Analysis on arithmetic quotients

Bill Casselman University of British Columbia cass@math.ubc.ca

Chapter III. Modular forms and representations of GL(2)

This essay will explain the relationship between classical automorphic forms and representations of $GL_2(\mathbb{R})$.

Contents

1. Introduction	•••	1
2. Proof of the Theorem	4	4
3. Modular forms	(6
4. References	••• !	7

1. Introduction

Let $G = GL_2^+(\mathbb{R})$. I'll define here three equivalent spaces of functions on which G acts. BASES. Let

$$\mathfrak{H} = \{(z_1, z_2) \in \mathbb{C}^2 \mid z_2 \neq 0, \operatorname{IM}(z_1/z_2) > 0\}.$$

The group G acts on this through the standard left action:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \colon \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \longmapsto \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}.$$

Define

$$\Omega_k^{\omega}(\mathfrak{H}) = \left\{ F \text{ holomorphic on } \mathfrak{H} \mid F(c\zeta) = c^{-k}F(\zeta) \text{ for all } c \in \mathbb{C}^{\times} \right\}.$$

The group G commutes with scalar multiplication, so acts on Ω_k^ω by the left regular action:

$$L_g F(\zeta) = F(g^{-1}\zeta) \,.$$

UPPER HALF-PLANE. The map $(z_1, z_2) \mapsto z = z_1/z_2$ identifies the quotient $\mathfrak{H}/\mathbb{C}^{\times}$ with

$$\mathcal{H} = \left\{ z \in \mathbb{C} \, | \, \mathrm{IM}(z) > 0 \right\}.$$

The map taking z to (z, 1) is a section of the quotient projection. The image of the section is not G-stable, but instead

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} z \\ 1 \end{bmatrix} = (cz+d) \begin{bmatrix} (az+b)/(cz+d) \\ 1 \end{bmatrix}$$

(III.1.1)
$$j(gh, z) = j(g, h(z))j(h, z)$$

and that *G* acts on \mathcal{H} by fractional linear transformations. The projection is *G*-equivariant, and the factor j(g, z) measures the extent to which the section is not *G*-stable. Equation (III.1.1) is a kind of cocycle relation.

Suppose *F* to lie in $\Omega_k^{\omega}(\mathfrak{H})$. Define

$$f(z) = f_F(z) = F(z, 1),$$

If
$$g = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 then

$$F(g(z,1)) = F(az+b, cz+d) = (cz+d)^{-k}F(az+b/cz+d, 1) = [f|[g]_k](z)$$

if

(III.1.2)
$$[f|[g]_k](z) = j(g,z)^{-k}f(g(z))$$

This defines a right action of G on $\Omega_k^{\omega}(\mathcal{H}) = \Omega^{\omega}(\mathcal{H})$, the space of holomorphic forms on \mathcal{H} . Associated to it is a left action

 $L_{k,g}f = f | [g^{-1}]_k.$

I must emphasize that the space doesn't depend on k, but the action of G does.

The action is motivated by the observation that if $\omega = f(z)dz$ is a holomorphic differential form on \mathcal{H} , then

$$L_g^*\omega(z) = f(g(z)) \frac{\det(g) \, dz}{(cz+d)^2}.$$

In general, \mathcal{H} is a *G*-homogeneous space, and the isotropy subgroup of *i* is the copy of \mathbb{C}^{\times} obtained from the embedding

$$\iota \colon a + ib \longmapsto \begin{bmatrix} a & -b \\ b & a \end{bmatrix}.$$

The space $\Omega_k^{\omega}(\mathcal{H})$ is the space of holomorphic sections of an associated line bundle.

The map from F to f has a simple inverse:

$$F(z_1, z_2) = z_2^{-k} F(z_1/z_2, 1) = z_2^{-k} f(z_1/z_2).$$

THE GROUP. The space \mathfrak{H} is a principal homogeneous *G*-space. For *F* in in $\Omega_k^{\omega}(\mathfrak{H})$, define

$$\Phi(g) = \Phi_F(g) = F(g(i,1))$$

It is a smooth function on G. Since

$$\iota(a+bi)(i,1) = (a+bi)(i,1)$$

(III.1.3)
$$\Phi(g \cdot \iota(c)) = \Phi(g) c^{-k}$$

for all c in \mathbb{C}^{\times} .

