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The solutions of elliptic differential equations are smooth if the equation is smooth, and analytic if it is analytic.

The first is relatively elementary, the second more subtle. In this essay the second result will be proved for

homogeneous equations. I follow what seems to be the first proof of the general case, that of [John:1955], but in
more modern terms. This makes a more conceptual treatment possible.
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1. Outline

Suppose

L =
∑

|k|≤p

ak(x)
∂k

∂xk

to be a linear differential operator onR
n of order p in dimensionn. Here k = (ki) is amulti­index, and |k| =

∑
ki.

The p­th order symbol of L is the function

σL(x, ξ) =
∑

|k|=p

ak(x) ξk

where ξj is substituted for ∂/∂xj . This is to be interpreted canonically as an element of the symmetric algebra
Sp(Tx) at every point x, or in other words a homogeneous function of degree p on the cotangent space T ∗

x . Thus

for df =
∑

(∂f/∂xi) dxi the function σL(x, df) is evaluated by replacing each ξi in the symbol by ∂f/∂xi, since

(∂/∂xi) is the basis of Tx dual to (dxj). One example, historically of much interest and even now not devoid of
it, is the Laplacian

∆ =
∑ ∂2

∂x2
i

whose symbol is
∑

ξ2
i .
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An elliptic operator is one with the property that its symbol vanishes only for real values of ξ at ξ = 0. The

Laplacian, for example, is elliptic.

The goal of this essay is to prove:

1.1. Theorem. If L is an elliptic operator with analytic coefficients in an open disk U in R
n, then any solution of[analyticity]

LF = 0 in U is analytic.

Afinal sectionwill recall brieflywhat the role of this result in representation theory is. Roughly speaking, it allows

one to relate representations of a reductive group G (global object) to that of its Lie algebra g (local object) and a
maximal compact K . This is the implicit justification for working with (g, K) modules instead of representations

of G, which are really the ultimate objects of interest.

This classic theorem (‘analytic elliptic regularity’) has been known for a long time, but coming in complete

generality only after a long development through several special cases. There are, as far as I know, three distinct

approaches toproving it. One is to obtainhardestimateson thederivativesof solutions throughout a region,which
assures convergence of Taylor series to the solution. This argument is apparently due originally in full generality

to [Morrey & Nirenberg:1957], and is the one presented most commonly, for example in [Narasimhan:1968].
The shortest version of this argument can be found in [Bers & Schechter:1968]. I find this proof unilluminating.

Another proof is that to be found in [Nelson:1959]. This classic paper is mostly about analytic vectorswith respect

to operators on Banach space, but derives a version of elliptic analytic regularity as a consequence.

The third proof is due to Fritz John and seems, as I have said, to be the first complete proof. The complete

account is in [John:1955]. This proof is rather longer—long­winded, some might think—than those in the other
groups, but (I think) much better motivated. John’s argument has one great virtue, in that it is the ancestor of the

proof of Sato’s extension of this theorem to more general differential operators, the one in [Kashiwara et al.:1986].

It fits in well, in other words, with a more general theory, and I’d say that none of the steps in this proof are
unimportant or uninteresting. In brief, this second proof uses a variant of the Radon transform to reduce the

result to theCauchy­Kowalevsky theorem concerning solutions of analytic partial differential equations satisfying

boundary conditions on non­characteristic hyperplanes. The Cauchy­Kowalevsky theorem is in some sense the
most fundamental theorem in all of the theory of partial differential equations, since it characterizes nicely the

singular (or, for that matter, non­singular) nature of solutions to a partial differential equation. It is relatively
simple to prove, too. The argument is intuitive, proceeding in codimension one in R

n much as one proceeds with

ordinary differential operators in one dimension.

It’s a modified version of John’s proof that I’ll sketch here. What is slightly new over John’s treatment is a more

thorough use of distributions and the Fourier transform. These tools enable a more succinct account.

The main steps, roughly sketched, are these:

Step 1. A straightforward argument, known for classical elliptic operators for a long time, reduces the problem

to the construction of local and locally integrable fundamental solutions F (x, y) that are real analytic off the
diagonal x = y.

Step 2. Next I’ll use a basic idea of John, to apply a version of the Radon transform to express the Dirac delta in
R

n as

δ0 =

∫

Sn−1

Φξ dξ ,

where Φ is a one­dimensional distribution, and Φξ is its translation perpendicularly to the point ξ in S
n−1. The

Φξ are what John calls plane wave distributions. By translation this gives a similar expression for every δx.

Step 3. The theorem of Cauchy­Kowalevsky allows one to construct (a) analogues of fundamental solutions of
LF = δξ⊥ and then from these (b) solutions F = Fξ of the equation LF = Φξ .
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Step 4. We obtain an analytic fundamental solution of L by combining these steps—we get, for example,

δ0 =

∫

Sn−1

LFξ dξ = L
(∫

Sn−1

Fξ dξ
)

,

and similar formulas for all δx, with everything varying analytically.

