1535

it follows that F € Zfz(Xe Y), ¥ E @C’l then £ = F , Since two
choices of metric in ©© are homotopic it follows by (10, 2) that F will

be a representative for jml(E) .

11, Products, In this section we shall consider complexes

of vector bundles, i.e,, sequences

G ¢

in which 6; 6; . =0 for all i,
i Ti-1

LEMMA 1L,1, Let EO’Q ee En be vector bundles on X(stg

a complesx on Y, Then the o can be extended so that this becomes a

complex on X,

\;

e i N FonST } J; 4 /1 i

Proofs Let V be a,wregufar ne‘i’”ighborhood'

fof Y in X sé that

we have Y as a deformation retract of V, Liet 7V =2 Y be the

retraction and let
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Tt EiIV — Eiwllv

1

be defined over V so that the diagram

B |v
i

O,
T Y R w (] Y)

commutes, where o is an isomorphism ( =1 on Y) given by the

homotopy @ ~1, Let e be a continuous scalar funciion with e=

on Y and P:Oon}imv.

fut
Ay = (J'C;L on V
= 0 on X =V
Then the sequence
A A
0 e B, olis I NP N SN
n ne=1 0

is a complex on X which extends the given complex,

We now introducethe set O, (X, Y) of complexes of length
n on X acyclic on ¥, Two such complexes are homotopic if they are
isornorphic to the restriction to X X {0} and X X { 1} of an element
in 0@}1(}’; XI, Y xI)., By restricting the homomorphisms to Y we

get a natural map

21 B (K, ¥) = (%, V).
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LEMMA 1.2, §:d, —(, induces a bijective map of

homotopy classes,

Proof: 4pplying (1L 1) we see that ¢ itself is surjective,

Next, applying (11, 1) to the pair
(% xI; xx{ot ux x{1} uY x1)
we see that
&(Z) homotopic to @(F) == E homotopic to F

. which completes the proof.

. ?A
It EE€ (X, ¥), FE S, (X, ) then EGF isa

complex on X acyclic on ¥ XY UX XY sothat
7 n - > 8 3 !
E®F @:(;@m’m(}s. XX, XxYURXY) .

This product is additive and compatible with homotopies, Hence
it induces a bilinear product on the homotopy classes, From (i, 2)

and (10, 2) it follows that it induces a natural product

L (%, Y) oL (X', ¥')—>L (XX ¥, xxY Uux xY)

PROPOSITICN 11,1, The tensor product of complexes

induces a natural product

L (X, Y)oL_ (X', ¥)—L XxX, XxY UX' xY)

n+m
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and

X@b) = K@) X(b) (1)

where X is the Tuler characteristic,

Droof: The formula (1) is certainly true when ¥ = ve=qg,.

On the other hand there is a unique natural extension of the product
K(X) ® K(X') —> K(X x X') to the relative case, Hence, by (10.1),

formula (1) is also true in the general case,

Remark, This result is essentially due to Douady,

PROPCSITION 1L 2, Let

E = (0 == B —2sF) — 0) € O(X, Y)
1 ] 6“ t g {
B! = (0 —>E) Ty —>0) €G(X, Y

and choose metrics in all the bundles, I.et

F o= (0 —>F > Fj —>0) € (X x X', X x ¥ UX' x¥)

be defined by

e 4 "?‘t n !
o= EByel & E en,
faed & 7:\' 4 "Q'
Lo = ]":O®J«IO @ E1®Bl



where o , o'* denote the adjoints of 6; 6'. Then

AE) = X(E) X(E) .
Proof: By Proposition 1,1 X(E). X(E') = X (E® E'Y .

Now the construction of Section 9 for the inverse of j2 H 'L'l e LZ

turns E @ E!' into F andso X(E®E!Y) = X(F).

12, Clifford bundles, Let V be a (real) Euclidean vector

bundle of dimension k over ¥, Then we can form the Clifford

bundle of V, This is a bundle C(V) of algebras such that, x €¥X ,

Contained in C(V) are bundles of groups, Pin(V) and Spin(V), All
these bunidles are associated to the principal O(k)-bundle of V by

the natural action of O(k) on C, , Pin(k), Spin(k) ,

By a graded Clifford module of V we shall mean a Z,~graded

vector bundle £ (real or complex) over X which is a graded

C(V)=-module, | In other words E = EO ® El ‘and we have vector

bundle homomorphisms

V ®

0 i

ot e

(denoted simply by v ® e —3> v(e)) such that



[ s

vivle) = -lvi®e . |

Let €(V_ ) denote the clement of Pin(V_ ) which is -1in
the algebra C(V ). Then ¢(V) is a section of Pin(%’)s The

following facts are then easily verified (as in the case X = point),
(12,1)  The inclusion Pin(V) —- C(V) induces a bijection
of the classes of graded C(V)-modules onto the classes of those

 graded Pin(V)-modules for which €(V) acts as -1,

w(1&%:%%2) The inclusion Spin(V) — Pin(V) induces a bijection
of the classes of graded Pin(V)-modules onto the classes of Spin V-

modules ,

iy

[r—

(12, 3) :\ By integration over the fibers of Spin(V) any

Spin{V)~module E can be given a metric invariant under the action
of Spin(V).

From these it follows that if E = =0 ® E! 15 a graded

C(V)=module then it can be given a metric so that Eo and B arve

orthogonal complements and for ve€ V_ , e € Ex -

fvell = Ivll - el .

This implies that the adjoint of
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Let B(V), 5(V) denote the unit ball and unit sphere bundles
of Vandlet w 3 B(V)—> X denote the projection, Let
(E): v Bl — = * g0
be given by multiplication by mvg le. 4
ﬁ“(E)v (e) = =ve .

Then

N T S <2 €) N

;}a//{:y , Fowrg Y ;({ & R <§

z

3

i
” é
:
¢

g
J

is an element of o{c)”l(B(V), 5(V)) and hence defines an element of

K(B(V), 5(V)) which we will denote by X (E), ¥ A(V) denotes
the Grothendieck group of graded C(V)-modules then we obtain‘ )

in this way a homomorphism

”><v . AW) s KBW), S(V)) -

This homomozxphism playsa basic role in all the theory., Its

multiplicative properties are given in the following proposition,

where V, V' atre bundles over X, xt

PROPOSITION 14,1, The following diagram commutes

A(V) @ A(V') A

s AV & V')
Xv Xyt Xy @ v

K(B(V), 5(V)) @ K(B(V'), S(V') —2—5 KBV ® V'), S(VHV'))

waf 4 ,ié\
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where 1 is indnced by the graded tensor product of graded modules

and )\ is indnced by the K~product and the two homotopy eigenvalues

(B(V) x B(V') , B(V) x 5(V') US(V) x B(V")) .

2 (B ®V'), By(vET")

L

BV @ V'Y, s(v @ v')]

where Bo denotes the complement of the zero-section.

Proof: Let E, E' be graded C(V) and C(V') modules and

let them both be given invariant metrics as above, Applying

Proposiion 1l 2 if follows that
Ay(E) e X (B €KBV) x B{V'), B{V) x S(V') U S(V) x B(V'))
is equal to X (F) where
F & Oy (BV) x B(V'), B(V) x 8(V') US(V) x B(V'))

is defined by

P, o= et @ Bler!
i i
F, = 0 e’ @ mler

and T Fy > ¥y is given by

196 (E) , 6(E)®1

-6(E)®1 , l®dE)
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(stnce o (2)* = «6(}), 6 (E')" = -6(®")), Thus, at a point

v ®v' €V OV', 7 is given by the matrix

1@yt , ~v®l 1 o\/1evt , v&l

Ty Ot '
vl , 1® =y 0 “lj\v®l , =1 &t

where v, v denote module multiplication by v, v! ., Hence

¥
4

Since T and 6 (€ ® B') are both isomorphisms on By(V ® V')
(while (1 O) is an isomorphism on all of V ®V') it follows that
‘"l

0
X (F) = XVQBV’(E ® ©') and hence

bl ‘rw“ ;I\i"r\

where we have identified K(B(V ©V1), 5(V ©V')) and K{B(V) x B(V') ,
S(V) x B(V') U B(V) x S(V")) .
Suppose now that P is a principal Spin(k) bundle over X,

V = P X )Rk the associated vector bundle, If M is a graded

Spin(k
way ) T o= T2 0y
Ck module then I = Z %Sp:'m(k)

&

13

M will be a graded C(V)=module ,

In this way we obiain a homomorphism of Grothendieck groups

r’? s A W?)-—AL(V) °

k
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PROPOSITION 12,2, Let P, P! be Spin k, Spin £ bundles

over X, X'andlet V = P xSpinkRk b V=P g ﬂRJZ . Let P"

be the Spin(k + £)~bundle over X x X! induced from P x P! by the

standard inclusion

4y

Spin k X Spin £ m-wﬁ?

I
3:
-
)
.
}
i

Then if a@Ak9 b@Aﬁ » we have

\
Eonfab) = fpla) o),

The verification of this result is lleﬁ; to the veader,
& = / ' ér,wfy(\'?'\\!f ’f“f’!{i4 i

Let 0 5 Ay —> K(B(V), 5(V)) be defined by ap = Xy Pp -

Then from Propositionsl2, 1 and 12, 2 we deduce

PROPOSITION 12,3, With the notation of 12, 2 we have

apn(ab) = ag.m(a,) Cl}:}i(b) °

If we apply all the preceding discussion to the case when X
is a point {(and P denoctes the trivial Spin(k)-b

L

At

undle) we get maps

O Ay > zié(sk)

Qﬁc H [‘]i P ﬁ(sk)

in the complex case,

Proposition 12, 3 then yields the following corollary, as a special case;
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COROLLARY 1, The maps
e " wk s
as A, Wi KO © (point)
50
=7
=k .
o e A.;f w> K 7( (point)
A Y
k>0

are ring homomorphisms,

/| Now the rings A, and Ay were explicitly determined in

g’/ Section 6 (Theorems 6,1 and 6, 2), Also ﬂqe rings By =4 KO-k(point)

f and B,f = ISKNk(point) are known and are in fact abstractly isomorphic
g 2 to A, and Ay respectively, Moreover this abstract isomorphism

cormpatible with the complexifications

C C
.L'r'b.* e A* 8 B* emernanen o B* °

In view of this and of the special structure (periodicity) of A, and

C | c . . .
Ay 5 the maps o« and & will be isomorphisms

(i) @3 Ay —=>B; 1is an isomorphism
and

. ,C c . .

(ii) ¢ Ay ——> B, is an isomorphism .

These are trivially verified since they amount to showing that the ., -

Hopf bundles on

R) and PI(C) are the generating bundles, Hence

A

we have proved:




(%3
N
e

THIZCOREM 12,1, The maps

=
v\
O—'

=k
e A* M> KO (point)
k>0
and
am { : )
Q:C : ‘LA M\ k (poin‘i‘.) g \\ ST

are ring isomorphisms, |

13. The Thom isomorphism, We begin with some general

remarks on the Thom isomorphism for general cohomology theories.

Let I be a generalized cohomology theory with products,

Thus ““:ﬂ: (V) = 7 Fq(}’l) is a graded anti-commutative ring with identity

and I‘_H‘ (z», Y)

1(5 a graded B A (X)=module, Moreover the product
T8

/\Kf

musi be co*npahbie w' h the c;:o‘boundar'y in the sense that

. § |

§(ab5 = fla)e b+ (ml)'ma 5b

where «=dega and a- b belong to suitable F~-groups.

In T (") we have a canonical element ¢ which corresponds
to the identity element 1 = % er? (point) = 'E‘O(SO) under suspension,

F #(Sn) is then a free module over FJﬂL (point) generated by &
Suppose now that V is a real vector bundle of dimension n

over X, 77e choose a metric in V and introduce the pair (B(V), S(V))

(ox the Thom complex B(V)/5(V)). For each point x € X we consider
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the inclusion

it (B(V,), 8(V,) —> (B(V), 5(v))

N Y

i, 1 FABE), 5(V)) —>FNB(V,), 5(v,)) . |

Suppose now that V is oriented, then for each x € X we have a

well-defined suspension isomorphism

5, + Fo{ad) —s F(B(V,), S(v_)) .

»
b4

e let o“f: = Sx(]‘) . /e shall say that V is F-orientable if there

. .7 .
exists an element i, €F (B{V), 3(V)) such that, for all = €X,

R ~ n
i(uy) = o .

L
o4

A definite choice of such a }"V will be called an Fmorient@m of V,

Then we have the following general Thom isomorphism theorem:

THZCOREM 13,1, Let V be an F-oriented bundle over ¥

with orientation class 1., . Then F'H(B (V), 5(V)) is a free

F#(L’C)mmodule with generator iy .

Proof: Multiplication by yy defines a homomorphism of
the F~spectral sequence of X into the F=gpectral sequence of

B(V), S(V)) which is an isomorphism on T, (the Thom isomorphism

3
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for cohomology) and hence on E_ . Hence
a W“?b* ”wv a

gives an isomorphism F#(X) 3 F#(B(V) s 5(V)) as stated, [For
further details see various unpublished notes of Atiyah, Dold,

G, W, Vhitehead],

Lpplying 13,1 to the special theories K, KO we obtain,

THEZOREM 13,2, Let V be an oriented real vector bundle

KXV

of dimension n over ¥, Then

(i) if n 50 mod 2 and there is an element yy, € K(B(V), S(V’))

whose restriction to each K(B(Vx)g S(Vx)) is the generator,

then K*(E(V), 5(V)) is a free K* (X)~module generated by By o

(ii) if n %0 mod 8 and there is an element € KO(B(V), S(‘V’))

whose restriction to each KC(B(Vy), S(Vx:)) is the generator,

then KO™(B(V), 5(V)) is a free KO¥(X)~module generated

by 1y o

Remark: Since 0 (point) = xo? (point) = Z thescgroups are

generated by the identity element of the ring, This element and its

suspensions are what we mean by the generator,

Suppose now that V has a Spin-structure, i,e,, that we

are given a principal Spin(n)-bundle P and an isomorphism



2
s

In the real case assurme n =

put
k
By = ap)
C,\l
e (U o I

Aﬂwé» KO(B(V), 5(V)

ot A —> K(B(V), 5(V)) .

