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SupposeG to be the groupofR­rational points on aZariski­connected, reductive, algebraic groupdefined

over R. It is determined through Galois descent by a Cartan involution θ whose fixed points make up a

maximal compact subgroup K . This essay will be concerned with a classic theorem due originally to E.
Cartan:

Theorem. Every compact subgroup of G is contained in a conjugate of K .

The proof follows very roughly the same lines that Cartan’s did. The first half is a very general theorem

about spaces which are, in some sense, of non­positive curvature. It says that any compact group acting
on such a space possesses a fixed point. In the second, it is shown that the space G/K satisfies this

curvature condition. The two together imply Cartan’s theorem.

In Cartan’s original proof, the fixed point theorem was about Riemannian spaces of negative curvature,

but I’ll use instead a simpler geometric notion due to [Bruhat­Tits:1972]. This allows an argument that

is somewhat shorter and more direct than the standard one presented, for example, in [Helgason:1968].
The original application of the criterion of Bruhat­Tits was to buildings, as explained in [Bruhat­Tits:1972]

and also the book [Brown:1989]. But Bruhat and Tits also observed that the criterion would apply to

manifolds of negative curvature.

My treatment is somewhat similar to that in [Lang:1999], but differs substantially in the second part,

where Lang follows closely [Mostow:1953]. The argument I’ll present seems to be somewhat simpler
than anything in the literature. The proof reduces to the easy case of SL2(R). I’ll show first how this

works in terms of non­Euclidean geometry, then again in terms of root systems.
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1. The fixed point theorem of Bruhat-Tits

Suppose X to be any complete metric space with distance function xy. I’ll call it semi-hyperbolic if it

satisfies the criterion of §3.2 of [Bruhat­Tits:1972]:

Whenever one is given two points x and y there exists a third point m (for midpoint ) such that for
all z in X

2 zm2 +
xy2

2
≤ zx2 + zy2 .
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This definition is motivated to some extent by an elementary theorem in Euclidean geometry, which
asserts equality in that case:

1.1. Proposition. Given two points x and y in the Euclidean plane, let m be the midpoint of the segment[pappus]

xy. Then

2 zm2 +
xy2

2
= zx2 + zy2 .

Proof. This is a straightforward consequence of the cosine formula for triangles or, equivalently, some

simple vector dot­product calculations. Indeed, Bruhat and Tits make a point of referring in their article

to Pappus of Alexandria (Book VII, Proposition 122 of The Collection), who apparently first proved the
cosine formula. But there is a more direct proof, indicated by the figure below:
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It tells us that
zx2 = za2 + ax2

= (zm − am)2 + ax2

= zm2 + xm2 − zm·am

zy2 = zb
2

+ by
2

= (zm + mb)2 + by
2

= zm2 + ym2 + zm·mb

zx2 + zy2 = 2 zm2 + xm2 + my2

= 2 zm2 + (xy2/2) .

One can rewrite the semi­hyperbolic inequality as

xy2

2
≤ (zx2 − zm2) + (zy2 − zm2) .
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The important consequence is that if the differences between zx and zm and between zy and zm are

small, then the distance xy is small as well. This is not true for geometry on the sphere, as one can see

easily—points on the equator all have the same distance from the north pole, but may be quite far from
each other.

What I call a semi­hyperbolic space is called in the current literature a CAT (0) space, satisfying one
of a hierarchy of curvature conditions CAT (κ), with κ being a rough measure of curvature, so that

CAT (−1) means strictly negative curvature. This hierarchy was introduced in [Gromov:1987] to unite

many different approaches to similar problems, and is an active subject of research.

1.2. Proposition. In the criterion for a semi­hyperbolic space, the point m lies midway between x and y,[unique]

and is unique.

Proof. Letting z = x leads to xm2 ≤ xy2/4, and letting z = y to ym2 ≤ xy2/4. The triangle inequality
then gives xm = ym = xy/2. If m∗ is a second point satisfying the criterion, then setting z = m∗ gives
mm∗ = 0.

For a given x, y let mx,y be this unique point, their midpoint.

In correspondence with Ken Brown, Serre proposed an elegant simplification of the argument of Bruhat­

Tits, and it is an amplification of this that can be found in [Brown:1989]. I follow Brown’s argument. If

X is a metric space, the disk in X with centre c and radius r is the region

Dc(r) = {x | cx ≤ r} .

