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Quadratic forms and quadratic extensions

In this essay I’ll say something about the relationship between nondegenerate integral quadratic forms and
lattices in quadratic field extensions. The main result will be a bijection between strict equivalence classes of

lattices and proper equivalence of integral binary quadratic forms.

I’ll illustrate this by looking at quadratic imaginary extensions. Real quadratic fields are more complicated

(as well as more interesting), and I’ll deal with them elsewhere.

Main results are perhaps essentially due to Gauss or even a predecessor, but I follow primarily [Daven
port:1992].
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1. Lattices ...

In this section I’ll discuss briefly integral quadratic forms in arbitrary dimensions.

Suppose V to be a vector space of dimension n over Q. I’ll write vectors as column matrices. A basis of V
is thus a horizontal array of vectors. If a coordinate system is in place, it may also be considered a matrix of
size n × n, whose columns are the vectors in the basis. The coordinate matrix x of a vector v with respect to

the basis λ is defined by the condition that v = λx. For example, if (λ, µ) is a basis of R2 then

xλ + yµ = [ λ µ ]

[

x
y

]

.

A lattice in V is an embedded copy of Zn.

1.1. Lemma. An additive subgroup of V is a lattice if and only if (i) it is a finitely generated and (ii) for every
v in V some nv with n > 0 lies in L.

A quadratic function on V is a function Q with values in Q such that

∇Q(x, y) = Q(x + y) − Q(x) − Q(y)

is bilinear. Since Q(2x) = 2∇(x, x) it is homogeneous of degree two. It is called non-degenerate if the

bilinear form ∇ is nondegenerate. If (λi) is a basis of V then Q determines the quadratic form

Q(u) =
∑

i,j

mi,jxixj (mi,j = ∇(λi, λj)/2)
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for u =
∑

xiλi. This can be written as

(1.2) Q(u) =
∑

i

mi,ix
2

i +
∑

i<j

2mi,jxixj .

It can also be expressed in matrix form:

Q(u) = txMλx .

Suppose we change the basis to µ = λX , with X an invertible matrix in GLn(Q). It u is a vector in V
then its coordinate arrays x, y are determined by the equation u = λx = µy, which gives the coordinate

transformation x = Xy. This leads directly to a formula for a transformed quadratic function. It is most

simply given as a matrix equation:

txMλx = ty tXMλXy = tyMµy .

The matrix of Q with respect to the basis µ is hence

(1.3) Mµ = tXMλX .

The bilinear form ∇Q may also be expressed as a matrix product:

∇(u, v) = 2 txMλy (u = λx, v = λy) .

The matrix Mλ is nonsingular if and only if the quadratic form is nondegenerate.

IfL is a lattice in V , a choice of basis will determine a quadratic form. A change of basis will change the form

by amatrix X in GLn(Z), according to (1.3) . The two forms will be called properly equivalent if det(X) = 1.

Given Q, the lattice L is called integral if Q takes integral values on it. Equivalent is the condition that the

coefficients in (1.2) , determined by a basis ofL, be integral. The mi,j for i 6= j are allowed to be halfintegral.
I should point out that this convention as towhat constitutes an integral lattice is not universal. Some authors,

including Gauss, require that the matrix Mλ have integral entries.

Suppose S to be any set of rational numbers with the property that n|S| is contained in the positive integers

for some n > 0. Since every set of positive integers has a minimum element, the set n|S| possesses a greatest
common divisor, say g. Then g/n is the greatest common divisor of S. In particular, if L is a lattice in V the
image Q(L) has a greatest common divisor, which I’ll call Γ(L). It is often called the norm of L.

An integral form is called primitive if Γ(L) = 1. Thus a lattice L is always primitive with respect to Q/Γ(L).

1.4. Lemma. Suppose L to be a lattice in V . If

Q(u) =
∑

i≤j

qi,jxixj

is the quadratic form corresponding to some basis of L, then Γ(L) is the greatest common divisor of the qi,j .

The group GOQ is made up of all the linear transformations T if V such that Q(T (u)) = c Q(u) for every u
in V and some scalar c, which I define to be NM(T ). The map taking T to NM(T ) is a homomorphism. The
following is elementary:

1.5. Lemma. For T in GOQ we have Γ(TL) = |NM(T )| ·Γ(L).

The discriminant DL of the lattice is

∣

∣det(2Mλ)
∣

∣ = 2n
∣

∣ det(Mλ)
∣

∣ .