Then by the naturality of Op 5 cz,t, and Theorem 12 lwe see that

Uy s U‘"V define KO and K orvientations of V and héwﬁ??e 13’ 2 glvesﬁ :

A et

THEOREM 13,3, Let P be a Spin(n) -~ bundle over X,

-~
xspin (n) R '] Then

(1) if n=8k KO (B(V), 5(V)) is a free KO (X)~module

generated by By
(1) if no= 2k, XT(B(V), 5(V)) is a free K* (X)~module
o generated by "‘ﬁV .

Remark: It is easy to see that mz(V) =0, i,e,, the existence

of a Opin structure for V, is neceé"sai"y’*'f‘or KO=orientability,

13, 3, (i) shows that it is also sufficient,

In the complex case ww,(V) =0
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is stronger than K-~orientability and (13, 3)(ii) has a generalization

which we do not enter on here,

(13, 3) together with (12, 3) shows that, for 5pin bundles,
we have a Thom isomorphism for KO and K with all the good formal
properties, It is then easy to show now that for Spin-manifolds
one can define a functorial homomorphism

£, : KO¥(Y) ~—sKO¥(X) for maps f: ¥ ——>X ,

®

If one is only interested in K(¥X) ® 0 then one gets a Thom

isomorphism without any need of Spin=-structures, In fact since
e L
ch 1 K () ®0 —sH (X;0Q)

is an is ornorp}lis;xiuviv};;:h is fu""ncto’rial the ordinary Thom isomorphism
for cohomology will at once give a Thom isomorphism for K*(X)® Q.
However this procedure does not give us a nice generator from the
point of view of K~theory, On the other hand for any oriented
Fuclidean vector bundle V of dimension 24 we have the (y-regular
C(V)~module Aw(V) constructed in Section 7 and hence an element
Vy = XV(A(,\(V)) e K(B(V), S(V)). Proposition 7,1 shows that
the restriction of Vy to K(B('Vx)), S(Vx)) is 2% times the generator,

Hence we deduce:

THEQORIEIM 12,4, Let V be an oriented Euclidean wector

bundle of dimension 2£ over ¥, then K™*(B(V), S(V))®Q isa

free K*(X) ® Q~module generated by Yy o



The multiplicative properties of v are not quite as simple
as those of )y and they will be dealt with by characters in the next

section,

14, Character computations, Let G be a compact connected

Lie group, V7 a real oriented Fuclidean G-module, MO, l\/I1 two

complex G=rmodules and let Iso(Ml, MO) denote the space of all

vector space isomorphisms of M* onto P o Let 8 38(W) — 150(1\/11, Mol

be an equivariant map with respect to the operatiéps of G, il.e.,

@(g(/i‘ro gm, P g(@((r)) ° I‘n) . g @G, C{j@S(‘.;‘T)l’ mn QMI @

Next let P be any principal G-bundle over a space X, then the
above data defines an element of (fl(B(V), 5(V)) and hence an element
§(P) e K(B(V), S(V)), where V =P X 7o Then & is a functor

which depends on I\/IO, vt , © ((,; is supposed fixed throughout) .

9]
1

THIZORI

C

oM 14,1, 7ith the notation above suppose further

that dim "7 = 24 and that the irmmage of G in Aut(¥/) has rank 2

Then ¢ depends only on MO, Ml and not on © , Moreover, if

o, denotes the Thom isomorphism in rational cobomology, the

v 3

functor P mv—>¢ | ch 3(P) € H" (X, Q) is the characteristic

i A
kA

class

ch MO - ch
'e &
T ey

i=1
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ch IVIO, ch Ml denote the characters of these G-modules 0:1, N 012

are the positive weights of the real oviented G-module W, and we uge

the Borel-Hirzebruch description of the cohomology of B

G ®

Proof: It is sufficient to work in the universal case, i, e.,

to suppose X is (a finite approximation to) the classifying space

o
BG o Now the Fuler class of the bundle V = P e W is just | ‘i >1 % s

and this is non-zero by the assumption on the rank of G, and hence
not a zero-divisor (since H (IBG 3 ©) is a polynomial ring), Thus

we get a short exact sequence
o j* ) )
0 — H' (B(V), 5(V) ; Q) s B (B 3 Q) —>H (Byi0)—>0

where H <G is the isotropy subgroup of a point in W, and the

image of j* is the principal ideal generated by Mﬁ;ﬁl A Now

ch ¢ (P) € H*(B(V), S(V); Q)

and j* ch (?) = ch MO - ch ve . Since

A
jﬂ‘ Die (X) = (H &5 b4
i=]

ch MO « ch l\/i1

we deduce that

o5 b §(P)
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¢ e

the right hand side being a well=defined element in H (ZBG ).
This shows that ch @ (P) does not depend on 6, Since G is

connected we know that

sk
ch 3 K(BC}) N = | (BG o)

is injective, Henece &(P) does not depend on @,
. ) 0 | 24
Applying (14, 1) to the case G =50(2£)and M° ® M = A(;s(R )

and using (7, 3) we deduce

THEQOREM 14,2, Let V be an oriented Euclidean vector

bundle of dimension 24 over X, Then, if \)V denotes the element

of K(B(V), 5(V)) of Section 13, we have

¥ Ko X3
R T 1 e 3
ch vy = ¢ ] ¢ ° >

c izl x,
L

where ¢, is the Thom isomorphism and the Pontrijagin classes of
kg

V are the elementary symmetric functions in the xf o

15, The sphere, The purpose of these next sections is to
identify the generators of KO(B(V), S(V)) (for a V with Spinor
structure and dim =0 mod 8) given in Section 13 with thesc given
in Bott!s lecture notes, LEssentially it all comes down to the two
basic ways of describing the sphere: as the compactification of R®

or as a hornogeneous space,



We recall first the existence of an isomorphism ¢ Cp — Cz?.ﬂ

(Proposition 5, 2), Ve introduce the following notations

K =Spin (k +1), H=e@Pink) =8 +2", H = oSpinlk)

(where + here denotes disjoint sums of the two components ),

i

Sk unit sphere in Rk+1

2
§

k - oK
# 5 8 Nixgy 20}ty 8. = 550 {x,, <o}

We consider Sk‘ as the orbit space of €] for the group K

operating on giH by the rvepresentation p . Thus K/HO =55 and

we have the principal H’-bundle

Let X, = WI(S+) s K_ = w ml(Sm) . We shall give explicit triviali~
zations of K . and K, and the identification will then give the

"characteristic map' of the sphere{f I

We parametrize S5, by use of 'polar coordinates'': :
(x,t) = Cos t e THint x x €8 5, 0Lt<w /2,
Now define a map /P+ : S+ X HO e K_}‘ by

0 . 0
ﬁ+(::, ty h') = (-~ Cost/2 +8in t/2 xek+1)h g

e
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Since

. 0
p((mCos t/2 + Sin t/2 x ekﬂ)h )ekﬂ,

(~Cos t/2 + Sint/2 x e ((~Cos t/2 + 3in t/2 » ekv;’l)““l

i

1e41) Skt

N
ki’ Skl

i

(=Cos t/2 + 8int/2 x e

H

Cos tey,, +8intx = (o2, t) 4

it follows that f, is an H'=bundle isomorphism,

Similarly we parametrize S_ by

(x, t) = *Cos *i;ekﬂ +8int x 0<t<w/2, x€ Syt

Note that for points of Sk«l the two parametrizations agree

(putting t = w/2),

1

Now define a map R_:S_ xH —s K_ by
£_(x, t, hl) = (Cos t/2 + Sint/2x e, 0! .
[ en k+l
Since
o((Cos /2 + Sin t/2 x ey, Jh') e

k1728

(Cos t/2 + Sin t/2 x exqp) - ek+1(005 t/2 + Sint/2 x e

it

=1
k+1)

i

o 2 - .
~(Cos t/2 + Sin t/2 x ek+1) €pqp = 7 Cos t €y T Sint %,

it follows that ﬁ_ is an HO ~bundle isomorphism,



Putting t = w /2 above we get

o, 0 . 0
Bilxy n/2 4 h7) = (-Cos w /4 + Sin ﬁ/éxekﬂ)h
B.lxs /2, hl) = (Cos 7 /4 + Sin n /4 x ekﬂ) %
These ave the same point of K, N K_if
1 s 2.0
h" = «(Cos w /4 - Sin w/@xekﬂ) h
_ 0
= +x e1etl h™ .,
Thus we have a commutative diagram
I
~ 0 W+ >
Sjq XH ———ts KN K,
& 1
1 ? v
uk.”“lX:H > K+ﬂKm
where
5(x, ho) = (x, % e '.ho) . (1)

k+l

LEZMMA 15,1, If we regavd 10 as (left) operating on

both factors of S, x H and 5_xH' , then B, and . are

¢compatible with left operation,

62,
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%)

i

. 0 .
Proof: (i) F. gz, t, h7) [’+(g(x), ty gh

1 0

i

(~Cos t/2 + Sin t/2 gxg~ ek+l)gh

it

0
g /3+ (Xs ty b )

“1
gxg .

]

where g €1’ and glx) = Fk+1(g) * X
(33) B gl t "11) = B (Cos t/2 - Sin t/2 gx "le ) ht
B 8l ty & B. gxg = ey 4y)el
-
= g ﬁm(xa ty ) .

Since o(x) = x ey for x € R¥ formula (1) above can be

rewritien

| 1 .
80, g) = (x, xg) x €R°, g €S5pin(k) .

Summarizing our results therefore we get:

PROPOSITION 15,1, The principal Spin(k)~bundle

Spin (k + 1) —> sk is isomorphic to the bundle obtained from the

two bundles

5, % Pin *(k) —> 5,

5. x Pin k) —> 5_

by the identification

(xyg) € (%, 2g) for x €551 y g €Pin

P ]

Movreover this isomorphism is compatible with left multiplication

by Spin (k) ,
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Here Pin O(k) = Spin (k) and Pin 1(]x;) are the two

components of Pin (k) ,

16, Spinor bundles, Let PO be a principal Spin(k)-bundle

over i and put

1 _ 0 S P Y
D= PY X Cpin(k) T k) ,, Q=P X3pin(k) Spin(k + 1)
k.0 ke .
T = 20X Spil’l(k)u T+ U TN $ whe re
- =0 o~ . w0
T, =72 XSpin(k)uw}' » T =P XSpin(k) 5.+

™, 8 '1‘+ —pe X 3 m ¢ T -3 the projections,

Consider now the two commutative diagrams

0 0
P XSpin(k)(s+ X Spin(k)) s, P
T, t s X
PO % . (5. x Pin M(k)) . Dl
Spin{lk) -
i -
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These allow us to identify the two Spin(k) bundles occurring in
the first column with =« +(30) and : (."?1) respectively, Now

because of the left compatibility in (15, 1) we immediately get

ROPCSITION 16,1, The principal Spin (k)-bundle

P
Q) o Tk is isomorphic to the bundle obtained from the two bundles

% .' '
W ; (Po) Ty TT:' (Pl) e

by the identification

(ps 8, g)<—> (p, s, sg)

0

k=l . o € Spin(k) and p &P’ .

for 5 €5

Now suppose that M = MO > l\/I1 is a graded Gy ~module,

Then we have a natural isomorphism

1~ 1 0
Hence
1 0 _ 50 ol 0
Xspin()™ % T Xgpinge) T Xgoi0 60 M
= P
Xgpin(e) M

From (16,1) and this isomorphism we obtains
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PROPOSITION 16,2, The vector bundle Q XSpin(k) M

over Tk is isomorphic to the bundle obtained from the two bundles

% 0 0 o 0 1
iT + (P XSpin(k) M ) MT+ s T (P X Spin(k) M ) o T”
by the identification
.' S 0 k-1 0
(p, 8, m) <= (p, 8, sm) for p€P ,s5€S5 T, mE&M,

Let us consider now the construction of Section 12 which

0

assigned to any graded Cy-module M and any Spin(k)~bundle F
o a = 10 k
an eler.ent ocPO(M) & KO(B(V), 5(V)) where V =P XSpin (k) R,
This construction depended on the "difference bundle'" of Section 10,
In our present case the spaces A, XO s Xl of Cection 10 can be
effectively replaced by Tk s T, T, and we see from (16, 2) (and
the fact that s° = =1 for s € S).p) that the bundle F of Section 10
Q o . o 0 R . &
is isomorphic to the bundle 0 X Spin(k)M . Now from the split

exact sequence of the pair ('I‘k » T_) and the isomorphisms

ko(t®, T) & ko(r,, ) & KO@®B(V), 5(V))
we obtain a natural projection

KO(T®) — KO(B(V), S(V)) .