Suppose Ω to be a bounded subset of a metric space X . For any c, define rΩ(c) to be the least upper

bound of the distances cx for x in Ω. Thus if r ≥ rΩ(c) then Ω ⊆ Dc(r), but if r < rΩ(c) there exist
points of Ω outside Dc(r).

c

Ω

r
Ω (c)
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The radius rΩ of Ω is the greatest lower bound of the radii of disks containing it, or equivalently the

greatest lower bound of all rΩ(c). This does not immediately imply that there exists a point c with
Ω ⊆ Dc(rΩ), but if it does exists it will be called a circumcentre of Ω.

1.3. Proposition. (Serre) In a complete semi­hyperbolic space, every bounded subset possesses a unique[circumcentre]

circumcentre.

Proof. Let Ω be a bounded subset of X . Suppose x and y to be any points in X , with m = mx,y . Then

Ω ⊆ Dx

(

rΩ(x)
)

∩ Dy

(

rΩ(y)
)

.
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By the semi­hyperbolic inequality

mz2 ≤ xz2 + yz2

2
− xy2

4
≤ r2

Ω
(x) + r2

Ω
(y)

2
− xy2

4

for all z in Ω. But then

r2

Ω(m) ≤ r2

Ω
(x) + r2

Ω
(y)

2
− xy2

4

xy2 ≤ 2
[(

r2

Ω(x) − r2

Ω(m)
)

+
(

r2

Ω(y) − r2

Ω(m)
)]

≤ 2
[(

r2

Ω(x) − r2

Ω

)

+
(

r2

Ω(y) − r2

Ω

)]

.

We can find a sequence of centres ci of radii ri such that (a) the limit of the ri is r(Ω) and (b) Ω ⊆ Dci
(ri)

for each i. The inequality above with x = ci, y = cj implies this to be a Cauchy sequence, so there exists
a limit c, and one can verify that Ω ⊆ Dc(r).

The same inequality immediately implies uniqueness.

1.4. Corollary. Any compact group of isometries of a complete semi­hyperbolic space possesses a fixed[fixed-serre]

point.

Proof. The circumcentre of any orbit will be fixed.

2. Non-Euclidean geometry

In this section let G = SL2(R), K = SO(2). I’ll show here that G/K is semi­hyperbolic, thus proving
Cartan’s theorem in this case. I’ll do this geometrically, interpreting the group G as a group of non­

Euclidean isometries. This is best done in terms of the realization of G/K as the space X of positive
definite, symmetric, 2 × 2 matrices of determinant 1. The group GL2(R) acts on the space of all 2 × 2
symmetric matrices according to the specification

x 7−→ g x tg ,

with O(2) the isotropy subgroup of the identity matrix I . The space X is the SL2(R)­orbit of I .

This set can be pictured in three dimensions, since the space of symmetric matrices has dimension three.

Choose coordinates
[

p q
q r

]

.

The matrices here with determinant 0 make up the homogeneous cone pr − q2 = 0; the positive definite
ones are those where pr−q2 > 0 and both p > 0, r > 0; the negative definite ones are where pr−q2 > 0,
p < 0, r < 0; the indefinite ones are where pr − q2 < 0. The positive definite ones of determinant 1
make one sheet of the two­sheeted hyperboloid X where pr − q2 = 1, that where p > 0.
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Since K is the isotropy subgroup of I , a G­invariant Riemannian metric on X is determined uniquely by
a K­invariant metric on the tangent plane at I . The full three­dimensional tangent space at I may be

identified with the vector space itself. We choose on the space of symmetric 2 × 2 matrices the metric

(1

2

)

trace(X2) =
p2 + r2

2
+ q2 .

The basis √
2

∂

∂p
,

√
2

∂

∂r
,

∂

∂q

is orthonormal at I , and
∂

∂p
− ∂

∂r
,

∂

∂q

is an orthonormal basis for the tangent space of X at I .

The group K acts by rotating the hyperboloid around the line p = r, q = 0. The geodesics passing

through I are the intersections of X with the planes passing through this line. Because the action of G
is linear, the other geodesics are the intersections of X with the planes passing through the origin that

intersect the interior of the cone pr − q2 > 0.