Because of (1.3) , this is independent of the choice of basis.
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Define
L⊥ = {v ∈ Rn |∇(v, L) ⊆ Z} .

It is a lattice if and only if Q is nondegenerate, and then has as basis the dual (λ∨i ) of the basis (λi) with

respect to∇, which is
λ∨ = λ(2Mλ)−1 .

Hence:

1.6. Proposition. If the restriction of Q to the lattice L is integral, then L is contained in L⊥, and its index in
L⊥ is equal to the discriminant.

Remark. There are really two different discriminants associated to a rational quadratic form. The one just
defined might be called the integral or lattice discriminant. One point of this discriminant, which I shall not

pursue here, is that it tells you about the quadratic forms induced on the finite groups L/NL. The radical of
Q on L/NL is the subspace of all u in V such that∇Q(u, L) ≡N 0. This is the same as NL⊥ ∩ L. It is trivial

if and only if N is relatively prime to the discriminant. The best measure of how bad things are is the set of

principal divisors of L⊥/L.

For example, the quadratic form is badly behaved in characteristic 2. If L = Z2, then L⊥ = (1/2)L, and the

discriminant is 4.

There is another way to see it. The function∇Q is in some sense the gradient of Q, since formally

Q(x + h) = Q(x) + ∇(x, h) + O(h2) .

Whether the linear form h 7→ ∇(x, h) is nontrivial or not measures the singularity of the algebraic variety
Q(x) = c at x.

The other I’ll call the rational discriminant . It is usually defined as the image of det(M) in Q×/(Q×)2, but in
order to be consistent with my earlier definition, I’ll define it to be the image of det(2Mλ) in Q×/(Q×)2. In
any case, a rational change of basis leaves this discriminant invariant.

2. ... in dimension two

Suppose F = Q(
√

N) to be a quadratic field extension of Q, with N squarefree. I fix once and for all one of
the square roots of N , which I’ll express as

√
N . Let

IM(x + y
√

N) = y .

The map

σ: λ = x + y
√

N 7−→ λ = x − y
√

N

is the unique nontrivial automorphism of F . Define also

TR(λ) = λ + λ, NM(λ) = λλ ,

which take values in Q. The multiplicative homomorphisms NM is an anisotropic quadratic form, which

means that NM(λ) = 0 if and only if λ = 0. Multiplication by an element of F× is in GONM .

2.1. Lemma. The group GONM is the semidirect product of F× and {1, σ}.
Proof. This reduces to the claim that if g 6= 1 lies in GONM and g(1) = 1 then g = σ.

In the rest of this section I’ll construct bijections between three sets.

THE SETS. (1) If L and M are two lattices in F , they are strictly similar if and only if L = αM with
NM(α) > 0. I define A to be the set of strict similarity classes of F lattices.
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(2) A quadratic form
ax2 + bxy + cy2

will be called F admissible if (1) its rational discriminant (the image of b2 − 4ac modulo Q2) agrees wutrh

N and (2) a is the product of an element of Q×
>0

and something in NM(F×). Again, if F is real this is no
restriction, but if it is quadratic imaginary, a must be positive.

Suppose Q and R to be F admissible forms. I’ll call them properly equivalent if their matrices satisfy an
equation

MR = ρ · tXMQX

with ρ > 0 in Q× and X in SL2(Z). I define B to be the set of such proper equivalence classes.

(3) Suppose ω to lie in F×. I’ll call it F admissible if IM(ω) lies in NM(F×)CdotQ×. Again, if F is real this

is no restriction, but if it is quadratic imaginary, it eliminates half of F×.

2.2. Lemma. For any ω in F× and

A =

[

a b
c d

]

IM

(

aω + b

cω + d

)

=
det(A) · IM(ω)

(cω + d)(cω + d)
.

Hence the set of F admissible ω is stable under the action of SL2(Z).

I’ll say that ω1 and ω2 in F× are properly equivalent if

ω1 =
aω2 + b

cω2 + d

with
[

a b
c d

]

inSL2(Z). LetC be the set of suchproper equivalence classes. (According toTheoremof [HardyWright:1960],
this happens if and only if the continued fractions of ω1 and ω2 have common tails.)

THE MAPS. I am next going to define maps among these three sets that will turn out to be bijections.