Then what we have shown may be stated as follows:
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THEOREM 16,1, Let P° be a principal Spin(k)-bundle

-0 )
M a graded €y ~module, € =2 Xg 10 Spin(k +1) ,

50 ko ko . 20 0
= P XSpil’l(k)R s I o= Q/Spln(k) & T Q XSpin(k) M ?

: KO(TK) — KO(B (V), 5(V)) the natural projection, Then

<

o

0
o M) = iy o
Po( ) = p(E7)

Remarks, This ties up the two definitions of the basic map
O o For some purposes, such as the behaviour under producis,
the first definition (i,e,, o 0 (M)) is most appropriate, For others,
2

such as computing the effect of representations, the second

definition (i,e., » (3‘0)) is better,
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Topology Seminar (1962-63)

(continued)
(I. M. Singer)
17. Differential operators on vector bundles.

17.1. Introduction. Locally, and for functions, a

differential operator is a linear combination of operators
3k

of the type

il,o,a,ikail,.@.,ik(x1’°”°’xn)5x_ 5%y,

e 6 8

k
For m=tuples of functions, a differential operator 1ls an

4+ ¥ m matrix whose entries are differential operators.
Since vector bundles are locally trivial, it is possible
to define differential operators on smooth cross-sections
of vector bundles as operators which locally can be rep-
resented as above. One can also give a more invariant

treatment via Jets. In our approach we will use connec-
th

vions with covariant derivative in the 1 direction
playing the role of §%ww@ Though this treatment depends
i

cn a connection, in many geometric situations there is a
natural connection to use. It also has the advantage of
allowing one to define homogeneous differential operators
of a given order.

17.2. Notation, Let X be an n-dimensional man-

ifold and Ei s 1=1,2, two complex vector bundles over X .



69,

2]

Unless otherwise specified, all manifolds will be ¢ .
Let Ci s 1=1,2, be two principal bundles assoclated to
the vector bundles Ei s with groups Gi and projection
maps  wy . Thus there exlst Gimmodules Mi s l.eoy rep-
regsentations 5& of Gi on vector spaces Mi s0 that
Ey =0y X GiMi s [that is, Ey = Cy »x My with the equive
alence relation (cigmi) “‘(cigzl,gi(gi)mi}] . Let Cg,
be a principal bundle over X wilth group GO and a rep-
regentation Eb on R = MO (Euolidean nmspaoe) such
that C, X‘GOMO = T(X) , the tangent bundle of X . For
example, CO could be the bundle of bases over X so
that GO = Gﬁﬁ(n) s any principal subbundle would also do.
Unless otherwise stated, CO wlll be chosgen to be the

bundle of bases.

Let ¢ = {500,01,02) € Cox Cp X Cy 5 Wo(co) = Wl(cl)

i
=3
o
O
o
by~

It is easy to verify that ¢ 1s a principal bundle over

X with group @ = GO M Gl X G2 « We denote its projection
on X by w . The vector spaces MJ s J=0,1,2 can be
made into G-modules via the representations Py o where
py(80s8108y) = Byley) » Then € X My =B, , j=0,1,2

with Eq = T(X) « Thus, given the vector bundles By s

E, 5 and B, m.T(X) s we have constructed a principal

bundle € with group G , and G-modules Mj s such that
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C E,j 3 jml,QgO °

ij =
Suppose M is a Gemodule and E = C ><GM . Let

M) =[f:c>M;fec®, tleg) =ple™)(E(c))], Loe.,

[M(g) is the set of M-valued ¢° functions on equive

ariant under G . [(E) is naturally isomorphic to the

¢®=cross sections of E . The isomorphism is given by

£ » F where ?(x) = (c,f(c)) and w(c) = x . F is well

defined on C X M since (cg,f(cg)) ml(cg,p(gml)f(o)) ~ (csflc))

Finally, note that since the duals and tensor products

of G-modules are G-modules, so are M§ s [ [

. k
M*ES =Mg® o0 @MY, and M, @ m @ M.

D — "E' e :

17.3. Differential operators of order k . Fix a i&f

* ?L “ o
¢® connection h on C s and suppose f ¢ ['(E) . Then Jol oo

Df 4 the total differential of f relative to the connecw~ > EE
<)V, Ty

with values in M, i.e., Df(c) : H, » M where H, de- .

N foed Uy

tion h , 18 an equivariant horizontal one form on C

notes the horilzontal space of h at ¢ . The equivare

jance of Df means
]
(1) pf(eg) = p(e ™) Drflc) dr,y »

where rg denotes the operation of G on € . We can

interpret this total differentlial as an element of
M(E @ (X)) in the following way. The map dm,
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is an isomorphism of HC with Xw(c) » Tthe tangent space
of X at w(e) . On the other hand, if p 1s the iden-

tification map of C X My onto T(X) = ¢ X oMy s then

Dy the restriction of p to (o;MO) gives an isomor-

phlsm of MO with Xw(c) » Let Ty * MO > Hc be

el
(dwc) o D, « Then

(I1) Tog = Ay © T e po(8)
-l -
for Ty, (ng) = ar g (pegsmg)) = gy (p(e, py(a)my) =

dr, o dwzlca pc(po(g)(mo)) = dr, o T, 0 pole) (my) -

consider the map (Df)(c) = Df(c) o T, 3 My > M
=1
ple ")Df(c)py(B) -

il

From I and II we obtain, 5?(0%)

Consequently, Bf is an equivariant function with values . .

in the G-module Hom(MO,M) =M & ME 5 dees,

Df e M(E ® ™(X)) . With repeated applications, we~ff_}t“”i

pind D2 () > P (E @ (X)), k=l,2... . Let

0 =1 M(E) = M(E) . g (e}, é‘%%fw@§~ég (
Let sk denote the G~module of symmetric tensors
in M% and let SK(X) = C ><Gsk . We will now assign to

cach a e ["(E, @ B ® 8x)), a differential

operator D(a) : F“(El) > FY(EQ) . Before we do so, note

that M, ) M@ s 1s the linear space of Syme

metric k-linear maps of MY into Hom (M ,Mg) . Hence,

we can view a e ['(E, @ " Ef ® SK(X)) as a symmetric




k-linear fibre map of the cotangent buhdle /T%(X) into

Hom(E,,B,) . Furthermore, N, @ m @ s* =
o o -~

; R SV

Hom(i ® s {om,) © Hom(M, @® Mg, M,) , so that
ae F‘(Hom(El_ @ ‘T%(X)k,Ee)) . Consequently

a o S M (E,) > [ﬁ(Eg) ; we denote this map by D(k)(g)

so that ‘the map a = D(k)(g) is a lineap map
2 e, ® B @ 5(0) > Hon(1(5), P(z,) .
Slnce the space 8 of all symmetric tensors equals

se s, r’"(Eg cX) Eg{ ® s(x)) =2 (B, @ 5% @ s(x))

ke .
and the linear maps D(k) give a map

Dmlﬁ{;é&D(k : f"‘)(E,{2 ® wle @ s(x)) eHom(r"(E) (E )) .

The range of D will be cmlled the space of differeﬁtLal

operators and will be denoted by Diff(El,Eg) o« The range
k .

of % pl?)
4=0

erators of order < k and will be denoted by Diffk(El,Eg) .

wlll be called the space of differential op-

Thus Diff(E 10 B, ) ‘1s a linear subspace of Hom(T”(ElLVW(Eg))
with a flltration given by Dire* (8 ,E,) .

7.4, Change of connection. Local representation.

Suppose another connection hl on C 1is chosen.
Then hlmh 1s an equivariant one form on ¢ with values
in g , the Lie algebra of ¢ . As above, we can inter-
pret hlmh as an equivariant O=form T with values in

g & M¢ . For any G-module M, v gives rise to a
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map WT :P‘(E) S>TYE @ mT*(X)) , where
W (£)(e) = blelc) @ £(c)) ana b(X @ my @ m) =

dp(x)(m) & mg , X &g . Similarly, any equivarlant

M with values in g ® (M"’é)k gives a map
Wy (B8 ® ™) > (8@ ™) . o1 b s

the total differentlal relative to the connection hy ,
then 51 w [ oes WT s an elementary computation in connece

tion theory.
THEOREM: DLff¥(

EqsE and hence Diff(El,Eg) s

o)
are independent of the cholce of connection.

oy ™) N'& St Foed
Proof: Since Dy =D+ W, , Dy = (D+WT)'°'(D+WT) .

~

However, D 1s a derilvation and hence D !iw,,““}*—t W, D+ W3, o«

T
N,L ~ P, o Lgard
Hence Dl == ZD& + W D& 1 + W ZD‘M3 o0 0o WT where
Thwl, T 0

Ty are equivariant with values in g X (Mg)J . Now let

i 3 ,,
C&’J be the linear map of (I\/I2 ® M% ® S) X (g ® Méj) >

My i

Ca gy @ mf ® 5 @ x ® {d; ® 0 ® ;}) =

my, @ Pi(X)(m?]f) ® s(cbl,“o,tbjw,u‘*) where X € g, c&ieMéa

® g ® g +J %Hom(Ml 0 (s{’“‘j)*;Mg) given by

Note that i1f afc) e My, @ M @ s¥ ana mwj(c)agﬁﬁl"f’é&mj;
then C&’J(a(o) ® 'c{md(c)) =alc)oW ..

ag elements
T%mj(c}

of Hom(Ml ® (s‘j)%,Mg) . Hence

22 4 ’
Y N ~ N&“’”l oo Nl
a oDy =a 0D 4+2,,00D teeet gy © DT+ gy where



The

25 e0(m, @ 55 @ s700) L ayle) =0y ylale) @ 7o)
and a, =a . In particular Di{g(é) = 3 D(j)(id)
J=0

where Di&) is the map D(&) relative to the connection

hl o Oe€.ds

COROLLARY: D:‘g{')(@_) - D( (a) € Diff&wl(ElgEg) .
A ,
THEOREM: The map D is injectlve.
k
Proof: Suppose % D<j)(gj) =0, ay¢€ ME, ® E¥ ® ')
J=0 .

Then D(k)(gk) ig a differeritial operator of order k-1 .
By the corollary, relative to any other connection

hy D(k)(gk) is a differential operator of order k-1 .

1
Therefore it suffices to show that; for some connection

k . s =
h, » Dy(a,) of order k-1 implies g =0 . Fixa

point xO e X and choose a coordinate neighborhood U of

xO s with coordinate functions xl,,,,,xn « Choosgse a
local cross section ¢ ¢ U - ¢ such that for each x € U ,

pW(X) maps the natural basls of MO into the basils

V a a v &7
‘<5X13000;axn at X . (1f C, 1s the bundle of basis,

this cross section 1s obtainable via the coordilnate cross
section in CO . In general, one must, in fact, enlarge
the bundle C as follows. Let p : C = B , (the bundle
of basis over X) be the bundle map which p, induces.

et C¢' = [(e,b) e ¢ x B, w(c) =w(b)] . C' is a prin-
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cipal bundle over X with group G x G&R(n) and the
graph of §‘ imbeds ¢ as a sub=bundle of ¢! . (' can
be used in place of ¢ for the consideration of this
chapter. In particular, a crogs section of the desired
type exists in C!' .) The cross section § gives a
connection h; on W“l(U) with horizontal space at {(x)
equal to dw(xx) . TFor aﬁy G-module M , the restriction
map £ - £ o { gives an isomorphism of F“(E)wmlU with
g g + U = MO] . Let %alga.a,an}, be the natural dual
base in M% .
implies that le o =

Then the special nature of the cross section

0 3(fo ¢) o D(F o)
E:. axi dxi s D.lf eV mi:il o Xi (X}a’i

L=l
~ Kip o _
and D]ffaw:»: z ag (f‘g’){ ® ag ® 0 @ oy .
i Y i: i e weo i 1 LC
1’ s 1 k.

Let (ék)ilg.aagik(x) = ék(w(x))(ail,,.e,@ik) s an ele-

ment of Hom(M;,M,) . Hence, if f Srj(El)lwml(U) s e

have

(111) (O (2)6) o 1) (x) = Hady, ..., 0 (R

ilgoeag ik'

Now choose f 8o that the support of £ vanishes outside

wml(U) and in a small neighborhood of x , (f o §)(x) =
Xil°°° xikml s My o2 fixed non=zero element of Ml .
Then if L is any differential operator of order lower

than k , (L£)(#(x)) =0 . If Di(a ) 1is of order k-1 ,



Hence gk(W(x)) =0 o geesd,

Remarks: (a) Pormula (III) gives the local repre=-

sentation of a differential operator in terms of partlal

wwwwwwwww A

S A - P ) P S
derivatlves. ; @Q%;‘¢rﬁ%&$ o N T

/
/

////” (b) Since s is graded, and D is injective, any \l\/i//
I

connection makes Diff(El,Eg) into a graded linear space,

leee, Diff(By,E,) = %<@ range of p(#) and j

Dire(

BysBy) = % (D range of p{*) . e shall call the |
<k ]

range of D(k) s differential operators homogeneous of

3‘ order k . This depends upon the connection; of course.

17.5. The symbol of a differential operator.
k
(

Suppose now that d & Diff
kwl(E

EqsE,) but

: (%)
d £ Diff 1oB5) o Then d m&zop (1@) s with a #£0 .