Step 5. Then, finally, Any solution of LΦ = ϕ with ϕ analytic can be constructed from analytic boundary data by
using a fundamental solution of the adjoint differential operator, which is also elliptic. In the case of the Laplacian

in R
n, as I’ll recall, this is well known.

2. Adjoint operators

First I must recall what the adjoint of a differential operator D is. It is a differential operator D∗ such that for f ,
g in C∞

c (Rn) ∫

Rn

Df(x) · g(x) dx1 . . . dxn =

∫

Rn

f(x) · D∗g(x) dx1 . . . dxn .

Underlying this is an equation involving differential forms. Thus the adjoint of ∂/∂xj is −∂/∂xj , since

(
(∂f/∂xj)g + f(∂g/∂xj)

)
dx1∧ . . . ∧dxn = (−1)j−1(∂fg /∂xj) dxj∧ dx1∧ . . . d̂xj . . . ∧dxn

= d
(
(−1)j−1fg dx1∧ . . . d̂xj . . . ∧dxn

)
.

In other words, for D = ∂/∂xj we find that D∗ = −D and

Df · g dx1∧ . . . ∧dxn − f · D∗g dx1∧ . . . ∧dxn = dτD(f, g)

where
τD(f, g) = (−1)j−1fg dx1∧ . . . d̂xj . . . ∧dxn .

An induction argument gives us a similar formula for operators of all orders:

(Df · g − f · D∗g) dx1∧ . . . ∧dxn = dτD(f, g)

where τD(f, g) is an (n − 1)­form. This is because of the sequence of formulas

(D1D2f · g − D2f · D∗
1g) = dτD1

(D2f, g)

(D2f · D∗
1g − f · D∗

2D
∗
1g) = dτD2

(f, D∗
1g)

(D1D2f · g − f · D∗
2D

∗
1g) = dτD1

(D2f, g) + dτD2
(f, D∗

1g)

so that

τD1D2
(f, g) = τD1

(D2f, g) + τD2
(f, D∗

1g) .

If L is elliptic, so is L∗, since the p­th order symbol of D∗ is (−1)pσ(D).

By Stokes’ formula, if Ω is a region of R
n with smooth boundary then

∫

Ω

(
Df · g − f · D∗g

)
dx1∧ . . . ∧dxn =

∫

∂Ω

τD(f, g) .

For example, suppose D = ∆, say in R
2:

∆ =
∂2

∂x2
+

∂2

∂y2
.
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Then ((
∂ 2f

∂x2

)
g +

(
∂f

∂x

∂g

∂x

))
dx∧dy = d

(
∂f

∂x
g dy

)

((
∂ 2f

∂y2

)
g +

(
∂f

∂y

∂g

∂y

))
dx∧dy = −d

(
∂f

∂y
g dx

)

(
∆f · g +

(
∂f

∂x

∂g

∂x
+

∂f

∂y

∂g

∂y

))
dx∧dy = d

(
∂f

∂x
g dy −

∂f

∂y
g dx

)

(
f

(
∂ 2g

∂x2

)
+

(
∂f

∂x

∂g

∂x

))
dx∧dy = d

(
g
∂f

∂x
dy

)

(
f

(
∂ 2g

∂y2

)
+

(
∂f

∂y

∂g

∂y

))
dx∧dy = −d

(
f

∂g

∂y
dx

)

(
f · ∆g +

(
∂f

∂x

∂g

∂x
+

∂f

∂y

∂g

∂y

))
dx∧dy = d

(
f

∂g

∂x
dy − f

∂g

∂y
dx

)
.

This leads to

(∆f · g − f · ∆g) dx∧dy = d

((
∂f

∂x
dy −

∂f

∂y
dx

)
g − f

(
∂g

∂x
dy −

∂g

∂y
dx

))
.

which translates into the familiar Green’s theorem:

∫

Ω

(
∆f · g − f · ∆g

)
dxdy =

∫

∂Ω

(
∂f

∂ν
g − f

∂g

∂ν

)
ds .

3. Fundamental solutions

Let’s now look at the last step of the outline, in which one deduces analyticity of solutions to elliptic equations
from analyticity of fundamental solutions. If Ω is an open subset of R

n and K(x, y) is a distribution on Ω × Ω
then for each f in C∞

c (Ω) ∫

Ω

K(x, y)f(y) dy

is a distribution on Ω defined by the formula

〈∫

Ω

K(x, y)f(y) dy, g(x)
〉

Ω
=

〈
K(x, y), g(x)f(y)

〉
Ω×Ω

.

A fundamental solution for an operator L on Ω is a distribution K(x, y) on Ω × Ω such that LxK(x, y) = δx−y.

Here δx−y is the distribution defined by integration over the diagonal:

〈δ(x − y), f〉 =

∫

Ω

f(x, x) dx .