(1) ab I’ll say that a pair Λ = (λ, µ) in F is positively oriented , or sometimes just positive , and write Λ ≻ 0,
if

IM det

([

λ µ
λ µ

])

=
λµ − λµ

2
√

N
> 0

Thus in Z[
√

N ] the basis (
√

N, 1) is positively oriented. If (λ, µ) is not positively oriented, then (µ, λ) is, so
that every lattice possesses a positively oriented basis, which will be unique to up transformations M = ΛX
with X in SL2(Z).

Suppose L to be a lattice in F with basis Λ = (λ, µ) ≻ 0. To these data is associated the quadratic form

QΛ(x, y) = (xλ + yµ)(xλ + yµ) = Ax2 + Bxy + Cy2

with
A = NM(λ)

B = TR(λµ)

C = NM(µ) .

Note that if

∆ = det

([

λ µ
λ µ

])
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then ∆2 = B2 − 4AC.

Dividing by the (positive) greatest common divisor of A, B, C, we get in turn the primitive form

qΛ(x, y) =
QΛ(x, y)

Γ(L)
= ax2 + bxy + cy2 .

If a different oriented basis Λ is chosen, then qΛ is transformed by a matrix in SL2(Z), hence to a properly
equivalent form. I’ll call qL the proper equivalence class of qΛ.

If γ is an element of F× with NM(γ) > 0 then multiplication by γ takes Λ to (γλ, γµ), which is also positive.
The associated primitive form is again qL. The map L 7→ qL therefore induces a well defined map ab from A

to B.

(1) ac Given Λ = (λ, µ) ≻ 0, map it to ω = λ/µ. If c = NM(µ), then IM(cω) > 0.

(2) bc Suppose given an F admissible binomial form

ax2 + bxy + cy2 .

Multiplying by a positive rational, one may assume that a, b, and c are relatively prime integers. This form

can be factored as

c(y − γx)(y − γx)

with

γ =
−b −

√
D

2c
,

which I’ll call its characteristic root . It is characterized by the condition that IM(cγ) < 0. I’ll then define its

characteristic element to be ω = −γ. If the form is transformed by

P =

[

p q
r s

]

in GL2(Z) then ω changes to

P (ω) =
pω + q

rω + s
.

We have thus defined a map bc from B to C.

(3) ca Given ω, choose α 6= 0 in F× such that

αα · IM(ω) > 0 .

Associate to ω the lattice basis (αω, α). Since

det

[

αω α
αω α

]

= αα(ω − ω) ,

it is a positive basis of some lattice Lω in F , well defined up to strict similarity. This defines a map ba from

B to A.

(2) ba Map the form first to its characteristic element, then to a lattice as in the previous definition.

(3) cb Associate to ω the form

c(xω + y)(xω + y)

in which c is chosen so that (1) the form is primitive and (2) sgn(c) = sgn(IM(ω)).
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Examples. Suppose that the form associated to ω is

ax2 + bxy + cy2 .

This means, in addition to the sign compatibility, that

ω + ω = b/c, ωω = a/c .

Since
1

ω
+

1

ω
= b/a,

1

ωω
= c/a,

1

ω
− 1

ω
= −(ω − ω)(c/a) ,

we have the following related assignments

ω: −ax2 − bxy − cy2

−ω: −ax2 + bxy − cy2

1/ω: −cx2 − bxy − ay2

1/ω: cx2 + bxy + ay2

−1/ω: −cx2 + bxy − ay2 .

◦———— ◦

2.3. Theorem. All these maps are bijections.

Proof. It is an immediate consequence of definitions that the maps ab ·ba, ac · ca, ba ·ab, bc · cb, ca ·ac, and

cb ·bc are all identity maps on the sets of equivalences.

3. Orders

The partition into proper equivalences in the previous section can be refined somewhat. If L is a lattice in F ,

its endomorphism ring End(L) is the ring of all γ in F such that γL ⊆ L. These can be characterized very

nicely.

INTEGERS. An integer in F is an element γ whose characteristic polynomial is monic. Equivalently, TR(γ)
and NM(γ) are both in Z.

3.1. Lemma. The element γ is an integer of F if and only if multiplication by γ takes some lattice in F into
itself.

Proof. One way because given a basis of the lattice, multiplication by γ is expressed as multiplication by a

matrix in M2(Z).

The other because if the characteristic polynomial of γ is monic, the lattice spanned by 1 and γ is stable under

multiplication by γ:

γ ·1 = γ

γ ·γ = −bγ − c .

An order in F is a subring (containing 1) that is also a lattice.