In fact, a, 1s independent of the connection for if

K (2) ko (4) (k)
d= %D'"(a,)= D /(b;) then D a,.-by.)
4=0 A =0 + =t (“k =k
= D(k)(g ) - D(k)(b ) + lower order e Diffk“l(E E,)
l w&k . mk: 1.9 2 ]

Hence, a, = b, .
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Now &, can be interpreted as a bundle map of*

/S (X)% ~> Hom(El,E ) [ Tet S*(X) denote the unit sphere

/ bundle in T*(X) (relative to some Riemannian metric in

/

[ X) and let Els E, be the bundles Ei» E, pulled back

2
to S*(X) relative to the projection of 8%(X) onto X .

T*(X)‘ and hence $*(X) 1is imbedded in sk(k)% as the

: K o (L
diagonal, so that i %le#CK)ﬁz sk(x)* © T“(Hom(El,Eg))

We denote this element of [ {Hom(E. 1,3 )) by o(d) and
call 1t the symbol of d . Ifhe differential operator d
is sald to be elliptic 1f o(d) e ISo(El,EQ) . Note that
dim(El) must equal dim(E,) in order for 4 to be
elliptic« Also, o(d) is independent of the connection

chosen because a,. 1s independent of the connection.

We 1eaveuto the reader the verification that i
|

(1) the composition of differential operators is a dif- E

ferential operator, (ii) c:(dl ) dz) = S(dl) G G(dg) s
A k(

+d are In Diff

172
l,M ) » then o(d +d2) (dl) + 0(d2) .

(ii1) if dys dys 4 MLQMQ) but not

in pLee¥Tt(u

17.6, Some examples. A vector fileld V on X

RN e,
B

covariant differentiation n the direction of V SVJ =

7 \T—y—»&w

/ namel

for any vector bundle E a% In thls case, the operator

~1s D'(a) where a : T(X)* - Hom(E,E) with

-~
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a(d(x)) = ¢(x)(V(x))I , ${x) a dual tangent vector at

| X e if we denote by Dt the covariant derivative in the
direction t , t a tangent vector, then the differential
operator assoclated to V is Dv(x)g x € X « More gene

erally, if ac ['(E, ® Bf @ s)(x)) = '8, ® B @ ()

-

i
H

= ﬁ(Hom(T*(x),Hom(El,Eg)) s and
{tl’°°°’tn} , %@1’“"’¢ﬁ} are a basls and a dual o
basis in Ko X; s then [0 comes Lovee “} Wl | *( iﬁ }
@), = 3al,)
Dla), = % a Dy v
oyt 3ty

This formula is obtalned by interpreting the definition
of a differential operator of first order in terms of a
basis.
Some speclal and geometrically interesting first
forder differential operators arise by imposing a geometric
g structure on X . Let G be a Lie group and let My be
| a fixed real Ge-module of dimension equal to dim X . We
shall call a G-gtructure on X a fixed principal bundle
P on X with structure group G such that P @ My = T(X) ei

Suppose Ml and @yQ are two G-modules and suppose E
a 3 SK(MO)* + Hom (M ’MZ) is a Ge-map. Then a induces [

the constant section a e (1(E, X Bf x s¥(x)) .

H . i A
ST R LI i Oy @ s LSt {);? Gty

SO - {/
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The corresponding differential operator Dk(g) : f”(El)~%fVE
1s sald to be assoclated to the Gestructure. Some exam-

ples of such first order operators are:

(1) The total differential. M; = any Gy-module;

G =@y X GL(n,R); My =R", a G-module with G, acting

trivially on r? and G&(n,R) acting in the usual way

on R" ; M, = Ml X M5 Choose a ¢ Mg > Hom(My ,M;, @ MY )
to be a(d)( =m @ ¢ . Clearly a is a G-map.
The associated differenti@ﬂﬁgPerator '(M) is just the
/25: oE&F?ﬁfferé§£§§£Zji;7 ae ['(B é@ T*(X) @ Ef @ 7(x))
= [ (Hom(T*(X) ® Ey » T#(x) @ E;)) is the identity
transformation. »E%,w%» NT%@(\ & & @M@WT% @ > G

: )
(ii) The ordinary differential on forms. Let X e

be an oriented manifold, B the bundle of bases so that

T T
= gd4(n) , My = R® . Let My = E /\?k(Mé) K c . <fﬁ%@a§;*,§>gy
My, = % /\2k+1(wm) ® ¢ where /Q‘(Mg) ® ¢ denotes
k=0 2 R
the G-module consisting of the homogeneous elements of ffk’% jSﬂf
degree k 1n the complex Grassman algebra over Mg o cjpﬁﬁg
Tet a : Mg -+ Hom (M ,MQ) given by a(¢ ¢ where éw o j\ﬁ§g

’denotes multiplicatlon by ¢ in the Grassman algebraa

hIt is easy to verify that a 1s a Gmmap, It turns out

s

that D‘(i) 1is the ordinary differential mapping forms
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e T 0
s

of even degree into forms of odd degree, if the connection

h 8 _Zero torsion, This follows from the classical

s s

(1i1) The Riemannian case. If % is an orienﬁed

Riemannian manifold we could have taken h to be the
Riemannian connection, P the bundle of frames so that

= 30(n) . Choose Mys Mys and M, as in example (ii).

2
Now, however, Ml and M2 inherlt an inner product from

Mo

then D’( ) a + 6 mapping even forms into odd forms .

and 44 has an adjoint %3 Now let a(4) by - &$ 3

Here ¢ is the adjoint of the differentlal d which
maps odd forms to even. This fact willl become clearer
after a later dilscussion of adjoints of differential oper;n
ators. Note that (a) d+ & is elliptic because a(¢)

:
)

is an isomorphism, ¢ A0 , (B) (4 + 8)° = Laplaoiaﬁ‘éﬁ

even forms. (v) The kernel (cokernel) of d + & is the

spﬁace of harmonic even (odd) forms so that O .
dim kernel D'(a) = dim kernel D'(a)¥* = ’j{(X) s the
Buler characteristic. J

(iv) The Riemannlan case, a different decomposition.

Besides the decomposition of forms into even and odd,
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there is a second decomposition leading to another ellip-

tle differential operator. Suppose n = 24 8o that

24

M., = R » Let * denote the extension to the complex

0
Grassman algebra éf the usual star operator.

Suppose T € Hom(f\(Mg) ® ¢ ,/\(Mg) @ C¢) with

=IO T, Tpexmétﬁﬁﬂ%)éﬁ’c, A?%p@%)<® ¢)
and T, = ip(p+1)m& % , Then ©° =1 , Take M and

M~ to be the +1 and =1 elgenspaces of T . As above,
choose a so that a(d) = &¢ - &3 . A bit of algebra

shows that (1) M; and M, are invariant under G ,

(11) a(d)M") c M 3 (i11) a is a G-map. In fact,

in terms of the vector space isomorphism of \(M,) X ¢
with the Clifford algebra C(MO) &} ¢ exposed in section

7 (p.26), the operator = = Clifford multiplication by

i&w(MO) and a(¢) = Clifford multiplication by ¢ .

Wé obtaln a differential operator D!'(a) =d + §
but which now maps [(ET) » [M(E”) . This oﬁerator is
still elllptic. |

It 1s not hard to compute dim kernel D'(a) -
dim kernel D'(a)* . These kernels will consist of the
harmonic forms inurﬂ(Ei) because (d + 6)2 = Laplacian,
I 4 is even, T, = # and the kernel (ookernel) of
d 4+ § contains the spéce of harmonic 4 forms h%

invariant (anti-invariant) under * . If w is a harmonic
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p-form p # 4 , the map a_ ¢ w ~>w + 7(w) is injJective,

D
Consequently, the complement to hz in dim kernel D'(%)

and the complement to h), in dim kernel D'(a)* have

the same dimension so that dim kernel D'(g) mldim kernel D?@Q%
= aim b} - dim b}, = Hirzebruch index of X . If 4 is

odd, it is easy to see this integer is zero.

This example can be generallzed slightly by using a

complex vector bundle W =P X GCm as coefficients.

Let @ = 80(22) x G4{m,c), My = R

acting trivially on M, . Let M- = b @ o™ with M-

B with @4(m,c)

as in the previous paragraph. The ﬁi are Ge-modules
via the tensor representation of 80(2%) on Mﬁ and
gt(m,c) on ¢™ ., Finally choose a : M% > Hom(ﬁ+,ﬁ) by
a(d) = (&¢ - &3) ® I . a is again a “Gemap and the
corfesponding 6berator D(a) is still elliptic mapping

PED = ME @ u) > E @ u) = ME) .

(v) Hermitian structure. ILet X be a complex

Kaehler manifold of dimension 4 and W a holomorphic
vector bundle of dimension m , with a Hermitian metric.
Then the principal bundle of the complex tangent bundle

and the principal bundle of W gives a principal bundle

it

C& with

P with growp G = U(d) x U(m) . Take M
' [a]

/ 0

V(m) acting trivially on My » Let M =%
: k
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2k+1

4 ;
and M, = £ N (¢™y & ¢™, both G-modules via the
k

tensor action. Now {ﬂ(Ei) , 1=1,2, can be interpreted

as the space of forms of type (0, even) {(O, odd)}

with coefficlents in W =P X 0™ . Choose

G
a(d) = (£¢ - £$) ® I, ¢eMy. Agaln a is a G-map
and the corresponding differential operator

D'(a) =3+ 3 ¢ [V(Ey) = I (B,) where S is the (0,1)

component of exterior differentiation, l.e.,
d

A e

3 =% dEJ
3 823

This stems from the fact that in a Kahler manifold
the Riemannian connection lives in the bundle of complex
bases. Since (D'(g))2 = Taplacian, dim kernel D'(a) =
dim kernel D'(a)¥ = dim harmonic forms of type (0O, even)-
dim harmonic forms of type (0, odd), and this integer
equals the Euler characteristlc of the cohomology of X
wlth coefficlents in the sheaf of germs of holomorphlc

gactions of W .

(vi) Spinor structure. Suppose X 1s an oriented

Riemannian manifold of dimension 24 whose second
Stiefel Whitney class vanighes. Let P be a principal

pundle with G = Spin (24) covering the bundle of frames

of X , gilving X a Spinor structure. Choose MQ = RQ&
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with G acting on My via its image 80(24) . lLet My
and IVI2 be the two half spin irreducible representation
spaces of Spin (2&) « As exposed in section 5 ,

Ml Gp) M2 is a zgégraded irreducible module of the

Clifford algebra C(RQ&) so that the odd elements

¢ (®%%) in o@®®Y) map M, into M, . In fact M, @ M,
can be taken to be a minimal left ideal in the simple

algebra C(RB&) so that C(RQ&) acts on M; @ M,

via left multiplication. TIn particular, Lf t & RoVe CXRZ ),

ﬁml e M2 .  Since M0 has an inner product,; we can
ldentify MO with the dual G-module Mg . Hence we

seek a G-map a : My = Hom(Ml,Mg) . Using the Clifford
multiplication, we can choose a by a(t)(mﬁ=xtmlft8MO,jyl€MI@
It is easy to verify that a 1s a Gmmap; in terms

of an orthonormal base {91,.w.3e2&}a s the corresponding

first order differential operator D'(a) 1s the Dirac

operator:
D(f)mzeieb f

where ey denotes ClLifford multiplication by ey and
f e f“(El) .

Again, this construction can be generalized to in-
clude the case of spinors with coeffilcients in a vector

bundle W .
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(vii) 0dd dimensional Clifford structure. Let X

be an oriented odd dimensional Riemannian manifold, P

the bundle of frames so that again G = S0(24+1) and

. pltl
MO = R

o

=t Mé o Let M, =M, =M be the G-module

1 2
C R2&+l) @ ¢, the subalgebra of even elements of
the complex Clifford algebra. Let {el,e,e,eg£+l be an
oriented orthonormal basis and let w € C(R2{+l) be

vee @ w 1is independent of the choice of basls.

©1 2441 °

Define a : My = Hom(M,M) by a(t)(m) = 1 %wm . Again
a 1is a G-map, and we obtaln the differential operator
D(g) . As in section 7 , M has a natural inner pro=-
duct inherited from MO in which a(t) 1s self-adjoint
and consequently the corresponding differential operator
D(a(a)) 1s skew adjoint. This example can also be

generalized to allow a complex vector bundle W as

coefficlents.

17.7. The formal adjoint of a differentlal operator.

Stokesg! Theorem.

In this section we wish to show that the formal
adjoint L¥* of a differential operator L 1s a differ-
ential operator and that the symbol of L* i1s the adjoint
of the symbol of L . In addition, we show that the ad-
jolints of differential operators assoclated to a G-struce-

ture take a special form.
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So, again, let C Ybe the principal bundle with
group G Ml and M2 G-modules, L a differential
operator from f“(El) >M(E,) . Let fﬁo(E) denote the
cross sections in f%(E) with compact support and lét

w denote axyolume form of X , an oriented manifold.
- 1. : e i

THEOREM.fi There exlsts a unique differential opera-

tor I & (E*) %Iﬂ(«*) such that for every

e 1(5) s g e MEY ) £ - Hw@ @)

O,/ms con sl UL[/:"\
(A)"<Lf9g>ww<fsmg>wwd’rs % c* 4,

ETRERES

7 an n-l form. In particular if f e iﬂo(El) , then

[ <Lf ,g> w= [ &£, L*> 0.

Ay X e X e e v s I i (;\3 o e ([( //( < «««««
T Proof: One can show that the formal adjoint of a |juye & mw37\

differential operator is a differential operator by A%M%%fw‘ﬁx»
S G s \/Zﬁ 4?

