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That interesting new L functions with Euler products arise in the classical theory of modular forms is in
some sense an accident, and even a bit deceptive. For algebraic number fields other than Q the relationship

between classical forms and L functions is more complicated. It ought to be no surprise to anyone familiar

with John Tate’s thesis that the correct groups with which to do automorphic forms are adele groups. In this
essay I’ll explain roughly how the transition from classical to adelic takes place.

The classical theory is really one about the group GL2(Q). This is clear if one looks at Hecke operators. But
to understand how things work, I’ll have to look at SL2(Q) also.

Much of what I am going to say works for very general split reductive groups defined over Q, although I
won’t amplify much on this remark.

Contents

1. Strong approximation
2. Introducing the adèle group
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1. Strong approximation

I begin with recalling some elementary number theory.

1.1. Proposition. (Chinese remainder theorem) Suppose m and n to be relatively prime positive integers. If
a and b are any integers, there exists a single integer c such that

c ≡ a mod m, c ≡ b mod n .

Proof. It suffices to prove this when b = 0. There exist integers k, ℓ such taht

km + ℓn = 1 .

But then
akm + aℓn = a ,

so that c = aℓn is divisible by n and congruent to a modulo m.

Recall that Z(p) is the ring of rational numbers a/b with b prime to p. It is a local ring with maximal ideal (p).

1.2. Corollary. (Strong approximation for Q) Suppose S to be a finite set of primes, and for reach p in S
suppose given a rational number ap. Suppose also given for each p in S a non­negative integer np. Then
there exists a rational number a such that a lies in Z(p) for every p not in S and a − ap lies in pnpZ(p) for
every p in S.

Proof. Let m be such that map lies in Z(p) for all p in S. The Proposition tells us by induction on the size of
S that there exists c in Z such that

c ≡ map mod mpnp (p ∈ S)

c ≡ 0 mod m .
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Let a = c/m.

1.3. Lemma. If F is any field then SL2(F ) is generated by matrices of the form

[

1 x
0 1

]

,

[

1 0
x 1

]

.

Proof. We have all these formulas:

[

a x
0 1/a

]

=

[

a 0
0 1/a

] [

1 x/a
0 1

]

[

a b
c d

]

=

[

1/c a
0 c

] [

0 −1
1 0

] [

1 d/c
0 1

]

(c 6= 0)

[

0 x
−1/x 0

]

=

[

1 x
0 1

] [

1 0
−1/x 1

] [

1 x
0 1

]

[

x 0
0 1/x

]

=

[

0 x
−1/x 0

] [

0 −1
1 0

]

.

The first two show that SL2(F ) is generated by unipotent matrices as in the Lemma, together with diagonal

and monomial matrices. The third shows that monomial matrices are products of unipotent matrices as in
the Lemma, and the fourth shows that so are the diagonal matrices.

1.4. Corollary. The group SL2(Z/pn) is generated by matrices

[

1 x
0 1

]

,

[

1 0
x 1

]

(x ∈ Z/pn)

and
I + px (x ∈ M2(Z/pn−1)) .

The first approach to strong approximation follows easily from these two results:

1.5. Proposition. The canonical projection from SL2(Z) to SL2(Z/N) is surjective.

Proof. From the the Corollary, by induction on the number of primes dividing N .

The previous result can be formulated as saying that if one is given for each of a finite number of primes
p an integral matrix Ap with det(Ap) congruent to 1 modulo pnp then one can find an integral matrix A of
determinant 1 simultaneously congruent to each Ap modulo pnp . This can be generalized.

1.6. Proposition. (Strong approximation for SL2(Q)) Suppose that for each of a finite set S of primes p we
are given gp in SL2(Qp) and np ≥ 0. There exists γ in SL2(Q) such that

(a) the matrix entries of γ lie in Zp for p not in S;
(b) for each p in S, γ−1gp lies in SLn(Zp) and is congruent to I modulo pnp .

Proof. By the previous result, it suffices to deal with the case where all np = 0. What has to be shown now is

that there exists γ satisfying (a) with γ−1gp in SLn(Zp) for all p in S. An induction argument reduces this to

the case where S has just one prime.