3.2. Proposition. The ring of integers in F is an order.

Proof. If α and β are integers then multiplication by either α + β or αβ takes the Zmodule spanned by 1, α,
β, and αβ into itself. Hence the integers are a ring.
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If γ lies in F then some positive multiple of γ will lie in o. Therefore we can find a basis (λ, µ) of F contained
in o. Let L be the lattice they span. Then

L ⊆ o ⊆ o
⊥ ⊆ L⊥ .

Hence o is a finitely generated module over Z and therefore by Lemma 1.1 it is a lattice.

3.3. Proposition. If F = Q(
√

N) with N squarefree, its ring of integers o has as basis 1 and ωN , where

ωN =







1 +
√

N
2

if N ≡4 1
√

N if N ≡4 2 or 3.

For example, the integers in Q(
√
−1) are generated over Z by

√
−1, while those in Q(

√
−3) are generated

by (1 +
√
−3)/2.

3.4. Corollary. If F = Q(
√

N), the norm form on oF is







m2 + mn +

(

1 − N
4

)

n2 if N ≡4 1

m2 + Nn2 otherwise.

Let DN = DF be the corresponding discriminant. It is N in the first case, 4N in the second.

I’ll call the discriminant of the integer lattice of a quadratic extension a minimal discriminant. These are

precisely the integersD with either (i) D ≡4 1 and squarefree or (ii) D ≡4 0, D/4 ≡4 2 or 3 and squarefree.

3.5. Lemma. If γ is an integer in F but not in Q, then the lattice with basis (γ, 1) is an order. Conversely
every order in F has a basis (γ, 1) with γ in o.

Proof. One way is an immediate consequence of Lemma 3.1.

For the other, suppose r to be an order in F , say with basis λ, µ. By Lemma 3.1, they are all integers.

Since 1 is in r, we may write

1 = aλ + bµ .

The greatest common divisor of a and b is certainly 1, so we can find ℓ, m such that am + ℓb = 1. But then

[ λ µ ]

[

a −ℓ
b m

]

= [ 1 −ℓλ + mµ ] = (say) [ 1 γ ]

is also a basis of r.

3.6. Proposition. Every order in F is contained in the ring oF .

Proof. Choose a basis of the order r, and γ in r. Then multiplication by γ amounts to matrix multiplication
by an integral matrix, so its characteristic polynomial is monic and integral.

3.7. Lemma. The orders in FN are the lattices with basis 1, fωN for some f > 0.

Proof. Suppose r to be an order in FN . It certainly contains 1 as part of a basis. Suppose a + bωN lie in r with

f > 0 smallest. Then fωN is also in r, and any other element of r will be of the form a + bfωN .

3.8. Lemma. The discriminant of the order Z[fωN ] is

{

f2N if N ≡4 1
4f2N otherwise.
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In particular, the orders are distinguished by their discriminants. The possible discriminants are all those

D ≡4 0 or 1. Every possible discriminant has a unique factorization as f2DF for some quadratic extension
F = FN .

Let rD be the unique order with discriminant D.

LATTICE ENDOMORPHISMS. If L is a lattice in F , its endomorphism ring End(L) is that of all α in F such

that αL ⊆ L. If L has basis (λ, µ), what is End(L)?

3.9. Proposition. Let
ax2 + bxy + cy2

be the characteristic form associated to the positively oriented basis (λ, µ) of the lattice L. The associated
characteristic root is γ = −µ/λ, and satisfies the quadratic equation

aγ2 + bγ + c = 0 .

Then End(L) is the ring Z[aγ].

Note that aγ is an integer.

Proof. For the first assertion:

Ax2 + Bx + C = (xλ + µ)(xλ + µ)

= |λ|2(x + µ/λ)(x + µ/λ)

= |λ|2(x − γ)(x − γ) .

For the second, let λ = x+ yγ. The lattice ((λ, µ)) is similar to ((1, γ)), and the endomorphism rings of similar

lattices are the same. Since
λ ·1 = x + yγ

λ ·γ = −
(cy

a

)

+

(

x − by

a

)

γ ,

λ lies in End(L) if and only if x, y, cy/a, by/a are all integers. But a, b, c have greatest common divisor equal
to 1. Therefore it is required that x, y, and y/a all be integers.

3.10. Corollary. Suppose L to be a lattice in F with characteristic form ax2 + bxy + cy2. The ring End(L) is
the unique order of F whose discriminant is b2 − 4ac.

In other words, a primitive form associated to L has the same discriminant as End(L). In other words, the
lattices stable with respect to oD are those whose discriminant divides D.