I’ll show some examples later on. Its important property is that

∫
K(x, y)f(y) dy = F (x)

satisfies LF = f . This is because

〈LxF, g〉 =
〈
Lx

∫
Φ(x, y)f(y) dy, g(x)〉 =

〈
LxΦ(x, y), g(x)f(y)

〉
=

∫

Ω

f(x)g(x) dx ,



Elliptic differential equations—analyticity (11:02 a.m. May 1, 2012) 5

which means that LxF = f as a distribution.

The crux of John’s argument is this:

3.1. Proposition. There exists a locally integrable fundamental solution K(x, y) of Lx which is analytic in the[fundamental-elliptic]

region x 6= y.

Let K(x, y) be a fundamental solution for L∗, which is also an elliptic operator.. For any region Ω with analytic

boundary ∂Ω we have

∫

Ω

(
Lxf(x) · K(x, y) − f(x) · L∗

xK(x, y)
)
dx =

∫

∂Ω

τL

(
f(x), K(x, y)

)
dx .

If Lxf = 0 then the first term inside the volume integral vanishes, and by assumption the remaining integral is

−f(y). So

f(y) = −

∫

∂D

τL

(
f(x), K(x, y)

)
dx .

But K(x, y) is analytic in y on ∂D, so the integral is, too.

The point is therefore to prove Proposition 3.1. This will take many steps and much discussion, but with each[fundamental-elliptic]

step—I hope—almost transparent.

In the next two sections I’ll look at some examples.

4. Ordinary differential equations

Let L be the linear ordinary differential operator

L = ap(x)
dp

dxp
+ · · · + a1(x)

d

dx
+ a0(x) .

I’ll assume the coefficients to be smooth functions on all of R, with ap(x) never vanishing.

4.1. Proposition. A function Φ(x) satisfies LΦ = δy if and only if:[fund-sol-ode]

(a) Φ is smooth in the region x 6= y and satisfies LΦ = 0 there;
(b) Φ(k) is continuous at x = y for k < p − 1;
(c) Φ(p−1) increments by 1/ap(y) at y.

Proof. Only the conditions at y need to be checked. By definition of the effect of a differential operator on a

distribution
〈LΦ, f〉 = 〈Φ, L∗f〉

=

∫ ∞

−∞

Φ(x)(L∗f)(x) dx

=

∫ y

−∞

Φ(x)(L∗f)(x) dx +

∫ ∞

y

Φ(x)(L∗f)(x) dx ,

where L∗ is the adjoint of L. How to calculate these last integrals? Repeated integration by parts gives us

∫ t

s

a(x)Φ(k)f(x) dx

=
[
Φ(k−1)(x)(af)(x) − Φ(k−2)(x)(af)′(x) + · · · + (−1)k−1Φ(x)(af)(k−1)(x)

]t

s

+ (−1)k

∫ t

s

Φ(x)(af)(k) dx .
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This leads first to the formula (
a(x)

dk

dxk

)∗

f = (−1)k dk(af)

dxk

and then to the equations

∫ y

−∞

(LΦ)(x)f(x) dx =
[
ap(x)Φ(p−1)(x)f(x)

]y

−∞

+

[ ∑

0≤k<p−1

Ak(x)Φ(k)(x)

]y

−∞

+

∫ y

−∞

Φ(x)(L∗f)(x) dx

∫ ∞

y

(LΦ)(x)f(x) dx =
[
ap(x)Φ(p−1)(x)f(x)

]∞
y

+

[ ∑

0≤k<p−1

Ak(x)Φ(k)(x)

]∞

y

+

∫ ∞

y

Φ(x)(L∗f)(x) dx

where the Ak(x) are smooth on all of R and vanish at infinity (since f has compact support). This in turn, since

LΦ = 0 as a function and the Φ(k) for k < p − 1 are continuous, leads to

〈LΦ, f〉 =

∫ y

−∞

Φ(x)
(
L∗f)(x) dx +

∫ ∞

y

Φ(x)(L∗f
)
(x) dx

=
(
Φ(p−1)(y+) − Φ(p−1)(y−)

)
ap(y)f(y)

= f(y) .