Slice the cone by a plane giving a circular section. Projection of the cone’s interior onto the inside of this

disk is a bijection. This gives the Klein model of non­Euclidean geometry, in which the geodesics are
straight line segments inside the unit disk.

In particular, the orbit of I with respect to the group of diagonal matrices

at =

[

et/2
◦

◦ e−t/2

]

is a geodesic. The non­Euclidean distance from I to At = at · I = (et, 0, e−t) is t. The differential of at

takes the vector ∂/∂b to itself. Therefore the length of the circumference of the non­Euclidean circle at
At is just its Euclidean circumference, which is 2π times the radial distance from the centre line p = r,
q = 0. This radial distance is the same as half the distance fromAt toA−t, or (1/2)|et−e−t| =

∣

∣ sinh(t)
∣

∣.

The non­Euclidean circumference of the circle of radius t > 0 is therefore 2π sinh(t). As t → 0 this is
asymptotically 2πt, as it should be.
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This turns out to be the crucial point in proving that X is semi­hyperbolic. If v is a tangent vector at a

point x on X, there exists a unique geodesic starting out from x in the direction of v. The exponential

map expx at x takes v to the point at distance ‖v‖ along that geodesic. The exponential map expx is a
bijection of Tx with X for each x, since G acts transitively on X, and at the point x = (1, 0, 1) this is clear.
The differential­geometric exponential map defined here agrees with the matrix exponential map

I + X +
X2

2!
+

X3

3!
+ · · ·

on the subspace of symmetric matrices of trace 0 at I . Let logx be the map inverse to expx.

A linear map from one Euclidean vector space to another is expanding if lengths are not decreased. A

map ϕ from one Riemannian manifold to another is locally expanding if its derivative at any point is
expanding. It follows immediately from the definition that a locally expanding map is expanding in the

non­local sense that if γ(t) is a path in the first manifold than the image path ϕ
(

γ(t)
)

has length at least
that of γ(t).

2.1. Proposition. Suppose M to be a Riemannian manifold such that (a) the exponential map at any x on[expanding-exp]

M is a diffeomorphism of Tx with M ; (b) the exponential map at any point is locally expanding. Then
M is semi­hyperbolic.

Proof. Given x and y in M , there exists a unique point m half­way on the geodesic from x to y. There
exists a unique X in Tm such that x = exp(X); let Y = −X , so that y = exp(Y ). Given z on M , let Z in

Tm be such that exp(Z) = z.

We have
xm = ‖X‖
ym = ‖Y ‖
zm = ‖Z‖

since the appropriate paths are geodesics through m. Let γ be the geodesic segment from z to x. Since
the exponential map is expanding, its inverse shrinks, and so

zx = γ ≥ log(γ) ≥ ZX .

The last is because the shortest path in Tm is a straight line segment. Similarly for z, y. Therefore, because
of the parallelogram equality in Euclidean space

zm2 = ‖Z‖2 =
ZX

2

+ ZY
2

2
− ‖X‖2 ≤ zx2 + zy2

2
− xy2

4
.

It now remains to show that the exponential map at (1, 0, 1) is expanding. But it follows from the

calculation of the non­Euclidean circumference that at a point on the tangent plane at radius r the

derivative of the exponential map has matrix

[

1 ◦

◦ sinh(r)/r

]

,

and | sinh(r)/r| ≥ 1.
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3. The Riemannian symmetric space G/K

We now take up the second part of the proof of the initial Theorem for an arbitrary semi­simple groupG.
Like all other proofs I am aware of, it shows that the exponential maps on G/K are locally expanding,

and thus that G/K is semi­hyperbolic.

First we describe a particular model for G/K . Recall that θ is the Cartan involution defining G, with K
equal to the group of its fixed points. Let g be the Lie algebra of G. Then

g = k ⊕ s

where k is the +1­eigenspace of θ (also the Lie algebra of K) and s is the−1­eigenspace. Restricted to s,
the exponential map is an isomorphism with its image S, which is precisely the set of g with gθ = g−1.

The group G acts on S according to the formula

s 7−→ g s g−θ
(

g−θ = θ(g−1)
)

.