How does holomorphicity relate to a condition on Φ ? The Lie algebra of G acts on the right on $C^{\infty}(G)$, and contains the element

$$x_{\pm} = \begin{bmatrix} 1 & \mp i \\ \mp i & \mp 1 \end{bmatrix}.$$

It will turn out, as we shall see soon, that holomorphicity on F translates to the condition

(III.1.4)
$$R_{x_{\perp}} \Phi = 0$$
.

Here *R* is the right regular representation. Thus if *F* is in $\Omega_k^{\omega}(\mathfrak{H})$ then Φ will satisfy both (III.1.3) and (III.1.4).

Let $\Omega_k^{\omega}(G)$ be the space of all such functions.

I have defined maps from Ω_k^{ω} to $\Omega^{\omega}(\mathcal{H})$ and to $\Omega_k^{\omega}(G)$. There is also a map from $\Omega_k^{\omega}(\mathcal{H})$ to $\Omega_k^{\omega}(G)$, taking f to

$$\Phi(g) = f(g(i))j(g,i)^{-k}$$

Conversely, of course:

$$f(x+iy) = \Phi(p)$$
 if $p = \begin{bmatrix} y & x \\ 0 & 1 \end{bmatrix}$.

There are maps between the three spaces I have just defined. We therefore have a diagram

that is easily verified to be commutative. One of the principal results of this note is:

III.1.5. Theorem. All maps in this diagram are isomorphisms, equivariant with respect to the left regular representations.

The only non-trivial part of this the isomorphism of $\Omega_k^{\omega}(\mathfrak{H})$ with $\Omega_k^{\omega}(G)$. This requires looking at the Lie algebra of *G* more closely, which I'll do in the next section.

2. Proof of the Theorem

Next, I'll show how to characterize the image of $C_m^{\omega}(\mathfrak{H})$. with respect to Φ . Before I state the main result, I'll recall some elementary facts.

COMPLEX ANALYSIS. A smooth \mathbb{C} -valued function f = u(x, y) + iv(x, y) on an open subset of \mathbb{C} is holomorphic if and only if the real Jacobian matrix of f

$\int \partial u$	∂u
$\overline{\partial x}$	$\overline{\partial y}$
∂v	∂v
$\overline{\partial x}$	$\overline{\partial y}$

considered as a map from \mathbb{R}^2 to itself lies in the image of \mathbb{C} in $M_2(\mathbb{R})$. (Since this image generically coincides with the group of orientation-preserving similitudes, this means precisely that it is conformal.) This condition is equivalent to the Cauchy-Riemann equations

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

Holomorphicity may also be expressed by the single equation

$$\frac{\partial f}{\partial \overline{z}} = 0$$
 where $\frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$.

When f is holomorphic, its complex derivative is

$$\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) \,.$$

The notation is designed so that for an arbitrary smooth function

$$df = \frac{\partial f}{\partial z} \, dz + \frac{\partial f}{\partial \overline{z}} \, d\overline{z}$$

where $dz = dx + i \, dy$.

LIE ALGEBRA AND HOLOMORPHY. I recall that

$$x_{\pm} = \begin{bmatrix} 1 & \pm i \\ \pm i & \pm 1 \end{bmatrix}.$$

Suppose f holomorphic on \mathcal{H} , and set $\Phi = \Phi_f$, so that $\Phi(g) = f(g(i, 1))j(g, i)^{-k}$. **III.2.1. Lemma.** In these circumstances

$$R_{x_+}\Phi_F(p) = -4iy\,\frac{\partial f(z)}{\partial \overline{z}}$$

if

$$p = \begin{bmatrix} y & x \\ 0 & 1 \end{bmatrix}, \quad z = x + iy.$$

The proof will occupy the rest of this section. The Lie algebra of *G* has as real basis:

$$\zeta = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$\alpha = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
$$\kappa = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
$$\nu_{+} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

In addition, we shall find these useful:

$$\eta = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = (1/2)(\alpha + \zeta)$$
$$x_{+} = (2\eta - \zeta) - i(2\nu_{+} + \kappa).$$