Let Q(p) be the ring of fractions whose denominators are powers of p. The image of an element of Q(p) in

Qq for q 6= p lies in Zq . We now want to show that given g in SL2(Qp) there exists γ in SLn(Q(p)) such that
γ−1g lies in SL2(Zp).
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By the elementary divisors theorem for M2(Qp), we can find matrices δ1 and δ2 in SL2(Zp) such that

g = δ1dδ2, in which

d =

[

pm 0
0 1/pm

]

with m ≥ 0. According to the Lemma, we can find matrices γi in SL2(Z) such that

γi ≡ δi mod p2m .

If γ = γ1dγ2 then γ−1g will lie in SL2(Zp).

Remark. The strong approximation theorem is true for any simply connected algebraic group defined over

any global field. The proof in general is very difficult, but that for split groups is only slightly more difficult
than that for SL2(Q), granting the Bruhat decomposition.

2. Introducing the ad èle group

Define the ring of finite ad èles Af over Q to be the restricted product of the p­adic fields Qp—that is to say,

the subring of
∏

Qp of all (ap) with ap in Zp for all but a finite number of primes p. The full ring A of adèles
is the direct product R × Af . It is a topological ring in which a basis of neighbourhoods of 0 are subsets

I ×
∏

Up where I is a neighbourhood of 0 in R, and each Up is a subgroup pnpZp with all but a finite number

of np = 0.

The fields R and Qp are all the reasonable completions of Q, and are usefully considered uniformly. To

emphasize this and make notation more efficient I set Q∞ = R. In this notation A is a subring of
∏

p≤∞ Qp.

The units of A are the invertible adèles, the (ap) with all ap 6= 0, and ap in Z×
p for all but a finite number of p.

These are the id èles A×.

The point is that if V is any variety defined over Q then one may refer to V (A). This is equal to the set of all

(xp) with xp in V (Zp) for all but a finite number of p.

For example, the groupGL2(A) consists of the subgroup of elements of GL2(R)×
∏

GL2(Qp) with all but a

finite number of gp inGL2(Zp). Aswe’ll see in amoment, the fieldQ is a discrete subring ofA. Consequently,
the group GL2(Q) is also a discrete subgroup of GL2(A). In the modern theory of automorphic forms,

automorphic forms are specified to be functions on GL2(Q)\GL2(A) rather than on arithmetic quotients

Γ\H, Γ\SL2(R), or Γ\GL2(R).

There are many reasons for this change. One good one is that in many problems involving automorphic

forms somewhat complicated questions involving number theory are replaced by simpler questions about
analysis on the local groups GL2(R) and GL2(Qp). This is especially true of Hecke operators, as we’ll

see. Another good reason is that the discrete group GL2(Q) is in most ways much simpler than arithmetic

subgroups of SL2(Z). In applying the trace formula, for example, the conjugacy classes of GL2(Q) are
much simpler to understand than those of Γ(N). Another useful thing is that the Bruhat decomposition

for SL2(Q) is very simple, as opposed to what happens for SL2(Z). In any case, what I want to do here is
very limited—to provide a simple introduction to the adèles and to explain what is involved in transferring

classical automorphic forms to functions on GL2(Q)\GL2(A). I’ll not prove everything in detail.

For any prime p, let |x|p be the usual p­adic norm, so that

|pn|p = p−n .

Then for any rational number x

(2.1)
∏

p

|x|p = 1 .
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2.2. Proposition. The field Q is a discrete additive subgroup of A. We have

A = Q +
(

[0, 1)×
∏

p

Zp

)

.

In fact the region [0, 1) ×
∏

p Zp is a fundamental domain for the discrete subgroup Q, and the embedding

of R into A induces an isomorphism of Z\R with Q\A/
∏

Zp.

Proof. To see that Q is discrete in A we just need to verify that the open subset

{

|x| < 1
}

×
∏

Zp

contains no rational numbers. This follows from (2.1).

As for the second claim, what it means is that if we are given an adèle a = (ap) there exists a rational number

α such that a−α lies in I ×Zp. Choosing an integer n such that a∞ −n lies in I , we are reduced to the claim
that given a finite set S of primes and for each p in S a p­adic number ap, there exists a rational number α
lying in Zp for p not in S with ap − α lying in Zp for p in S. This is Corollary 1.2.

2.3. Proposition. We have

A× = Q× ·
(

Rpos ×
∏

Z×
p

)

.

Proof. Suppose a unit adèle (ap) to be given, with no ap = 0 and all but a finite number of ap in Z×
p , say for p

not in the finite set S. We want to find α > 0 in Q× with α in Z×
p for p in S and apα

−1 in Z×
p for p in S. This

problem reduces to unique factorization for integers.