For example, if G = SLn(R) then we may choose θ to be the map g 7→ tg−1 and s to be the space of
symmetric matrices of trace 0, so that S is the set of all positive definite n × n matrices.

ThegroupGacts transitively—in fact, if s = exp(X) then exp(X/2) takes I to exp(X/2)·I ·exp(X/2) = s.
The isotropy subgroup of I is K , so that the space S may be identified with G/K . In fact, the group G
is the direct product K × S. The Killing form induces a K­invariant positive definite Euclidean metric

on s, which in turn induces a G­invariant Riemannian metric on S. The space s contains the Lie algebra
a of a maximal split Cartan subgroup A. The connected component |A| is exp(a). The space S is the

K­transform of |A|, as s is of a. The subspace s is spanned by a and the elements eλ + eθ
λ, and k is

spanned by the eλ − eθ
λ, as λ varies over the roots of g with respect to A and eλ varies over the root space

gλ.

I shall prove:

3.1. Lemma. The exponential map from s to S is locally expanding.[exp-exp]

Proof. Given X and Y in s, we let γ(t) be the path X + tY , and want to compute ‖d exp
(

γ(t)
)

/dt‖ at
t = 0. We identify the tangent space at exp(X) with that at I by applying exp(−X/2) on left and right.

In other words, we define

ΦX(Y ) = (d/dt) exp(−X/2) exp
(

γ(t)
)

exp(−X/2)

at t = 0, and want to show that ‖ΦX(Y )‖ ≥ ‖Y ‖.
Since s is the union of the k a k−1 for k in K , it suffices to show this for X in a. If Y lies in the centralizer

of a, it is immediate that ΦX(Y ) = Y . So we may assume that Y = eλ + eθ
λ. If 〈λ, X〉 = 0 then again

ΦX(Y ) = Y . Otherwise, we may assume that X , eλ, and eθ
λ span a Lie algebra isomorphic to sl2. The

path exp(γ(t)
)

is in a copy of SL2(R)/SO(2) embedded in S. It suffices now to prove the assertion in

the case G = SL2. We have already dealt with that case, but I’ll give here a different argument.

Let

X =

[

τ/2 ◦

◦ −τ/2

]

Y =

[

◦ 1
1 ◦

]

We must choose a path γ(t) in s with γ(0) = X , γ′(0) = Y and then calculate

ΦX(Y ) =

[

d

dt
exp(−X/2) exp

(

γ(t)
)

exp(−X/2)

]

t=0

.
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To define γ(t), set

k(t) =

[

cos(t/τ) − sin(t/τ)
sin(t/τ) cos(t/τ)

]

γ(t) = k(t)X k(t)−1

= k(t)Xk(−t)

since k(t)−1 = k(−t). To check our hypotheses:

k′(0) =

[

◦ −1/τ
1/τ ◦

]

γ′(0) = k′(0)X − Xk′(0)

=

[

◦ 1
1 ◦

]

.

Now

exp
(

γ(t)
)

= k(t)

[

eτ/2
◦

◦ e−τ/2

]

k(t)

[exp
(

γ(t)
)

]′ = k′(t)

[

eτ/2
◦

◦ e−τ/2

]

k(t) − k(t)

[

eτ/2
◦

◦ e−τ/2

]

k′(t)

[exp
(

γ(t)
)

]′t=0 =

[

◦ sinh(τ)/τ
sinh(τ)/τ ◦

]

=
sinh(τ)

τ
·Y .

Since

exp(−X/2)

[

◦ 1
1 ◦

]

exp(−X/2) =

[

◦ 1
1 ◦

]

,

we can summarize this calculation:

3.2. Lemma. If X lies in a and Y in gλ then[summary]

ΦX(Y ) =
sinh(τ)

τ
·Y

where τ = 〈λ, X〉.
Since sinh(x)/x = 1 + x2/3! + · · · ≥ 1 for all x, this concludes the proof of Lemma 3.1.♣ [exp-exp]

We can summarize things even more succinctly:

3.3. Theorem. If X is in s and D = adX/2 then D2 is a self­adjoint operator on s and[mostow]

ΦX = I +
D2

3!
+

D4

5!
+ · · · =

sinh(D)

D
.
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