In courses on ordinary differential equations, this result is often presented in a more concrete fashion. Suppose

L of order p has constant coefficients, and ϕ is a function with ϕ(k)(0) = 0 for k < p − 1, ϕ(p−1)(0) = ap. Then

ϕ(x) satisfies Lϕ = δ0, ϕ(x − s) satisfies Lϕ(x − s) = δs and

F (x) =

∫ x

a

ϕ(x − s)f(s) ds

is the solution of LF = f with F (k)(a) = 0 for 0 ≤ k < p. This is the formula derived by the technique called

‘variation of parameters’. This formula, once guessed, has an easy verification, using this elementary result from
calculus:

4.2. Lemma. If[int-params]

F (x) =

∫ x

a

f(x, s) ds

then

F ′(x) = f(x, x) +

∫ x

a

∂f(x, s)

∂x
ds .
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Proof. I can’t resist giving the calculation here. Fix b > x and write formally (but justifiably):

F (x) =

∫ b

a

χ[a,x](s)f(x, s) ds

F ′(x) = (d/dx)

∫ n

a

χ[a,x](s)f(x, s)

=

∫ n

a

(
(d/dx)χ[a,x](s)f(x, s) + χ[a,x](s)(d/dx)f(x, s)

)
ds

=

∫ n

a

(
δx(s)f(x, s) ds +

∫ x

a

∂f(x, s)

∂x
ds

f(x, x) +

∫ x

a

∂f(x, s)

∂x
ds .

5. The Laplacian

Consider the Laplacian ∆ on R
n. If f(r) is a function of r alone on R

n then

∂f

∂xk

=
∂r

∂xk

f ′(r)

=
x

r
f ′(r)

∂2f

∂x2
k

=

(
r2 − x2

k

r3

)
f ′(r) +

(
x2

k

r2

)
f ′(r)

∆f = f ′′(r) +

(
n − 1

r

)
f ′(r) .

Thus the ordinary differential equation ∆f(r) = 0 has a regular singularity at the origin. Solutions are of the

form f(r) = rs with s
(
s − (n − 2)

)
= 0, except when this equation has equal roots in which 1 and log r form a

basis of solutions.

5.1. Proposition. For every n > 0 set[fund-sol-laplacian]

Fn(r) =

{ r n = 1
log r n = 2

−1/(n − 2)rn−2 n > 2

Then ∆Fn = Γn−1 δ0.

Here Γn−1 is the n − 1­dimensional volume of the unit sphere in R
n. The consequence is that

f
(
‖x − y‖

)
/Γn−1

is a fundamental solution of ∆.
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Proof. Starting with the definition of ∆Fn

〈∆Fn, f〉 = 〈Fn, ∆f〉

=

∫
Fn(x)∆f(x) dx

= lim
ε→0

∫

‖x‖≥ε

Fn(x)∆f(x) dx

∫

‖x‖≥ε

Fn(x)∆f(x) dx =

∫

‖x‖≥ε

∆Fn(x)f(x) dx +

∫

‖x‖=ε

Fn(x)
∂f

∂r
−

∂Fn

∂r
f(x) dx

=

∫

‖x‖≥ε

∆Fn(x)f(x) dx +

∫

‖x‖=ε

Fn(x)
∂f

∂r
−

∫

‖x‖=ε

∂Fn

∂r
f(x) dx

=

∫

‖x‖≥ε

∆Fn(x)f(x) dx −

∫

‖x‖=ε

Fn(x)
∂f

∂r
dx +

∫

‖x‖=ε

1

rn−1
f(x) dx

→ Γn−1f(0) .

The two examples I have explained are in fact related. Let H be the hyperplane xn = 0, and let δH be

the distribution that amounts to integrating over H . If f(xn) is a function of one variable extended through
projection into n dimensions, a solution of the equation ∆F = f is given by

F (x1, . . . , xn) =

∫ xn

a

(xn − s)f(s) ds .

It is invariant under translation by vectors in the hyperplane xn = 0. This works because a solution of ϕ′′ = δ0 is

ϕ(x) =
{

0 if x < 0
x otherwise

.

In n dimensions ϕ(xn − s) is a solution of ∆ϕ = δxn−s.

Green’s formula in the plane is

∫

Ω

(
∆f · g − f · ∆g

)
dxdy =

∫

∂Ω

(
∂f

∂ν
g − f

∂g

∂ν

)
ds .

Formally, if we let

rx,y(ξ, η) =
√

(ξ − x)2 + (η − y)2

and set

g = log rx,y

the ∆rx,y = δx,y and we get

f(x, y)

2π
= −

∫

Ω

∆f · log rx,y dξdη −

∫

∂Ω

(
f

∂ log rx,y

∂ν
− log rx,y

∂f

∂ν

)
ds

for (x, y) inside Ω. This implies that if ∆f is analytic, and in particular vanishes, then f itself is analytic.

Similar arguments about radially symmetric eigenfunctions of ∆ with a logarithmic singularity at 0 (which can
be expanded in series easily, and produce Bessel functions), will imply the same about eigenfunctions of ∆. Even

the eigenfunctions of the non­Euclidean Laplacian on the upper half­palne can be dealt with similarly. This is a
special case of John’s argument.
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6. Radon’s integral

If f is any function in the Schwartz space S(Rn), to each affine hyperplane H in R
n we can associate the integral

f̂(H) =

∫

H

f(h) dh .