The strong approximation theorem for SL2(Q) is equivalent to the following result about SL2(A):

2.4. Theorem. Suppose that for each prime p we are given a compact open subgroup Kp ⊆ SL2(Qp) such
that all but a finite number of Kp = SL2(Zp). Let Kf =

∏

Kp. Then

SL2(A) = SL2(Q) ·
(

SL2(R) × Kf

)

.

Proof. There is only one small point that should be mentioned—one can replace each Kp by its intersection

with SL2(Zp), which is of finite index, and then assume Kp ⊆ SL2(Zp) for all p.

For each compact open subgroup Kf =
∏

Kp of the restricted product of the SL2(Qp, let ΓKf
be the inverse

image in SL2(Q) of SL2(R) × Kf . For example, if Kp = SL2(Zp) for all p then ΓKf
= SL2(Z).

2.5. Corollary. The canonical map from ΓKf
\SL2(R) to SL2(Q)\SL2(A)/Kf is a bijection.

Proof. Just to be careful, I’ll do it in stages. Let H = SL2(Q), G = G(R) × Kf . Thus Γ = H ∩ G. The
map from H ∩ G\G to H\H ·G is a bijection. But then we can divide on the right by Kf , using the fact that

Γ\SL2(R) × Kf/Kf may be identified with Γ\SL2(R).

2.6. Corollary. Suppose that for each prime p we are given a compact open subgroup Kp ⊆ GL2(Zp) such
that (a) all but a finite number of Kp = GL2(Zp); (b) det(Kp) = Z×

p for all p. Then

GL2(A) = GL2(Q) ·
(

GLpos
2 (R) ×

∏

Kp

)

.
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More precisely,

GL2(Q)\GL2(A)/SO2 ×
∏

Kp

may be identified with Γ\H if

Γ = GL2(Q) ∩
(

GLpos
2 (R) ×

∏

Kp

)

.

Now I explain how functions on Γ\GLpos
2 (R) become functions on GL2(Q)\GL2(A). Suppose we are given

for each p a compact open subgroupKp ofGL2(Zp), with almost allKp = GL2(Zp andwith all detKp = Z×
p .

Let Kf =
∏

Kp. Then

UKf
= GLpos

2 (R) ×
∏

Kp

is an open subgroup of GL2(A). The group

ΓKf
= Γ ∩ UK

will be a congruence subgroup. If Kp = GL2(Zp) for all p, for example, then Γ = SL2(Z)

Every congruence subgroup arises in this fashion. For a givenΓ, the intersectionKp∩SL2(Zp) is determined
by Γ (it is its closure in SL2(Zp)) but there will be several choices possible for Kp itself. If Γ = Γ(N) the

standard choice is the group of all k of the form

[

∗ 0
0 1

]

modulo N .

2.7. Lemma. In this situation, the injection

ΓKf
\GLpos

2 (R) −→ GL2(Q)\GL2(A)/Kf

is a bijection.

This means among other things that automorphic forms of weight m on Γ\H lift uniquely to functions on

GL2(Q)\GL2(A) fixed by K . It is important to realize that this lifting depends not only on Γ but also on the
choice of K . This phenomenon occurs also in the classical theory, in the definition of Hecke operators for

general congruence groups.

3. Hecke operators

The starting point of the classical theory of Hecke operators is the observation that if g lies in GLpos
2 (Q) and

f is an automorphic form for the congruence subgroup Γ then the function fg: z 7→ f(gz) is an automorphic
form for g−1Γg, since

fg(g
−1γg z) = f(gg−1γ gz) = fg(z) .

This should be combined with another simple observation:

3.1. Proposition. If Γ is a congruence subgroup of SL2(Z) and g lies in GLpos
2 (Q) then g−1Γg ∩ Γ is also a

congruence group.

Proof. We may assume, by the elementary divisors theorem, that g is diagonal and Γ = Γ(M). We must

show that g−1Γ(M)g ∩ Γ(M) contains some Γ(N). This is easy.