It remains to describe the classification of reduced nondegenerate forms. I’ll do this for positive definite

ones in the rest of this essay.

4. Positive definite quadratic forms

This section will explain how to classify the equivalence classes of lattices in quadratic imaginary extensions

of Q, along related material.

COMPLEX LATTICES. If N < 0 then F = Q(
√

N) embeds into C. Because I have fixed
√

N , the embedding

is unique if we require that the image of
√

N lies in the upper halfplane. A lattice in F determines therefore

a lattice in C, and it is useful to consider those.

Suppose L to be a lattice in C. Since

det

[

u v
u v

]

= |u|2 IM(u/v) ,
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a positively oriented basis of L in this case is a basis (u, v) with IM(u/v) > 0.

Suppose L to be a lattice in C with basis (u, v) ≻ 0. It is unique up to projective transformation by an element

of SL2(Z). The basis is called reduced if (i) |v| is the minimum length of elements in L and (ii) the projection
of u onto the line through v lies in the closed interval [−v/2, v/2].

u

v

4.1. Proposition. Every lattice in C possesses a reduced positively oriented basis.

Proof. Choose v of minimum length in the given lattice L. It is a primitive vector, so there exists u in C

such that (u, v) are a basis of L. Changing sign if necessary, we may assume IM(u/v) > 0. This u is unique

satisfying this condition up to translation by some nv. The projection condition will be satisfied for u− nv if

and only if

−1/2 ≤ (u − nv) • v

v • v
≤ 1/2 ,

which translates to

n ≤ u • v

v • v
+

1

2
≤ n + 1 .

This is satisfied by

(4.2) n =

⌊

u • v

v • v
+

1

2

⌋

.

This concludes the proof of the Proposition.

The reduced basis produced above is almost unique. Of course there is always a simple kind of n0on

uniqueness, since if (u, v) is reduced so is (−u,−v). But there can be some additional ambiguity. First of all,

±v might not be unique—there might well be another vector u with |u| = |v|.
u

v

−u

−v

In this case the reduced bases are
( u, v)

(−u,−v)

( v,−u)

(−v, u) .
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Otherwise,±v is indeed unique. Given v, any possible u must be of the form u− nv with n in Z. As long as
u does not project onto±v, it, too, is unique. But if it does so project, we may translate if necessary so that it

projects onto −v.

A basis (u, v) is called strictly reduced if either (i) |v| < |u| and the projection of u onto the line through v
lies in [−v/2, v/2) or (ii) |u| = |v| and the projection of u onto the line through v lies in [−v/2, 0].

u

v

We have thus proved:

4.3. Corollary. Every form is equivalent to a unique strictly reduced form.

The proof is not constructive, but there is a simple algorithm for finding the relevant strictly reduced basis.

Start with (u, v).
◦ Replace u with u − nv, where

n =

⌊

u • v

v • v
+

1

2

⌋

.

If |u| > |v|, swap (−v, u) for (u, v) and loop to ◦.
Otherwise, if (u •u)/(v • v) > 0 swap (−v, u) for (u, v) and exit with the reduced basis (u, v).

In principle, this procedure works for any positive basis of C, but in practice floating point errors restrict its

practicality. The most important casde is when u and v belong to some quadratic field extesnion of Q, and in

that case it is simplest to transfer the problem to one involving integral quadratic forms.

Suppose F to be such a quadratic field, L a lattice in F , (u, v) a positive basis of L. This determines by

restriction of the complex norm |z|2 the positive definite quadratic form

(xu + yv)(xu + yv) = ax2 + bxy + cy2

with values in Q. Scaling if necessary by a positive scalar, one may assume the form to be integral and
primitive. The requirement that the basis be reduced means (i) |a| ≤ |c| and (ii) |b| ≤ |a|.
The algorithm for finding a reduced form goes on (where (a, b, c) is a shortened way to denote the form):

◦ Find n such that

−a ≤ b − 2na < a ,

Calculate a new value of c by making discriminants agree.
If |a| > |c|, change (a, b, c) to (c,−b, (D − 4a)). Loop to ◦.
Otherwise, exit with the reduced form (a, b, c).

COMPUTATION. How to compute the reduced forms of a given discriminant D? Because D = b2 − 4ac and
D < 0 while 0 < a ≤ c, one can deduce that

b2 ≤ ac ≤ D/3 .
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Also, b must be even if D ≡4 0 and odd if D ≡4 1. So we should scan through all b of suitable parity from

0 to ⌊
√

D/3⌋, and for each factor, if possible, ac = (D + b2)/4. Reject all for which |b| ≤ |a| ≤ |c| does not
hold.