IR
ar{z/( lU

using the representation in local coordinates. We pro-
ceed differently in order to obtain, as well, a Stokes' { {
formula for differential operators assoclated to a G- J

oo

/
gtructure. The basic idea we adapt to our sltuatlon is (i m

this: Let V be a vector field on a manifold Y with &Ajj@@@Z

o e

P

volume form o ; let £, g Dbe functions on Y , let
e(V) denote the Lie derivative with respect to V , and

e

1(V) the derivation on forms which iﬁ~%ptefm0r produ

cto
Then ©(V) is a derivatilon anq\\\kmwmmwdi(v + (Vv Mﬂwww;i>

eSS e TR
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16t (o

%’ C;’Ldﬁu)j}/\’»} "f»;\ Qﬂ\i}‘ut)af/((

- T AR RS
A & Cogtin {39 ‘V/ 9’17“?’/9 (' {\%3& {':""‘"{ /)\ 4D ‘.1"(1/{1»(2 .

W

%ﬁ@@zxﬁwx#jﬁ% R 87.

?’V?'(?‘%’@@V‘OQ

: o

mhus ) o) + [0 )ga) = OV )(Egx)
(¥) VE c ga + £ «(Vga + £g 8 (V)a = (di(V)+i(V)d)feo

e

= d{i(V)fga) .

\':Z o
Now @(V)a =ry , r a function on ¥ so that if we %
pe
V¥ = -V « mult. by r , we get

et

g (vaa g - ff(viiq,%,d<i(v)€§glji$ %&méfawwwgmwdg A%%@i@ ?gﬁfiigiééé

N -
"

To apply this to the present setup, we filirst deal
with the special case L =D :K“(El) ¢I”(El @ (X)) ,

D the total differential relative to a fixed conﬁection

h on € . The map ™t of section 17.3 gives vector
¢ A n ool gealerto . . »
n} on ¢ suéh that (1) {@l(c),,@,,En(C)}

is a basls of H, and Tzl(Ej(c)) is the standard

flelds ‘{El,,e.,E

fixed basis {ej} in M, (ii) If f e T‘(El) s then

0
jf‘)(c) ® dﬁ where éj 18 the dual basis  [H—
@ T*(x))*) = M(Er @ T(X)) ,

s d .
in My Ir g e f((®
and < Df(c),glc) > = £¢ Ejf(o)%?j<c)> .
J

The equivaridnce of  and g showsff at this funce-
‘ ™ ’Q v A

pr(c) = 2(E

1

then g = ¥ 8y e
k

tion is constant on the fibres of T/ Let 1 denote

the vertical invariant form of degree = dim (G) , whose

restriction to a fibre is the volume form of G and set

@ =1 AU, ® the Lift of ®w from X . Then applying

* , we find :
. PN ) -
RN L (V> Qo v ol
ﬁ§l‘ R g?/&ﬁ wwéf%/ha .

| A (> Ty
RS 5 e
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s bl Voot - C sy o O
r&é’g»‘,.@ [ERYY " Al / gr’{KS Ay
< Df,g>a=3S<E.f8, >0==-<f,%E.8, >a
j J J j J lj s
(J’{/{ »’ﬁﬂ- f;i_"
- %< fgrjgj > o + d(§ < f@gj > i(Ej)a)
W@& A '}M?l;“ ) {_ﬁ/wﬁ o<

where vy = @(Ej)a . Since du ﬂ\i(E Yo = 0 and
'i(Ej)a = U A i(Ej)a the last term can be written as
woAd(e < fﬁgj > i(EJ)T;) s, 8o that

J .

(#%) < DF,g> ¥ =~< £,00,8,> T =< £,8r.8, > 0

~~

Now let D¥ :Y”(Ef ® 7(x)) - (E
tion D*(g) =D*(f g, & e,) = -

i) be the transforma=
R 2 S0

] By8y = B T8y

that < Df,g > w = < £,D% > = d(T < £.g; > 1(E;)¥) =dr .

J [ﬁ
But 5* is a differential operator. In fact, choose “l
a, € [*(Ef vy, E, @ m™(x) & T(X)) tobe -I ® I

s [ (Ex 6 7 %
and choose a4 & [ (Ll ® By & T*(X)) to be

J J

I ® E:rjdj . Then D¥ = Dl(ii) + DO(QO) . Thus (A)
f’* sy (Slﬁ}v‘( ~
is verified for the basio irst order operator D .

If I, is a differential operator of OUF order,

1.6., 1f L € Hom(El,Eg) s, then I#* is the usual adjoint

in Hom(Eg,Fi) and < Lf,g > = < £,L¥g> =0 , It is

easy to check that if (A) holds for L, and L, , then

o Ly yE = Lg oL

it holds for L, o L, with (L

1 1

qn, PN




Since the composgition of differential operators is a
differential operator, (Ll o LQ)% is a differential

operator. Since any differential operator 1s a linear

combination of compositions of 5k and O'th order opera-

tors, (A) holds in general. f%
o th

Note that for L =D or L of the O order,
support (7) < support (f) . Simllarly, under compo-
sition so that for any L , support (T) ¢ support (f) .
Hence an elementary use of the ordinary Stokes theorem

implies [ < Lf,g > ws= [ < £,I¥*g > w for f g Vb(El)
X X

Uniqueness of L* follows from this last formula.

Let o¥(d) e Hom(Eg, Ei) be the element defined

by o*(d)(d) = o(a)(d)* , ¢ & s*(x) . Since
o(dy o dy) = o(d;) o(dy) , the verification that

o(1#*) = o*(L) reduces to the case L =D ,

In the case of first order differential operators.

assoclated to a G-structure, the formula (A) can be

it

made more expllclt. The examples of section 17.6, were

B RS N

of the type Dl(g) where a was a constant cross sectilon

of (8, @ Bf @ T(x)) = (Hom(T*(X), Hom(E,E;))

coming from a G-map a : Mg - Hom(Ml,Mg) . PFurthermore,

in almost all the examples, X has a Riemannlan struc-

ture, and one can put metrics on IVI:L R M2 invariant



under G

90.

« Since Dl(g) =a oD, for f ¢ {”(El) and

g € f“(Eg) s, we have

< Q:’mgf,g > W= < gfs(@,)*(g) > W= < fsﬁ%(él;%(g)) > w

But D¥e

ﬁ% [») (a)%

esass

+ d(% < fggfg)3> i(EJ)%) o
J ;

~

g% D#

a* ¢+ [ (E%) > (8f @ T(x)) - U(Ef) end
)

= (él o D+ QO) o (a)* with

a; =~I @ Ie (B @ B ® ™E) & 7).

Since (a)* is a constant cross section, B'O(g)% = (g *® IoD

so that D* o (a)* = ay © (a)* @ 1Io D + g © (a)* .

But the map a, o (a)* ® I :F“(E% ® T*(X)) 7
a* ® I 2
£ 0 lrm @t ® ™) S nE)

is Just =-a* where a%* : M§ > Hom (M, M4 ) with

2*(d) = (a(d))*, ¢ & w5 . Thus

(Dl(@,))% = 5* C)i (g;)% = m?m% o 5 e QO (o) (Q,,)* @ “Dl(ﬁ*)+ aom(g)%n

-

We now show that for an appropriate choice of cone-

nection
Let CO
Riemannia
tion, and

be the Li

h and volume element w , 24 equals O .
be the orthonormal frame bundle of the oriented
n space X , let ho be the Riemannian connece-

W the Riemannian volume form. Let ,{wij} (Cu 2D oy B

e algebra valued one forms on C, of the ke



9l.

connection, {wi} the usual tautological 1-forms on

C. > and . = A w,, » whose restriction to the fiber
0 0 1< i
1s the invariant volume form, If v{EgJ E?l7 is the dual

basis to {wij’wj}“ , then

O o~ o
@(EJ)(ior\ W) = Q(Eg)(u ANl Ao f\“h) = 0 for

dw, = % W,.A AW, ; L.e¢., the Riemannian connection has
iy i J
zero torsion,

Let us now return to the bundle ¢ . If the rep-
resentation Po of G on MO is consistent with the
Riemannian structure, l.e., if pO(G) ¢ 80(n) , then
Po induces a projection LI : C o= CO and one can find
a connection h on C » 7, o h = h, . Then relative ?9

0 o 0 @L%ﬂ)
this connection, aWO(E ) = E; » and @(ho)(u A W) =0 .
Hence v, = 0 and &, =0 . [In the examples (iii)=-(vii)

of the previous section, € either equals CO s 18 a

double coverlng of Cy , or is a subbundle of CO] .

We have proved the

I i T S i i S

THEOREM.Z. Let X be an oriented Riemannian manil-
o

fold. Let D (a) be a first order differential opera-

tor: ["(E;) = {"(E,) associated to a G-gtructure P
on X with a a G-map : M > Hom(M;,M,) . Suppose

| there exists a connection h on P with O-forsion.

is
=2

Then D(a)* = -D(a*) where a¥* : M§ - Hom(M?é,M*i)



RN 92,
{/iu [1‘;’{”}&/*(!@{\ 1\(’{'%*5\/( / SN O N 5”{

the map a*(¢) = (a(d))* , ¢ e My . Moreover, if
is the Riemannian volume element; £ ei“(El), g afﬂ(Eg) s

then < D (a)f,g > w + < £,D%(a*)g > v = d (¥ <t 2% (4 )e> 1B )T
J

~ where ¢j is the dual basis to W(E ) . Kwdi>”%%§§g %?éjnzw .

T

et T
IS ISP

Remark: In the examples (ii) (vi) a connection
h with O torsion does exist. Each case can be checked
directly.

Suppose now X 1is a compact Riemannian manifold
with smooth boundary dX . We can apply Stokes theorem
to the above and obtain

[ <pHa)rg > w [ <£,Dlar)g > w=[ n<5, a*(¢ g> (BT,
X a X - ox J J J

Observe, however, that the integrand on the right is in-
dependent of the oriented orthonormal base chosen, and
that because of the metric we can identify the tangent
space with its dual. Choose the first vector W(E ) = T

the inward normal. Then [ i(E )
oX
so that [ %< f,g#(¢j)g > i(EJ)E = [ < f,a¥(r)g > v
g S

where v = i(El)w s the volume element on JX . Con=

O s for j # 1,

ii

sequently, we have the

COROLLARY. Let X Dbe a compact oriented Riemannian \

.//
{manifold with smooth boundary oX , w , the Riemannian

Eivolume element on X , 1 the lnward normal field at
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X s v the induced Riemannlan volume element on dk .

Then [ < DMa)f,g > w+ [ < ,0M(ar)g > w= [ < fax(m)e >v.)
X X X
e WW““WW«W\WM“MWW B g

Remark: If, in addition, we assume that

My =M, = MY = M (with metrics on My Mz) and

a¥ = g , then

[<pMa)re s w+ [ e, a)g s w=1f< o a)(Mhe>v
X X OX

for T a(m) = o(d"(a))(n) .

This situation holds in example (vii) of the pre-

vious sectlon.




L

18. Singular integral operators and the index.

18.1. Some definitions. In the previous chapter

we defined the symbol o(d) of a differential operator
d as an element of Hom(ﬁi,ﬁé) . We shall soon wish to
consider homotopies of symbols. Unfortunately, the set
of symbols of differential operators is not a wide
enough class in which to perform homotopies, for these
symbols restricted to a spherical filber S; come from
polynomial maps on the cotangent space. Wé in fact

want a class of operators whose symbols will be all of
Hom(ﬁi,ﬁé) . The class in question is the class of sing-
ular integral operators and their symbols involve the
functional calculus of Calderon-Zygmund. We need the
extensilon of these ideas to vector bundles. This has
been done recently by R. Seeley in a paper to appear in
the TAMS. We give a resume of what we need of that
theory and refer the reader to this paper for proofs.

We suppose X 18 an oriented Riemannian compact
manifolq:with volume element w 4 M a complex G-module
4wiéhhﬁéfaitian inner product, E =B X, M the vector
bundle assoclated to the principal G-=bundle B . The
C® cross sections ["(E) is a complex pre-Hilbert space

with Hermitian inner product [ < £, > W 50 that
X
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2
Ilflk} = [ < £, > w ., Let HO(E) denote their Hilbert
X ~
apace completion. The total differential D maps

((E) » (B @ m*(X)) and DE maps

‘w(E) - ""“’l(E ® T‘*(X) & (X) ij'(X)) . We define a

ﬁ times

series of pre-Hilbert space norms on [(E) by

=2

2 T o2 X

lHellc= = ||D fll(3 , £ eE) , and let H*(E) denote
r 0

the Hilbert space completion of [T(E) in this norm.

We collect the relevant facts into a theorem.

THEOREM. CopEle

(1) (E) ¢ H(E) r=0,1,2,...

(2) H'(E) ¢ HY(E) . The identity map [(E) - H(E)

is norm decreasing and 1s therefore extendable

to a bounded operator: Hr+l(E) > H(B) . é%mﬂgﬁwy)

(3) §: e > @ (X))

£ [ T I i
atol" ® {s e B U UTERRLE o
oot -4 ;

is a bounded oper=- -

(4) There exists a compact (completely continuous)

self-adjoint operator J on HO(?3 such that

(a) J° = (D¥D + )"t on lﬂ(ﬁ)w%§1 ”
() J: #°(8) » 15 (E) rméjf;é:[

% (c) o777 : HP(E) > HO(E) is 1 -1 ontogn5“~’f~*f‘é
(a) If V 4is a smooth vector field on X ,
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then DyJ is a bounded operator on 1O (§1)

if - d 1is a differential operator of order

r , dJ° 1is a bounded operator on 1O(E) .