The function H 7→ f̂(H) is called the Radon transform of f . I ask, can f be recovered from its Radon transform?
And if so, how? In recent years these have become practical questions since the Radon transform is essentially

what computerized tomography measures, but for us it will remain theoretical.

I define a plane wave inR
n to be a tempered distribution invariant under the translations of a hyperplane through

the origin. Each point ξ 6= 0 in R
n and in particular a point of the unit sphere S

n−1 corresponds to the hyperplane

perpendicular to it. The goal of this section is to explain a generalization of a result originating with Radon about
lines in the plane that represents the Dirac δ0 as an average over S

n−1 of distributionsKξ each of which is a plane

waves invariant under ξ⊥.

If ξ is a unit vector in S
n−1, associated to it is the map

ιξ: R −→ R
n, t 7−→ tξ

as well as the projection

πξ: R
n −→ R, x 7−→ x • ξ .

Associated to these are linear maps

ι∗ξ : S(Rn) 7−→ S(R), [ι∗ξf ](t) = f(tξ)

and

πξ
∗: S(Rn) −→ S(R), [πξ

∗f ](t) =

∫

h • ξ=0

f(tξ + h) dh .

These two constructions are dual to one another in terms of the Fourier transform.

6.1. Proposition. For f in S(Rn)[xi-ft]

(a) the Fourier transform of πξ
∗f is ι∗ξ f̂ ;

(b) the Fourier transform of ι∗ξf is πξ
∗f̂ .

Proof. The first one is direct. At first let F = πξ
∗(f). Then

F̂ (x) =

∫

R

e−2πi(xy)F (y) dy

=

∫

R

e−2πi(xy) dy

∫

h • ξ=0

f(yξ + h) dh

=

∫

Rn

e−2πi(xξ • z)f(z) dz

= [ι∗ξ f̂ ](x) .

The second follows from this and Fourier duality. Set f = ϕ̂, ϕ = µ−1f̂ . Then Then

F = ι∗ξf

= ι∗ξ ϕ̂

= Fourier transform of πξ
∗ϕ (from the first part)

F̂ = µ−1π
ξ
∗ϕ

= πξ
∗f .
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Dual to the maps ι∗ξ and πξ
∗ from S(Rn) to S(R) are maps from tempered distributions on R to those on R

n:

〈ιξ∗Φ, f〉 = 〈Φ, ι∗ξf〉

〈π∗
ξ Φ, f〉 = 〈Φ, πξ

∗f〉

The distribution ιξ∗Φ has support onL. The distributionπ∗
ξ Φ is invariant under translations in x • ξ = 0. Formally,

we have

〈ιξ∗Φ, f〉 =

∫

R

Φ(t)f(tξ) dx

〈π∗
ξ Φ, f〉 =

∫

Rn

Φ
(
y • ξ

)
f(y) dy

where πL is orthogonal projection onto L. The notation in the following result makes it look like the previous
one, from which it follows, although with entirely different meaning:

6.2. Proposition. For Φ a tempered distribution on R[xi-ft-dual]

(a) the Fourier transform of ιξ∗Φ is π∗
ξ Φ̂;

(b) the Fourier transform of π∗
ξΦ is ιξ∗Φ̂.

I want to express δ0 as an integral of plane waves. The Fourier transform of δ0 is the constant function 1, and
I am going to start by representing 1 as an integral of distributions over the sphere. This is straightforward.

Expressing 1 in polar coordinates:

〈1, f〉 =

∫

Rn

f(x) dx =

∫

Sn−1

dξ

∫ ∞

0

rn−1f(rξ) dr .

The inner integral is the linear distribution corresponding to the function

Rn(x) =
{

0 x < 0
xn−1 x ≥ 0

Since the Fourier transform of 1 is δ0 and the Fourier transform commutes with spherical integrals, we have

δ0 =

∫

Sn

R̂ξ dξ

where Rξ is the distribution on R
n:

〈Rξ, f〉 =

∫ ∞

0

rn−1f(rξ) dr .

We must now find the Fourier transform of Rξ. By Proposition 6.2, this is the pull­back to R
n of the one­♣ [xi-ft-dual]

dimensional Fourier transform of Rn(x) on R · ξ.

First of all,

Rn(x) =
Rn,+ + Rn,−

2

where Rn,+ is even and Rn,− is odd. Evaluating these distributions on spherically symmetric functions f(r2)
shows that the spherical integral of the odd ones vanishes. So we have only to deal with Rn,+. We have

Rn,+ =

{
xn−1 if n is odd

xn−1sgn(x) if n is even.
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6.3. Lemma. The Fourier transform of xn is[ft-pv]

δ
(n)
0

(−2πi)n

and the Fourier transform of xnsgn(x) is

2n!

(2πi)n+1
Pf(1/xn+1) .

Proof. The Fourier transform of δ0 is 1, hence the transform of δ
(n)
0 is (2πiy)n, so the Fourier transform of (2πiy)n

is µ−1δ
(n)
0 = (−1)nδ

(n)
0 . Therefore the transform of yn is (−1)nδ

(n)
0 /(2πi)n.