Suppose g in M2(Z) with positive determinant. The double coset ΓgΓ will be a union of left Γ­cosets Γgi.
Each gi can be chosen to be of the form gγi with γi in Γ. The map

γ 7−→ Γgγ
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is therefore surjective onto ΓgΓ. The isotropy subgroup of g is Γ ∩ g−1Γg, so that the associated map

(Γ ∩ g−1Γg)\Γ −→ Γ\ΓgΓ

is a bijection, and as a consequence of the previous result the right hand side is finite. Corresponding to the
double coset ΓgΓ =

⋃

Γgi we can therefore define the Hecke operator T [g]

f 7−→ f
∣

∣ [ΓgΓ]m =
∑

f
∣

∣ [gi]m

on the space of automorphic forms of weight m for Γ. This definition differs from the classical definition

by a power of det(g). It can be extended consistently to operators T [g] for any rational matrix, since scalar
matrices act trivially. If we associate to f the function

Φ(g) = f
∣

∣ [g]m

on Γ\G, then f
∣

∣ [ΓgΓ]m corresponds to
∑

Φ(gig) (where ΓgΓ =
⋃

Γgi).

Cusp forms on Γ\H are square­integrable, and give rise to square­integrable functions on Γ\G. The repre­

sentation of G on L2(Γ\G) is unitary, which means that the adjoint of Lg is Lg−1 . The Hecke operator T [g]
is therefore self­adjoint when T [g] = T [g−1].

The classical theory of Hecke operators applies to all congruence groups, but there are complications in the

general case that I wish to avoid (related to the problem of choosing Kp for a given Γ), so I’ll assume for a
while that Γ = SL2(Z).

Suppose p a prime, and let

g =

[

p 0
0 1

]

.

In this case ΓgΓ differs from Γg−1Γ by a scalar, so T [g] = T [g−1] and T [g] is self­adjoint on the space of cusp
forms. To get an explicit expression, note that

[

p 0
0 1

]−1 [

a b
c d

] [

p 0
0 1

]

=

[

a p−1b
pc d

]

the intersection Γ ∩ g−1Γg is the group of all matrices lying in the Borel subgroup
[

∗ ∗
0 ∗

]

modulo p, and the quotient (g−1Γg ∩ Γ)\Γ is in bijection with P1(Fp), a set of p + 1 elements.

What does the Hecke operator T [g] on Γ\G correspond to on GL2(Q)\GL2(A)? The local Hecke algebra
on the p­adic group GL2(Qp) is made up of functions of compact support that are left­ and right­invariant

under Kp = GL2(Zp).

If ϕ is in the p­adic Hecke algebra and Φ a function on the adelic quotient fixed by GL2(Zp), the convolution

RϕΦ(g) =

∫

GL2(Qp)

ϕ(x)Φ(gx), dx

is defined. In particular, the characteristic function ϕp of the double coset

Kp

[

p 0
0 1

]

Kp

is in this algebra.

3.2. Proposition. If f is an automorphic form for Γ = SL2(Z) and f corresponds to Φ on GL2(Q)\GL2(A)
then f |Tp corresponds to Rϕp

Φ.

How the Hecke operators relate to representations of GL2(Qp) is the next question to take up, but that won’t

be done in this essay.
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4. Remarks

The transition from classical automorphic forms to functions on the adèle quotient depends, as we have seen,
on many features of arithmetic of the rational numbers that do not remain valid for other number fields. For

them, the correct way to proceed is to start off immediately with functions on the adèle quotient, making
occasional forays into arithmetic quotients for a few questions of real analysis. One loses, perhaps, a certain

amount of intuition, but gains enormously in elegance. One sign that this is the correct approach is that

notation and basic definitions expanded rapidly in the period 1920–1965 (starting with Ramanujan, passing
through Mordell, Hecke, Siegel, and Weil) but that basic notions have remained stable in the longer period

since then. The summer symposium in Boulder in 1965 marks the change from what might be called the

classical period to the modern one.

The description of Q\A generalizes nicely to other number fields, but the factorization of A× depends

strongly on the fact that Z is a principal ideal domain. On the other hand, although the proof of the strong
approximation theorem for SLn(Q) that I have given depends on unique factorization in Z, the theorem

itself remains valid for SLn(F ) where F is any number field. This result is due to Martin Eichler. The

proof is quite different from the one given here, and and a somewhat simplified version can be found in
[Kneser:1965]. In fact, strong approximation is valid for any simply connected semi­simple group over a

number field. A proof in this generality can be found in [Kneser:1966], on the assumption of the Hasse
principle (which was subsequently verified). A complete if rather dense discussion along different lines can

be found in [Platonov­Rapinchuk:1994].
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