Definition. lLet Ml and M2 be two complex
G-modules.. A smooth singular integral operator § 1is a
°(

bounded operator from HO(El) into H Eg) mapping

T“(El) into YW(EQ) such that

(L) 1f ¢, ¥ e ¢°(X) with disjolnt compact support
and m¢ ,‘mw denote the operators multiplication by d
and { respectively, then m¢Sm¢ is a compact operator:
O(E.) which in addition maps (g, - #(E,)

105, ) > 1o(x

2
(2) If ¢ e ¢®(X) with support in a small coordin-

o

ate neighborhood U , then m¢8m¢ = R+ S where R is

a compact operator of HO(El) > HO(EQ) mapping

Hr(El) > Hr+1(E2) , and § is a singular integral opera-

tor as usually defined on Euclidean space. That is, in

restricting our attention to U , the vector bundles

are trivlal bundles so that if the support of f < U ,

then f and Sf|, are dim(M;) and dim(M,) tuples

of functions. And

(S£) (%) = a(x)(£(x)) + 1im [ h(x,x=y)f(y)dy, x € U .
' € >0 g(x,y)>e '

Here a 1s a smooth mapping of U into dim(Mg) % dim(Ml)
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matrices, and h(x,z) 1s a map from T*(U) - U into

dim(Mg) X dim(Ml) matrices which is homogeneous of
k

degree -n in 2z and for which Qw% s k=0;1,... are
oz

smooth mappings for ||zl > 1 .

Definition. A singular integral operator is an )

#5

operator in the norm closure of the linear space of /f

o

smooth singular integral operators. e

I
v, A

/;ﬁﬁ%w%hus tﬁé set of singular integral operators B8 1is

'a linear space of bounded operators: HO(Ml) > HO(Mg)
~closed in the norm topology. It ls easy to see that

it contains the compact operatorsand also [ (Hom(E,,E,)) .

If 8 1is a smooth singular integral operator, one can

define its symhol o(8) e F"(Hom(ﬁi,ﬁé)) where

0(8)(x,4) = a(x) + the Fourler transform in the z=var-
iable of hlg, . This turns out to be independent of the

local representation of § . Furthermore, the symbol

can be extended to all of AA? .

~

THEOREM. Let Fg(Hom(ﬁi,Eg)) denote the continu-

~

ous cross sectlong of the vector bundle Hom(El,ﬁé)

in the uniform norm. Then (i) the symbol o : ig a

ey

continuous linear map of 3 onto o

kernel 1s the set of compact operators. (ii) If d is

(Hom(ﬁi,ﬁé)) whose

a differential operator of order r , then d = SJ°¥, S
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a smooth singular integral operator [as maps from
1" (5 ) > O
s e X(B,By) , then S* e A(B5,E%) and o(s*) = o(s)*

where o(8)*(x,4) = (9(8)(x,4)% . (1v) If S e Z(B.E,)
s> then TS e 4 (B ,E

B,)1 and o(8) = o(d) . (iii) If

and T € Jg(EE,E and

3) 3)
a(Ts) = o(T)u(S) .

Definition. A singular integral operator § ig

elliptic if o(S)(x,¢) 1s 1 - 1 onto for all
(x,9) & 8%(X) , 1.e., o(S) e (180 ﬁi,ﬁé))g

18.2. The Index. If d :["(E;) »T'(B,) 1is an
elliptic differential operator of order r , then as a
mapping from Hr(El) > HO(Eg) 1t has finite dimensional
kernel, closed range, and finlte dimensional cokernel.
The regularity theorems show that, as a mapping from
m(E,) é{“(EE) s 4 has finite dimensional kernel and
cokernel and dim(ker(d)), dim(cok(d)) are independent
of which domain and range spaces are chosen. We define
the index of d, 1(d) = dim ker (d) - dim cok (d) . It
is the alm of these notes to find an explicit formula
for i(d) in topologlcal terms involving o(d) .

1€ 8 e J(8.E,) is elliptic, then § : HO(R) » ()
also has finite dimensional kernel and cokernel, and a
closed range. Again, we define the index of § ,

1(s) = dim ker(S) - dim cok(S) = dim(ker S) ~ dim(ker S%) ,



We collect the properties of the index in the

THEOREM. (1) If d is an elliptic differential

operator of order r , and d = 8J°° , as in the pre-

vious theorem, then i(d) = i(8) .

(11) i(s*) = =i(8) , S elliptic.

(111) If o(sl) = 0(8,) , with Sy and S, ellip-

5)
tic singular Integral operators, then

1(81) = i(SE) s l.e., the index depends only

on the symbol.

(iv) fThe map o(S) » 1(3) 4is a continuous integer

valued functilon on (ﬂg(Hom(ﬁi,ﬁé)) s the none

singular cross-sections of F%(Hom(ﬁi,ﬁé)) .

(v) If S e _/g(El,Ee) and Te J (BysEq)  are
elliptic, then TS is elllptic, and

1(rs) = i(T) + 1i(8)

(vi) I se J(B,E,) and T e ,g(EB,Eu) are
elliptic, then S @ Te S (B & By B, @ Ey)
is elliptic, and 1(s @ T) = i(8) + 1(7) .

We are now ready to tie up the analytic facts con-

cerning the symbol and index with the topology of the

symbol. Let B(X) denote the unit ball in the cotangent

bundle and p the projection: B(X) » X . Using the
notation of section 8, every o € C¥ Hom(ﬁi,ﬁé) gives
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an element ¢(o) : 0 = p*(El) S p*(E,) » O of
o, (B(x), (X)) . "' “

COROLLARY. If ¢(9) is isomorphic to ¢(o') ,

then 1i(o) = 1(c') .

Proof. ¢(o) isomorphic to ¢(o') means

0 =+ p*(E;) > pﬁ(Eg) + 0
| o Lat
' O'
0 > p¥(E!) = p*(BE!') » O
1 2
where o and a' are isomorphisms on B(X) . Let ¢
denote the O cross-section: X = B(X) . Then the
symbols Q‘S*(X) and a'ls*<X) are homotopic to the
symbols o o c o p and a''e c o p respectively.
But o o ¢ op (a' o ¢c o p) 1s a nonsingular element
of T”(Hom(ElgEg)) and therefore an invertible O°D
order differential operator. Its index 1s zero. But
g (x) is homotoplc to a o ¢ o p 80 by (iv) of
the previous theorem, i(a!s%(x)) = 0 . Hence

10) = (ot g (y)® @' © Ajgen)) = 2O gu(x))

+1(ot) + i(als%(x)) = 1(0'),

Using this corollary, we can extend the index to be

an integer valued function on Cl(B(X),s%(X)) . For,
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since B(X) 1s homotoplc to X , every element
E € Cl(B(X),S*(X)) is isomorphic to d(v) for some
o€ fﬁ%(ﬂom(ﬁi,gé)), Define 1(E) = i(¢) . The cor-

ollary“shows 1(E) is well defined.

COROLLARY. The index 1 is a map of Cy(B(X),s*(X

into the integers such that i1(E @ F) = 1(B) + 1(F)

and 1(E) = 1(F) if E ~F . Hence the index induces

L)

a homomorphism 1 of the semigroup Ll(B(X),S*(X))

into the integers.

Proof. L(E®F) = 1(E) + 1(F) by (v) of the pre-
vious theorem. If E ig isomorphic to F , then
1(E) = 1(F) by the previous corollary. If
I
PO~ Pl > P2
(B(x),% (X)) , then 1(P) =0 , for P =¢(c) , 0 =1

<+ 0 is an elementary sequence in
¢y
Thus if E ~F , then 1(8) = 1(F) because this equi-
valence 1s generated by isomorphisms and the addition
of elementary sequences.

Now, by Proposition 10.1, there exists a unlque
natural lsomorphism ) : Ll(B(X),S%(X)) > K(B(X),8% (X))
Hence, we can view Y = 1o xﬁl as a homomorphism of
the abelian group K(B(X),S$*(X)) into the integers.

We now use Theorem 13.4 with V = T%(X) . Then
g* (B(X),8%(Xx)) ® o is a free K*(X) ® 0 module gener=-

ated by an element v , dim X = 24 . Since

))

&

8
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v £ K(B(X),s* (X)) , this theorem implies that
K(B(X),S%(X)) ® Q is a free K(X) ® Q module generated
by Vv . But the definltion v [see section 7] shows
that v = - %od(o(d)) where o(d) is the symbol of
the operator given in example (iv) of 17.6. BExtend

Y %o a homomorphism: K(B(X),S*(Xj) ® g »Q and let
o, denote the symbol o(d) of 17.6 (iv) with the
vector bundle W as coefficlents. We have the

COROLLARY. Let X be a compact oriented manifold

of even dimension. If 1 1s a homomorphism:

K(B(X),s%(x)) ® @ - @ such that
oo X o ¢(cow) = Yo Xo d(gow) s for all complex vector

bundles W , then W = Yy ,
.. This corollary shows that to find a formula for the
index, it suffices to find one which agrees with the index on

the basgic flrst order operators whose symbols are GOW .

18.3. Cobordism. So far we have kept the base
manifold X fixed. We now vary X and congider the
set ¥ of pairs (X,W) , X a compact oriented even
dimensional manifold aﬁd W a complex vector bundle over
X « To emphasize the dependence on X , we will denote
o by OO<X,W) and we let X « W denote the element
fxﬁ>¢(oo(x,w)) of K(B(X),s*(x)) .
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THREOREM: '\((Xl X Xy oUWy ® Wa) = y(xl . wl)v(xg . wg)o

Proof: Let dim X« = 2k i=1,2. Now the symbol

i 3
GO(X:W) arises from the G-map

2k + / -
ay, * RT > Hom(MzK ® W, My & W) of section
17.6 (iv) . Here agk(t) = ¢lifford multiplication
by t & I . Because Rg(k1+k2) = R°¥Ll @ R°¥2 ang

because of the multiplicative properties of Clifford

modules exposed in sections 6 and 12, one has

+ . + o furt
My (g iey) @ Wy @ o= (G @ ) @ iy, ® W) @

=

(Mgkl % wl) @ (MEKE{}Q wg) and Mg(kl+k2) ® W, ® W,

s

= (M. ® w,) ® (i W,) @ (M, ®
( 2k, ) ® 21:2@9 2) @ 2k, ) ® ke
a <t1) ® I -I® agkz(tg)*

I ® agkz(te) aekl(tl)* ® Ly

(t

® T eHom(M, ® w, ® M. ® u,,
L 2k 1 ok 2

1 2

where a

2k l)

+ o
k) @ w, ® Mek2 ® w,) , etc.. Passing to the

symbols, one gets

M

o(XysWy) @ I wT @0"’6(X2,W2)
OO(Xlx Xy Wy @ wg) =

I® o,(X5.45) 095( 1MW) 2
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Now UO(X,W) is the symbol of an elliptic {lrst order

differential operator d(X,W) so that d(Xl x KyWy @ Wg)

j
b

!d(xl;wl) ® T T ® d%(xgjwéﬁ
has the same symbol as d' =

I®dmywy dﬁ@f%)®1/

(In fact, if the product Riemannian metric were chosen

on Xl X X2 and the Rlemannian connection used through-
out, these two first order differential operators are
equal.) Hence Y(X;x X, * W, @ W) =

index d(Xl>< xg,wl & Wg) = index d' . We now apply
section 13 of Seeley (developed to handle this situation).
In his notation, d(Xi,Wi) i=1,2 are elliptic A
operators of order 1 and d!' = d(Xlgwl) d(Xe,we)
go that by theorem 13.2,

index d!' = index d(Xl,w ¢ index d(Xe,W Hence

2)
» index d(X,,W

1)
Y(xl x Xn,Wy ® 1u2) = index d(xl,w

y(xl,wl)v{xg,wg) .

=3

1) 2)

Definition. (X,W) ~ O if there exists a compact

manifold Y and vector bundle ﬁ/ over Y guch that

Y =X and Wy = .

THEOREM, If (X,W) ~ 0 , then Y(X,W) =0 .
Proof. Choose (Y,W) Y oriented so that Y = X

and W]X = W ., Consider the differential operator L
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of example 17.6 (vii) . Let C?&+1(Y) denote the

complex Clifford vector bundle associated to the

SO0(24+1) module C(RQ{*l) ® ¢ . Similarly, let

Cg&+l(Y) be the subbundle of even elements so that
O hgead O o, s

Lot (Chpyq (¥) © W) - (cgﬂmjy) ® W) .

We apply the Stokes formula of section 17.7 and

fi

4
find < If,g > + < £Lg >y =1 A(mw @ I)f,g >y

Y

L .
= w4 (W' & I)fsg >X
where ¥ 1s the inward unit normal and
t e i oy s & @ = O O »
W Mw=ej reyy & Cg&(X) c 02&+1(YHX . But

(i&w' & I)2 =7 @ I so that over each point of X ,
08£+1(YJ ® .WWX splits into the orthogonal vector

bundles Og&+l(Yﬁ ® W and C;{+1(Y) ® W, the

+ 1 elgenspaces of 1 H ® I . Let BT denote the
projection of T‘(Cg¢+1(Y) @ ﬁ)lx onto [( %&+16Q QQ{E)X .
Consider now the two boundary value probleuus (IUBJ)

and (L,B") . These are coercive boundary value prob-

lems in the sense of Agmen-Douglas-Nirenberg II (to appear).
See also Agranovic-Dynin [Soviet Math. vol 3 %53(1962)

pp. 1320-1323] and HYrmander [Linear Partial Diff.
Operators, Chap. X]. We shall not go into the general

definition here, but in our case for an operator of

order 1 the general definition reduces to thig: At
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any point x in 3Y , let t be a unit vector of T(3Y) ,
1 be the inward normal in T(JY) , and let pt(x)

denote the polynomial of degree =2k = dlm(08&+l(Y) ® W)
which is determinant of (o(L)(t) + ro(L)(v1)) . Since

I, is elliptic pt(k) has no ‘beal roots and

0 i B A -
02&+1(Y) ® Wlx splits into two subspaces Mt and Mt

of aim k spanned by bthe generalized elgenvectors of
o(LY(t) + Ao(L) (1) corresponding to eigenvalues A in
the upper and lower halfplanes respectively. A boundary
value problem (L,B) 1s coercive (elliptic) if
IBakamﬂCS{+l( ®'15Y,U)L U a vector bundle of dim k,
and at each x & dY , M: n (null space of B)= (0) for
all t e T(dY) .