Before doing the second half of the proof, I’ll first recall some facts about parties finies distributions. Suppose f
in S(R), and let

f(x) = f0 + f1x + f2x
2 + · · ·

be its Taylor series at 0, so fm = f (m)(0)/m!. Then

ϕn(x) = f −
f0 + xf1 + · · · fnxn

xn+1

is still smooth throughout R, although no longer in in S(R). Then

∫ ∞

ε

f(x)

xn+1
dx =

∫ 1

ε

f(x)

xn+1
dx +

∫ ∞

1

f(x)

xn+1
dx

=

∫ 1

ε

f0 + xf1 + · · · + fnxn

xn+1
dx +

∫ 1

ε

ϕn(x) dx +

∫ ∞

1

f(x)

xn+1
dx .

The last integral is independent of ε. As ε → 0, the second integral has a finite limit. The first integral is

[
−

f0

nxn
−

f1

(n − 1)xn−1
− · · · − fn log x

]1

ε

= −
f0

n
−

f1

(n − 1)
− · · · − fn−1 +

f0

nεn
+ +

f1

(n − 1)εn−1
+ · · · + fn log ε

Therefore the limit

lim
ε→0

∫ ∞

ε

f(x)

xn+1
dx −

( f0

nεn
+

f1

(n − 1)εn−1
+ · · · + fn log ε

)

exists, and defines a distribution called the finite part Pf(1/xn+1).

The distribution Pf(1/xn+1) behaves covariantly with respect to scalar multiplication. So does xnsgn(x) and its

Fourier transform must be a multiple of Pf(1/xn+1), since such covariant distributiosn are unique up to scalar.

The scalar is easily calculated by considering the effect on various Hermite functions P (x)e−πx2

.

Let

Φn =





δ
(n)
0

2(−2πi)n n odd

n!
(2πi)n+1 Pf(1/xn+1) n even.

6.4. Proposition. (Radon inversion formula) We have[radon-inversion]

δ0 =

∫

Sn−1

Φn−1(x • ξ) dξ .
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7. The characteristic variety

The characteristic variety at x is the projective variety of ξ in P(T ∗
x ) determined by the homogeneous equation

σL(x, ξ) = 0. An elliptic operator is one whose real characteristic variety is everywhere empty. The Laplacian,

for example, is elliptic.

What is the practical significance of the characteristic variety? Very roughly, it says something about the possible

singularities of the solution of an equation LF = 0. According to this idea, solutions to elliptic equations should

therefore have essentially no singularities, and this turns out to be the case. There are two aspects to this—on the
one hand, solutions to elliptic equationswith smooth coefficients are themselves smooth. On the other, solutions of

equations with analytic coefficients are analytic. The first of these results is probably the more important for most

purposes, and it is by far the easier to prove. The second, however, is one of the cornerstones of representation
theory. It allows an an extrapolation from local to global that makes the basic link between representations of a

Lie group and its algebra on infinite­dimensional spaces. It is this second result about analyticity that this note is
concerned with.

The identification of symbols with homogeneous functions on T ∗
x is canonical. This is most simply seen from a

calculation. Suppose we change coordinates from x = (xi) to y = (yi). The chain rule gives us




∂/∂x1

∂/∂x2

. . .
∂/∂xn


 =




∂y1/∂x1 . . . ∂yn/∂x1

∂y1/∂x2 . . . ∂yn/∂x2

. . .
∂y1/∂xn . . . ∂yn/∂xn







∂/∂y1

∂/∂y2

. . .
∂/∂yn


 .

This gives us expressions for higher derivatives as well. Thus

∂

∂xi

(
∂f

∂xj

)
=

∂

∂xi

( ∑

ℓ

∂yℓ

∂xj

∂f

∂yℓ

)

=
∑

ℓ

(
∂2yℓ

∂xi∂xj

∂f

∂yℓ

+
∂yℓ

∂xj

∂

∂xi

∂f

∂yℓ

)

=
∑

ℓ

∂2yℓ

∂xi∂xj

∂f

∂yℓ

+
∑

k,ℓ

∂yk

∂xi

∂yℓ

∂xj

∂2f

∂yk∂yℓ

so that
∂ 2

∂xi∂xj

=
∑

k,ℓ

∂yk

∂xi

∂yℓ

∂xj

∂ 2

∂yk∂yℓ

+ differential operators of degree one ,

in which the coefficient of ∂2/∂y2
k is

∂yk

∂xi

∂yk

∂xj

+
∂yk

∂xj

∂yk

∂xi

.

If i 6= j this is the same as the symbol of ∂ 2/∂xi∂xj evaluated at dyk.