EXAMPLES. (1) Take D = −3. Then N = 3, and the unique reduced form is m2 + mn + n2.

(2) Take D = −4. Then N = 1, and the only reduced form is m2 + n2.

(3) Take D = −12. Then N = 3, and the reduced forms are m2 + 3n2 and 2m2 + 2mn + 2n2. The last is not

primitive.

(4) Take D = −20. Then N = 5, and the two reduced forms are m2 + 5n2 and 2m2 + 2mn + 3n2.

GENERATORS. There is another valuable application of the preceding algorithm. The group SL2(Z) acts on
the upper halfplane discretely, and the set of strictly reduced forms is a fundamental domain for the action.

The preceding algorithm thus records an expression for any element γ of SL2(Z) as a product of matrices S
and T (n)

S =

[

0 −1
1 0

]

T (n) =

[

1 n
0 1

]

.

Howvere, there is some ambiguity in a factor of a matrix that takes Q to itself. This group is just ±I for
strictly reduced Q for the forms x2 + y2, x2 ± xy + y2. In these cases, the subgroups are isomorphic to µ4

and µ6.

5. Euclidean domains

There are several simple cases in which there is only one reduced form with discriminant D.

If all lattices stable under r are generated by a single element, r is said to be a principal ideal domain . There
is one simple sufficient condition for this to happen, when r has a division algorithm. In this section I’ll use

visual techniques in several cases to see that this is true.

I’ll recall first how to prove that Z is a principal ideal domain. This means that any ideal is made up of

multiples of a single element. Suppose I to be an ideal in Z, and suppose n to be a positive element in I of

least magnitude. Thsi implies that if m is any integer in I with |m| < |n| then m = 0—or, equivalently, that
if |m−ni| < n thenm = ni. But the division algorithm implies that the open intervals (ni−n, ni+n) cover
Z, so that indeed every element of I is a multiple of n.

0 n 2n-n ni n(i+1)m

Of course, what the picture really illustrates is the division algorithm in Z, which when applied in Euclid’s

algorithm leads to an explicit generator of any ideal in Z.

Something similar happens for the Gaussian integers o = Z[i] = Z + Zi. Here, the open unit discs around

each of the z in o cover all of C:
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1

1 1+i

This is also true for the integral rings Z[
√
−2], Z(ω3], Z[ω7], and Z[ω11] (where ωN = (1 +

√
−N)/2), as the

following picture suggests: :

1

1 +
√
−11

2

5.1. Proposition. Let o be the ring of integers in a quadratic imaginary extension of Q, embedded in C. If the
open unit disks around integers in o cover C, then every ideal I in o is principal.

Proof. Let α 6= 0 an element of I of smallest magnitude. Scaling the diagram by α, we deduce that open
discs of radius |α| cover C. If β is any of I , it will will therefore lie within distance |α| of some element γ of

o ·α. But because |α| is minimum, β must in fact be γ.
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This argument fails, however, for Z[
√
−5]:

Interestingly, though, the same picture tells us more precisely how far this ring is from being a principal ideal

domain.

Suppose I to be an ideal in Z[
√
−5], and suppose w to be of least magnitude in I . Building the lattice

L = Z[
√
−5] · w we get this picture:

w

w
√
−5
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Since w is of least magnitude, there are no elements of I within unit distance of any element of L. If I is not
identical with the principal ideal L it must contain a point in the dark area in the following figure:

w

If it lies at (x, y) there must also be elemnts of I of the form (x + w, y), and by symmetry−x + w,
√
−5− y).

This will contradict the assumption on w unless x = 0 or x = 1/2, and y =
√
−5/2, as indicated in this

picture:

w

Since
√
−5α = (5/2)w, the ideal I cannot contain α. But it can very well contain β, and the points in I then

look like this:
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w

The class number of Z[
√
−5] is hence 2.

In the case of the ring Z[
√
−19]. unit circles around its elements do not cover C, but an argument similar to

that we have just seen will show that it is nonetheless a principal ideal domain.

w

w · ω19

The other complex imaginary quadratic fields with class number 1 are Q(
√
−43), Q(

√
−67), and Q(

√
−163).

I have not tried looking at those cases. That these have class number one is an elementary application of
Gauss’ algorithm, but that these are all the ones with this property was only a conjecture of Gauss up until

the midtwentieth century.
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