In our specilal situation
o(L)(t) + r(L)(n) = i&+1(tw “ ') ® I . It is easy
to &erify that the eigenvalues are + 1 and that
M;; = f(w =+ iwt)og{“(y) @ Qﬂ Since

wh(tw + iw') = =(tw - dw!' )w‘ s w‘(Mt) = Mt and hence

M (\(C;&+ (v) ® w)~ (0) . Thus the boundary value
problems (L,Bi) are ooércive.

We now follow Agranovicz-Dynin. The pairs (L,Bi)
define linear operators from

1,0 ~ 0,0 P ~
H"(Chpq (Y) ® W) > H (02&+1(Y) ® W) + HZ(C a&+1( ® WIaY)
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4 + =
by (L,B=)f = (Lf,B~f) . Here the %-space HZ(E), E
a vector bundle on X is defined in terms of J * s
the positive square root of D¥D + I (see 18.1), If

g e ME) , define ||g,H§ =< Jle,e > . H%(E) is the
completion of 1 (E) in ims norm and H%(E) < HO(E) .
Slnce the boundary value problems, Bi~, are coercive,
the operators (L,Bi) have finite dimensional kernel
and cokernel and therefore index (L,Bt) exists.

Now there exists a well-defined singular integral
?(c;’_’mw) @ ile}Y) > wa;g,ﬂ(y) © W)
which maps HZ(Ch, . (Y) © Wlyy) > B2 (054 (¥) © W yy)

operator S : H

such that index (L,B”) = index & + index (L,B+) .
Furthermore, the symboi of S can be computed as follows,
Since both the null spaces of Bt' are complementary

to M% s the projection of MZ on the ranges

+ ~ +
N e > (] £ b A e 3 de Pl
Coy 1(Y) ® WISY are isomorphisms a” . Then it turns

4

-y
out that o(g)(t) = at(at) L' I our case, because

Qg = e Lo L, it is easy to show that

(-1t T X 2 1T) a: - oa",;’ so that o(8)(t) = -1t @ T .

We now wish to relate o(S) with the symbol we

are interested in, namely o,(X,W) . By propeosition 5.2,

24 R2%+1

the map 1 : R -5 vields an jaomorphism
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¢ Coy 02®+l where d(uo+u1) =ul e
i 24

1 .
u € Cphy s 1=0,1 and e2&+le R“™ . Using the unit

2&+lul with

oo

normal 77 along X , we have the isomorphism d ® I

. 0 o~
of vector bundles C,.(X) ®W with CQ&+1(Y) ® WIX .
This induces an lsomorphism

5 7 (0 (x) @) > [ (054, () @ 11) by

& 4
df = (¢ ® I) o f . 'The operator 1 w' ®I on

Cg&+l(Y) ®'ﬁlx transforms into

(4™ ® 1) (1 Yoo I)(d ® 1) = 1% © 1 on CpolX) @ W

because w' € Cgﬁ(X) . Let CW L(X) ® W denote the +
eigenspaces of 1% @ T on Czé(x) ® W so that

.+- o~
¢~ : cgﬁ(x) QW - 02£+l( v) @ Wlay are isomorphisms,

where ¢w = ¢ ® I‘ + ) . The singular integral
) & W

ol

operator 8 induces on § = (cb'“)%l o g odt and

a(8)(t) = (dw) (6)(t)d it ® I . Note, however, that
the bundles cg&(x) @ W are exactly those that occur

in example (iv) of 17.6 and the differential operator

of that example has symbol O(X Ww)(t) =5t @1,
so that o(8) = -o,(X,W) . Since 1(8) = 1(5) , to
prove that vY(X,W) = 0 , we must show that i(S) =0 .
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Since 1(S) = index (L,B”) - index (L,BT) , it suffices
+
to show that index (L,B~) = 0 .

We first note that the kernel of
+ 1,0 i~
(L,B~) = [f ¢ H (c2&+1(y) ®W) ;3 Lf =0 and flx =0 1 .
+
For f & kernel of (L,B~) means that Lf = 0 and

Biflx =0 . By Stokes, B¥f =0 so that f|, =0 . Let

us now examine the orthogonal complement of the range of

(LaB+) , namely R' = [g + a; < Lf,g >y < B+f[X, a > =0,
j 2
°(

0 ™~y . +- ~
g =H (Coyq (Y) @W) , a e HZ(C,,,,(Y) © le) . However,

because of the regularity of the coercive problem,
g+ a e R implies g € (ﬂ(Cg£+l(Y) ® W) and

4 ~ . .
a & [M(Chpyq (Y) @ WIX) . See H8rmander, Linear Partial
Differential Operators, p. 273. Hence by Stokes, for
all f with compact support, g + a € R+ implies

< f,Lg >, =0 , leeey, Lg = O . Congequently, for any

Y
1,.,0 ~ ‘
(CQMl(Y) @ W) s < Lfyg >Y + < L,Leg >

f e H =< Lf,g >

Y

A - + +
=1 (< B fIX, glx >y = < B flx, glx >p) == <B flys 2 >y s

" 4wk
or < B le, By >y = < B+flx, glx - 1777% >, . Since

4~ ~
one can extend any element of r1(C5Q+l(Y) ® W!X) to an
0 ~ -
element of F“(02%+1(Y} ® W) , we conclude, B glx =0

and a = ;% J
i

j

(B+g)|X . But Lg =0 and B"g{X = 0
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i

implies B+ng = (0 80 that a 0 « Hence
R = [g+0; Lg =0 and glx = 0] and
gim R* = dim kernel of (L,B7) . Hence index (L,B") = 0 ;
similarly for (L,B") . g.e.d.

We remark that our original proof of this theorem
required analyticity. It ran as follows. The unique-
negs of the Cauchy problem shows that [Lf = O ; le = 0]=(0).
Hence, by the argument of the previous paragraph, Rt = 0 ;
in particular, for any a & ['( %4+1(Y) ) WIX) s there
exists an f € fﬂ(cg&+l(Y) ®W) 3 Lf =0 and Bof = a .

Now, for all f e r”(Cg&+l(Y) ®W) with LEf =0 ,
consider'the operator T : B+f > B f . This operator
is well defined by Stokes' theorem which in fact shows
that || BTf|l = ||B"f|]s 1.e., T is an isometry where
defined. The previous paragraph shows that T has
dense domaln andlrahge and hence can be extended to

a unltary operator of HO(CZ&+1(Y) ® ﬁlX) ~> HO(C;&+1(Y) & ﬁwx)a

By using the estimates in Agmen-Douglag-Nirenberg
one can show directly that T 1s a singular integral
operator and o(T) = OO(X,W) . Since T is unitary,
index T = 0 , so that v(X,W) =20 .

Actually, for the proof of the index formula, the

analytlc case suffices for one can show that X 1s
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diffeomorphic to an analytlc manifold Xl s the boundary

of an analytic marnifold Yl and one find analytic

1 ~l

vector bundles W and W equivalent to W and W %

One final observation before we discuss the for-
mula for the index. If we denote by Xl + Xg the dis-
joint union of two compact oriented even dimensional
T

manifolds and W the complex vector bundle which

1 2
is Wi on Xi s then clearly the index can be extended

to satisfy v(X; + Xy, Wy + Wy) = y(xl,wl) + v (XpaW,)
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19.1. Statement of the theorem. In what follows

considerable care has to be taken with sign conventions,
orlentation etc. We hope that our choices of sign are
the right ones!

Let X be a compact oriented manifold. Then its
tangent bundle T(X) has an induced orientation. A

choice of metric gives an isomorphism
T(X) = T (%)

and hence an induced orientation on T*(X) . This orien-
tation does not depend on the choice of metric. We

shall always take this orlentation® of T (x) . If

B(X), S(X) denote the unit ball and unit sphere bundle
in T*(X) , then the orientation of T*(X) defines a

fundamental class:

Us=1U, ¢ H

H* (X;Q) ~ H*(B(X), S(X) ; Q)

is given by ,(x) = Ux , so that U = ¥, (1) .
The Chern character glves an isomorphism

ch: K¥(B(X), S(X)) @ @ » u*(B(X), S(X); Q) .

1There are good reasons for choosing another
"natural orientation of T*(X) s which would simplify
signs later, but we shall stick to the oimplc orienta-

tion given here. (FWQWMUb%iQ@Q<ﬂN7ZUM\ gymMgﬁ; #muxﬁl
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Now 1f 8 is an elliptic operator with symbol o(3) ,
then we get an element

do(s) & L, (B(x), 8(x))

1 (
and then an element

xdo(S) e K(B(X), S(x))

We define our bhasic cohomologilcal invariant c¢ch S e H*(X;Q)
by the formula
ch 8 = g(n) U,

where n = dim X andl

1 or 2 mod L

i

g(n) =+ 1 if n

= - ] if n=0or 3 modl,

i

or e(n) = (wl)p(n) with p(n) = 3n(n+tl) + 1 .

We note the multiplicative property of c¢h S

PROPOSITION 1. Let S, T be elliptic operators

order r > 0 on X, Y respectively, so that S5 4T

o 15

an elllptic operator on X » Y . Then we have

ch(8# T) =ch 8 * ¢ch T
Proof: By (11.2) we have
Xo(s 2 T) = = 2do(sx T)* = = xdo(s) + Ado(T)

lThis sign factor amounts of course to taking a new
orientation of T*(X) . One minus sign is naturally
accounted for by the fact that our definition of - was
designed for complexes with decreasing degrees:
TEy T Epa
whereas the definition of the index 1s more appropriate
for increasing degrees.
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Hence, putting dim X =k, dim Y = 4 and Z = X %X Y ,
eh xdo(s # 1) = = (U (1) ™ xdo(s) 1 (U, ()™ xdo(m)]

= =~ g(k) e(4) [UX ch S UY * ¢ch T}

= = e(k) e(4)(-1)¥%u, ch S + ch 1] .

7
Then
ch(3 % T) =« e(k + ) e(k) 8(&)(ml)k& ch 8§ » ch T
=ch & « ch T ,

il

since p(k+t) + p(k) + p(4) = k(k+l) + 4(4+1) + ki + 3

kd + 1 mod 2 .

i

Recall next that for any complex vector bundle *
the Todd class <(r) is a polynomial in the Chern

classes of ¢ defined by

w(r) 373

where the Chern classes ck(ﬁ) are as usual the ele~
mentary symmetric functions in the Xy oo For a differen-
tial manifold X we then define <(X) by

w{x) - w{ely) &, C) .
Thus <(X) 1s a polynomial in the Pontra,..:. ,1asses

of X , given by

(X)) =T ——mp— 1T

{ lee ®i 1 1-eXi
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where the Pontrjagin classes pk(x) are the elementary

symmetric functions in the xig . Note that we can

also write
X “X
e 1/2 - e i/g

T(X) =77 (
L

Finally, for any a € H¥(X; Q), we denote by al[X] the
value of the top-dimensional component of a on the
fundamental class of X .

Now we are in a position to state the main theorem.

INDEX THEOREM: Let S be an elliptic operator on

the compact ordented manifold X . Then its index is

gilven by the formula:

index (8) = {ch S - T(X)} [x1 .

We shall say that the index theovewm holds for X
1f 41t holds for all elliptic operators on X . “len from
Proposition 1 and that fact that

T(X % ¥Y) = v(xX)c(¥)

we deduce

PROPOSITION 2. Suppose the index theorem holds

for X x Y and for Y , and suppose further that there

exists an elliptic operator on Y wilth non-zero index.

Then the index theorem holds for X .
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19.2., Some special cases. (a) Suppose dim X = 24

and let S be the differential operator

d -+ 5 : even forms = odd forms

of Section (17.2) Ex. (iii). Then as observed in (17.2)

we have
index § = ;;(wl)qbq = Fuler number of X

where bq is the g-~th Betti number of X . On the
other hand using Theorem (1l4.1) and the formula for the

characters of the exterior powers we get

4 X, u

—-e L - 1

oh s = e(24) » (-1) Tr {me *)(l-e *)
i=1 Ky

where pk(X) are the elementary symmetric functions of
4
the xi2 and  TT x, 1s the Euler class E(X) of X .
Hence
&
ch § = (-1)Me(20)EX) = B(X) .
Since 1(X) = 1 + higher terms we obtain

en s v ow(x) )y [x] = E(X) [x] .

But E(X) [X] is the Euler number of X , so that the

index theorem is verified in this case.

(b) Suppose dim X = 4k and let S Dbe the basic dif=-
ferentlal operator

a+ 6 7 (ET) »T(E)
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of (17.2) Ex. (iv). Then as pointed out there we have
Index S = Hirzebruch index of X .
Ag this case 1s important we fill in the details here.