What conclusion? The sheaf of differential operators is filtered by order, and an induction argument based on
similar calculations shows that coordinate changes preserve this filtration. A closer look shows that coordinate

changes act on the graded ring determined by this filtration as they do on the ring of symmetric tensors S•Tx, and
that the identification of the symbol of a differential operator with a homogeneous function on T ∗

x is canonical.

We shall need to know in a moment, in particular, that the coefficient of ∂p/∂yp
1 in the new expression for a

differential L of order p at x is σL(x, dy1).

If ξ lies in T ∗
x then ξ is called characteristic for the operator L if σL(x, ξ) = 0, non­characteristic otherwise.
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7.1. Proposition. The cotangent vector ξ at x is non­characteristic if and only if one can make a coordinate change[cauchy-k-symbol]

y = y(x) locally around x with ξ = dy1 so that the operator L takes the form

L = b∗(x)∂p/∂yp
1 +

∑

|k|≤p

∗
bk(y) ∂k/∂yk ,

where b∗(x) 6= 0 and the sum does not involve ∂p/∂yp
1 .

Proof. This follows from the remark made a moment ago about the coefficient of ∂p/∂yp
1 after a coordinate

change.

8. The Cauchy-Kowalevsky theorem

Suppose L to be expressed in non­degenerate form

L = ∂p/∂xp
n +

∑

|k|≤p

bk(x) ∂k/∂xk

where the second sum does not involve ∂p/∂xp
n.

8.1. Lemma. Given p formal series Fi(x1, . . . , xn−1) for 0 ≤ i < p there exists a unique formal series[formal-CK]

F (x1, . . . , yn) satisfying LF = 0 with

∂kF/∂xk
1(x1, . . . , xn−1, 0) = Fk(x1, . . . , xn−1) .

Let D̂n be the ring of differential operators whose coefficients are formal power series in the n variables xj with
1 ≤ j ≤ n. Let (L) be the ideal generated by L. The previous result follows from this, which is easy to verify:

8.2. Lemma. The ring Dn/(L) is free over D̂n−1 of rank p.[formal-version]

This means that given p formal power series in the first n− 1 variables there exists a unique formal power series

Φ in n variables solution of LΦ = 0 restricting suitably to xn = 0. It makes plausible:

8.3. Proposition. (Cauchy­Kowalevsky) Suppose xn = c to be a hyperplane H with σ(x, dxn) 6= 0, and suppose[cauchy-kowalevsky]

that the coefficients of L are real analytic in the neighbourhood of x. Given any p analytic functions Fm defined
on H near x, there exists a unique real analytic solution of LΦ = 0 in the neighbourhood of x such that

∂kΦ(x1, . . . , xn−1, 0)/∂xk
n = Fk(x1, . . . , xn−1)

for 0 ≤ k < p.

A classic theorem of Holmgren extends the uniqueness to smooth solutions as well.

The first step in the proof is to simplify the calculations by changing the given system equation into a system of
N first order equations of the form

∂uj

∂xn

=
∑

1≤k≤N,ℓ<n

ak,ℓ(x)
∂uk

∂xℓ

+
∑

1≤k≤N

ak(x)uk(x)+

This is done by introducing new variables ui for all partial derivatives ∂kΦ/∂xk with k| < p, and then being

careful about the initial conditions to impose. For example, for the Laplacian

∂2Φ

∂x2
1

+
∂2Φ

∂x2
2

= 0
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we introduce
u1 = Φ

u2 = ∂Φ/∂x1

u3 = ∂Φ/∂x2 .

Then
∂u2

∂x2
=

∂2Φ

∂x2∂x1
=

∂2Φ

∂x1∂x2
,

∂u3

∂x2
=

∂2Φ

∂x2
2

= −
∂2Φ

∂x2
1

leading to the system
∂u1

∂x2
= u3

∂u2

∂x2
=

∂u3

∂x1

∂u3

∂x2
= −

∂u2

∂x1
.

For this linear system we are specifying the initial values of the functions ui on the hyperplane xn = 0, which

means three independent functions of x1, . . . , xn−1. This is in contrast to the initial conditions of the original

problem, which required only two. The difference is accounted for by the fact that the original problem specifies
the initial value of u3 = ∂Φ/∂x1 on x2 = 0. The original equation is equivalent to the derived first order system

of equations, but with restricted initial conditions.

To see how things go, I’ll just look at the one of the simplest examples

∂u

∂y
= a(x, y)

∂u

∂x
+ b(x, y)u .

where we are given convergent series

u(x, 0) = u0(x)

=
∑

ujx
j

a(x, y) =
∑

aj,kxjyk

b(x, y) =
∑

bj,kxjyk .