K(x; R) with u¥(x) ,

By Hodge's theorem we ildentify H
the space of harmonic 2k-forms. The Hirzebruch index
is defined to be the index (number of + elements minus
the number of - elements in the diagonal form) of the

2k(

symmetric bilinear form on H " (X; R) given by

£(a,B) =aplx].

In terms of harmonic forms this becomes

f(aaﬁ’)mf a ~ B .
X
On the other hand the positive definite inner product

HQK(

on X) 1s given by

<aB>=[ o ~n*3 .,

X
It follows that
index f = dim HZX - aim H2K
where Hik and ka are the + l-elgenspaces of *

acting on Hek o

On the other hand using (14.2) and taking careful

account of all the sign convectionsl we get

YThe element v of (L4.2) is equal to - xdo(8),
and &(4k) = -1 ,
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2k Xy, Mxi
ch 8 = 77 (e )
=1

Xy ?

where the x, have the same significance as in (a) .

Thus
ok '
ech 8 ¢« ¢(X) = -7 %1 /%anh xy/2
el ‘
ok 21/
- 5 -
551, tanklxi/g

X
o 2k 1/

= D R R —
g =], tanrlxi/g

Recall next that the Hirzebruch Legenus is defined by

2k xi
L(X) = (i;& EgﬁTriz) [x1 .

Thus we get
ch 5 « o(x) [x] =27 . 27 (%) = 1(x) .

Hence our index theorem reduces in this special case to
the Hirzebruch index theorem.

(¢) X 1is the circle and 8 1is a singular integral
operator. To be guite precise on sign°conventions we
take X as the cirecle |Z| =1 in the complex plane
with its standard orientation, and we consider the inte-

gral operator S8 acting on functions
b(z ¢
(s0)(2) = a(z) 4(=) - 22) p  4lE) o

lcl=1
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Here af(z) and b(z) are continuous functions on X
such that a(z)2 - b(z)2 is never zero. Then according
to a classical formula of F. Noether (cf. Mihlin
"Singular Integral Equations", A.M.S. Translations (1)
Vol. 10) we have

index § = 5%? f d log :g
|¢l=1
To compute o0(38) let us write S = al + bl where I
is the identlity operator. Now pubtting
¢ = exp(is)hz = exp(it) and d¢(z) = {(t) we get

i

1 2T 3 exp(is) 0(s) ds
(L) () i exp(is) = exp(it)
g=0
80 that L = H + X , where K 1is a compact operator

and H 1s defined by

too . fo (defined as a
(HY)(t) = #T [ ﬁéﬁzwgi principal value)
= G0

Now by definition of the symbol we have

o(H)(e) = 2=t [ exp(iez) §&
ety |z]>e
= sgn (&)

and so o(L)(e) = sgn(g) , where F* 1s the coordinate

in the cotangent bundle of X given by the isomorphism

™ (X) ¥ T(X) ¥ X x R
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(using the natural orientations and metric). Thus o(3)

1

is the function on X x R given by

0(8)(z,8) = a(z) + b(z) sgn(e) .

To compute we shall simplify matters and consider only

the special case in which

a(z) =3(z + 1) b(z) = 2(z - 1)

i a(z) + b(z) _ .

80 that alz) = plE) T2 ¢ and hence
index 8 =1 .

Let us now go through the construction of Section 10
for the difference bundle. We find that the bundle #
off Section 10 is obtained from the trivial bundle on
X %X [-1, +1] by the identification

(z, =1, u) > (z, +1, zu.)

Now let D denote the unit disc |w| < 1 in ¢ and
define maps

£.8 X x [0, #41] » D (41}

o

by f,(z,2) = (+gz, +1) . Let P denote the 2-sphere
obtained by identifylng D x {-1} with D x {+1} along
thelr boundaries and let ¥ be obtained from P by
further identifying {0} x (-1} with 40} X {+1} , so

that we have a map p : P - Y . Then the maps f+

s

induce a map
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£oe X o [«1, +11/X x {i;} > ¥,

and we have

where L is the bundle on P obtained from the trivial

bundle on D x 4+l} by the identification
(wy, =1, u) = (w, +1, wu) .

If we orient P so that D x {+1} < P has the nate
ural complex orientatlon then L 1s the posltive gener-
ating bundle i.e.,

cl(L) = + generator of Hg(PlZ)
[in fact the best definition of the positive generator

of K(D, dD) is that it is ¥ ¢(E) where
W Y
E=(0-+>1->1-=0)c¢ al(D, D)1 .

If we now orient

B(X)/s(x) = X % [«1, +11/% x <{i}}

using the orientation coming from that of X by the
Thom isomorphism (i.e., orienting the product as
[~1, +1] X X with the product orientation) then we see

that 1§ preserves orientation. Hence finally we obtain

ch(8) = 45" oh(%do(8)) = g

where g € Hl(X,Z) is the positive generator.
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Since «(X) = 1 +trivially we see that
{eh(s) - (X)) [x] =1
8o that the index theorem holds in this case for this

particular operator. In fact, for X = S1 s we have

K(B(x), s(x)) 22,

and since both index 8 and ch(S)[X] are homomor-
phisms
K(B(x), s(x)) »~aq,

the index theorem follows for all operators on Sl o

Alternatively wilth a little more work we could go through
the above verification in the general case.,

From the examples (a) and (b) applied to the
cage X = SQL we can deduce

PROPOSITION 1. The index theorem holds for every

s,
elliptic operator on S§°

Proof: As shown in Section 18 the index 1s essen-

tially a homomorphism

K(B(X), s(x)) »2 .

Now when X = $2% the group K(B(X), 8(X)) = k(x) is
free on two generators. Thus it 1s suffioient to know
that the index theorem holds for any two operators

8y» 8, for which c¢h S, and ch S, generate H*(X; Q) .

Taking 8, and 8, as operators of examples (a) anda (b)
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we see (using (14.2)) that

]

ch(s E(X) = 2g

1)
ch(Sg) = 2% + constant 8
where g generates HEL(X) . But we saw in (a) and
(b) that the index theorem held for these two operators.
Hence 1t holds in general.
From Ex. (c) and Prop. 2 of (19.1) (with ¥ = g%)
we deduce

PROPOSITION 2. If the index theorem holds for all

even~dimensional manifolds then 1t holds for all mani-

folds.

19.3. More on cobordism. In this sectlon we recall

some of the results of the generalized cobordism theory
of Connor and Floyd (Ergebnisse 1963).

We consider pairs (X,W) where X 18 a compact
orlented differentlable n-manifold and W 1is a complex
vector bundle of dimension k . The notion of cobordilsm
for such pairs was explalned in Section (18,3), The
cobordism group we get is denoted by ﬁn(k) . Character-
istic Pontrjagin~Chern numbers of (X,W) may be defined

as follows. Let
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be monomials in the Pontrjagin classes of X and the
Chern classes of W . Then 1if
oS .
b Tog + 2 /ﬂ.ﬁsj n
we can define the characteristic number

pacﬁ[x] 5

It is clear that these are cobordism lnvariants. Con-
versely Conner and Floyd have proved:

PROPOSITION 1. Suppose that <Xl’ Wl) and (X?Q Wg)

have the same Pontrjagin-Chern numbers. Then

(Xla Wl) = (Xes Wg)

is a torsion element of the cobordlsm group, l.e., for

some integer m § O

m(Xl, wl) ~ m(Xg, wg) .

We shall now need some lemmas concerning character-
istic numbers of particular manifolds and bundles. We
shall regard the set of Pontrjagin numbers in a given
dimension 4n as a vector with components da s where
a runs over all partitions of n and call i; the

Pontrjagin vector. Similarly for Chern numbers.

TEMMA 1. Consilder the manlfolds

Por = 7T Pox, (0) k= (gaeennle)

over all partitions k of n . Then the Pontrjagln
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vectors of these manifolds are linearly independent.

Thig is proved in Hirzebruch's book (Ergebnisse 1963

pp. 78-79).
LEMMA 2. Let g, denote the generating vector

bundle on gk (so that ck(ék) = g 4 0) . Consider

r . '
on 876 = 7 ¢, k= (k,....k,) the bundle
=
r
g = @ w¥ g . where w,: SQK > Sgki is the projection.
£ qye 1 7Ky e ol

Then, ags k runs over all partitions of n , the chern

vectors of the £ are linearly independent.

Proof: Since C(ak«) =1+ g, we deduce
1 i

r
c(ak) = 77 (1 + gki) . Let us now write each partittion

. 3

k = (kyseeesk,) with k; <k, < *°+ <k, and order

them lexicographically. Then since gﬁi = 0 we easlly

find that
CelEy) =0 if 4<k

= A iif gki ir 4=k
where A 1is a non-zero constant. Thus the matrix whose
entries are C&(ﬁk) is non-singular and so the chern
vectors of them gzv are linearly independent.
For any integer 2n consider all the manifolds
24

oy X S7= with

sanm
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‘ PR A, =
)‘l‘ ;:k:i T & 2.4 ‘Yi 21”1 o
Choose any integef? N so that N > dim g, for all 4
and let 7 ¢ ng,x Sgi > Sgi denote the projection.

Consider the bundle of dimension N over ng % Sgi

sy

defined by
(k,2) = (N - dim #,) @ W*gi .

s

T]N

Then we have

PROPOSITION 2. Let f N) » Q be a homomor-

mgn(
phism. Then f 1s determined by the values

4
f (Pgl{ X Szmﬁ qN(!iﬁ ,;E) ) °

Proof: By lemmas 1 and 2 the Pontrjagin-Chern

vectors of the palrs (PQK)( Sgé, ﬂN(g,i)) are linearly
independent. Hence, by Pgﬁposition 1, tﬁey form a basis
for ”gn(N) ® Q . Thus £ 1s determined by its values
on them,
We are now in a position to formulate the results
on cobordism in a manner convenient. for our purpose.
PROPOSITION 3. Let £ _(X,W) (a =1, 2) be two

functions with values in Q , defined for any even-dimen-

sional compact oriented differentiable manifold X and

any complex vector bundle W over X . Suppose fl’ f2

have the following properties:

1 Iff we chose ¥ to have dimension <4 , as we could,
then we could simply take N =n .
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(1) fa(x,w) =0 if (X,W) ~ 0
(11) fa(xl + Ky Wy wg) = fa(xl,wl) + fa(Xe,Wg)
(where + means disjoint sum)
(111) fa(x,wl @aw?) = fa(xgwl) + fa(x,wg)
(iv) fa(Xl X Xpo Wy @ wg) = fa(xl,wl) fa(xgswg) s

and suppose further that

(8) £,(Py (C), 1) = £,(Py (C), 1)

2 2k

(b) £ (57,8,) = £,(s%,e,) .

Then fl = fz .
Proof: For any fixed integers n, k properties

(1) and (i1i) imply that the £,

ﬂgn(k) < Q . Now take k = N as in Proposition 2.

Then we see that fl and f2 willl coincide on all

(X,W) with dim X = 2n , dim W = N 1f they coilncide

on the special pairs of Proposition 2. But we have

24
f@(Pg}iX S s nN<Mk,_si’))

24 : od
x 8=, 1) = 5 £ (P, X S"Z,q¥g% ¢
’ ~Tat 2k S

J

i

(N = dim @i)fa(Pgﬁ

by (iii)

i

4
(0 = aim e y) =1 £y (P o 1) 771,557, 1)
: . 4, 4

BT T T (B 5 1) 0 T £ (5%, 1) ¢ 5 (877, ey )
j d 1 p+d 3

by (iv) .

&

induce homomorphisms

v,
J
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Also f‘a(sgm°9 1Y = 0 by (i) . Hence applying (a)

and (b) we see that £, and [, coincide on the
sequence of Proposition 2 and so they coincide on all
pairgs of these dimensions. It remains to treat the case
of pairs (X,W) with dim X = 2n but where dim W is

not large. We do this as follows (N denotes the triv-

ial bundle of dimension N)

i

£ (X)) = £ (X,W @ N) - £, (X,N) by (iil)

1 1 1 {

it

£o(X,We N) - fg(X,N) by what has been
“ proved

= fz(X,W) by (iii) .

This completes the proof.

19.4. Proof of the index theorem, By Proposition 2

of (19.2) it is sufficient to consider the case with
dim X even. Then as in Section 18 it is sufficlent to
consider the Indices of the specilal first order opera-
tors with symbols GOW « We Introduce there the nota-
tion Y(X,W) for the index of these operators. Let us
write

w(x,w) = {ch i - ©(X)} [x]

so that the index theorem assgerts that v =y . We are
now in a position to apply Proposition 3 of 19.3 with

£, =Y, £, =W . Property (1i) is trivial, (iii) is
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clear since the index and ch are both additive. Property
(1) 1s elementary for u and for Yy it was proved

as a theorem in 18.3. Property (iv) for vy was proved
in 18.3 which for W it follows from Proposition 1 of

S W

(19.1) and the formula d(Xl X Xpy Wy 2) =
d(Xl, wl) ¥ d(XE, wz) already verified in 18.3
(d(x,W) 4is the basic 6perator whose symbol is

6o (X,W))

Finally {a) and (b) follow from the fact that
the index theorem has been verifiled in these special
cases (Proposition 1 of 19.2 and the Hirzebruch index
formula for ng(c) (Ex. b)) . Thus we can apply
Proposition 3 and deduce that the index theorem holds

for X o This completes the proof.