We are looking for a series solution u(x, y). We have

u =
∑

j,k

uj,kxjyk

∂u

∂x
=

∑

j,k

(j + 1)uj+1,kxjyk

∂u

∂y
=

∑

j,k

(k + 1)uj,k+1x
jyk

and we get an equation

∑

j,k

(j + 1)uj+1,kxjyk =
(∑

aj,kxjyk
)(∑

(k + 1)uj,k+1x
jyk

)
+

( ∑
bj,kxjyk

)( ∑
uj,kxjyk

)

=
∑

Pj,k(a, b, u)xjyk

where the coefficients in the polynomials Pj,k are all non­negative. The differential equation gives us conditions
on all the uj,k with j ≥ 1 but the u0,k are determined by the boundary conditions u(x, 0) = u0(x).
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The method to be applied is that of majorants , due originally to Cauchy himself. I’ll exhibit an equation

∂U

∂y
= A(x, y)

∂U

∂x
+ B(x, y)u, U(x, 0) = U0(x)

which can be solved explicitly by a relatively simple convergent series and which majorizes the original one in
that we have inequalities

Uj ≥ |uj|

Aj,k ≥ |aj,k|

Bj,k ≥ |bj,k|

8.4. Lemma. If the second system majorizes the first, then the solution of the second system majorizes that of the[majorizing]

first.

This means that Uj,k ≥ |uj,k| and since the series for U converges so does that for u.

Proof. Because the coefficients of P are non­negative.

So now it remains only to find a majorizing equation that can be solved exactly.

8.5. Lemma. Suppose A(x) =
∑

akxk converges for |xj | ≤ r where[majorizing]

xk = xk1

1 . . . xkn

n .

There exists C such that A(x) is majorized by the series

C

1 −

(
x1 + · · · + ρxn

r

) .

for any 1 ≤ ρ.

Proof. This is a straightforward consequence of the convergence hypthesis.

Now we are to find an equation that majorizes the given one, and is explicitly solvable. The secret to making it

solvable is to make all the functions of (x, y) functions a single variable z which is to be a linear function of x and
y, say z = x + ρy. The partial differential equation becomes

ρU ′(z) = A(z)U ′(z) + B(z)U(z)

which becomes
U ′(ρ − A(z)β) = B(z)U

U ′

U
=

B(z)

ρ − A(z)β

U = U(z)eC(z)

C(z) =

∫ z

0

B(s) ds

ρ − A(s)

=
1

ρ

∫ z

0

B(s) ds

1 −
(
A(s)/ρ

)

=
1

ρ

∫ z

0

B(s)
(
1 +

(
A(s)/ρ

)
+

(
A(s)/ρ

)2
+ · · ·

)
ds

which makes sense as long as we choose ρ large enough so that A(s)β/α| < 1 in the interval [0, z] we are

concerned with. It now remains only to choose A(z) and B(z) majorizing the coefficients of the equation. This
is where the lemma comes in.
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9. Its consequences

1. Find solution of LΦ = δξ • x−s.

2. Then of inhomogeneous equations, as for dim. one.

3. Solve inhomogeneous arising in Radon’s formula.

4. Find fund. soln. of L, varying analytically with x.

5. Show locally integrable.

10. An application to representation theory

Suppose G to the group of real points on a Zariski­connected reductive group defined over R (i.e. one whose

group of complex points is connected), K a maximal compact subgroup. The group G has a finite number of

topological components, and K meets them all. A smooth representation of G is called admissible if irreducible
representations ofK occur with finite multipicity and some ideal ofZ(g) of finite codimension annihilates it. The

following can be found in §§3.17–3.23 of [Borel:1974].

10.1. Proposition. Suppose (π, V ) to be an admissible smooth representation of G. If W is stable under g and[borel-admissible]

K , then its closure is stable under G.

Proof. Let V(K) be the subspace ofK­finite vectors in V . It is stable under g, and of finite length as a module over

(g, K). The subspace W is hence finitely generated over U(g), say by the K­stable finite­dimensional subspace

U .

Let W∗ be the smallest closed, G­stable subspace of V containing U . The vectors π(g)u for g in G, u in U are thus

dense in W∗. The space W∗ is stable under U(g), hence contains W .

By the Hahn­Banach theorem, it suffices to show that if λ is in the continuous dual of W∗ and vanishes on W
then it vanishes on all of W∗. From what I have remarked in the previous paragraph, it suffices to show that the
function Fλ,u with

Fλ,u(g) = 〈λ, π(g)u〉

vanishs identically. The Casimir element C of U(g), acting on vectors of a fixed K­type, is elliptic. Therefore
P (C) is elliptic for every polynomial P (x). Since P (C)U = 0 for some polynomial P . Because of the analyticity

of solutions of elliptic differential equations, the function Fu is analytic on G. Its derivative at 1 is determined by

the 〈λ, π(X)u〉 for X in U(g). By assumption these vanish, so Fu(g) vanishes on the connected component of G.
Since U is K­stable, it vanishes on all of G. But if 〈λ, π(g)u〉 = 0 for all g in G and u in U then λ = 0 on W∗.
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