The significance of x_+ and its conjugate x_- is that

$$[\kappa, x_{\pm}] = \pm 2ix_{\pm} \,.$$

Associated to some of these are vector fields on \mathcal{H} :

$$\Lambda_{\nu_{+}} = \frac{\partial}{\partial x}$$
$$\Lambda_{\eta} = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}.$$

HOLOMORPHICITY CHARACTERIZED. Now for F in $C^{\infty}(\mathfrak{H})$, define a function f_F on the upper half-plane \mathcal{H} to be its restriction to its image in \mathfrak{H} :

$$f_F(z) = F(z,1) \, .$$

I now conclude the proof of the Lemma. Since κ and ζ are in the Lie algebra of $\iota(\mathbb{C}^{\times})$:

$$R_{\kappa}F = -miF, \quad R_{\zeta}F = -mF \,.$$

But then

$$R_{x_{+}}F(p) = (R_{\alpha} - 2iR_{\nu_{+}} - iR_{\kappa})F(p)$$

= $(2R_{\eta} - R_{\zeta} - 2iR_{\nu_{+}} - iR_{\kappa})F(p)$
= $(2R_{\eta} - 2iR_{\nu_{+}} + m - i(-mi))F(p)$
= $(2R_{\eta} - 2iR_{\nu_{+}})F(p)$

Now I apply the basic formula $R_X f(g) = [L_{gXg^{-1}}f](g)$ to get

$$(2R_{\eta} - 2iR_{\nu_{+}})F(p) = (2\Lambda_{p\eta p^{-1}} - 2i\Lambda_{p\nu_{+}p^{-1}})F(p).$$

But

$$L_{\eta} = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$$

and

$$p\eta p^{-1} = y\eta - x\nu_+$$

so

$$(2\Lambda_{p\eta p^{-1}} - 2i\Lambda_{p\nu_{+}p^{-1}})F(p) = 2y\frac{\partial f}{\partial y} - 2iy\frac{\partial f}{\partial x}$$
$$= -2iy\left(\frac{\partial f}{\partial x} + i\frac{\partial f}{\partial y}\right)$$
$$= -4iy\frac{\partial f}{\partial \overline{z}}.$$

3. Modular forms

Suppose Γ to be a proper subgroup of $SL_2(\mathbb{R})$. For convenience, I shall assume it to have exactly one cusp, and that at ∞ . I shall also assume $\Gamma \cap N(\mathbb{Z})$ to be $N(\mathbb{Z})$.

A **modular form** of weight k > 0 for Γ is a function on \mathcal{H} of moderate growth—i.e. bounded by some norm $||z||^N$ —such that $f|[\gamma]_k = f$ for all γ in Γ . Invariance with respect to Γ and the requirement of moderate growth imply that

$$f(z) = \sum_{n=0}^{\infty} f_n e^{2\pi i n z} \,,$$

since $|e^{2\pi i n(x+iy)}| = e^{-2\pi ny}$. It is called a **cusp form** if $f_0 = 0$, in which case f will be exponentially decreasing at ∞ .

Following the previous section with a slight twist, define the corresponding function on $G = GL_2^+(\mathbb{R})$

$$\Phi_f(g) = f(g(i)) j(g,i)^{-m} \det^{m/2}(g).$$

It is actually left-invariant under Γ and again of moderate growth on *G*. From the results of the previous section:

III.3.1. Theorem. The space of holomorphic forms of weight m for Γ is isomorphic to the space of smooth (in fact, necessarily real analytic) functions Φ on $\Gamma \setminus G$ of moderate growth such that

- (a) $\Phi(gk) = \varepsilon^{-m}(k)\Phi(g)$ for k in SO₂;
- (b) $R_{x_+} \Phi = 0;$
- (c) $\Phi(gz) = \Phi(g)$ for z in the connected component of the center of G.

THE PETERSON METRIC. Suppose Φ to satisfy the conditions of the Theorem. Then

$$|\Phi(g)|^2 = |f(g(i))|^2 = |j(g,i)|^{-2k} \det^k(g) = |f(g(i))|^2 \operatorname{IM}(g(i))^k,$$

and for k in SO₂

$$|\Phi(gk)|^2 = |\Phi(g)|^2$$
.

But then

$$\int_{\Gamma \setminus G} |\Phi(g)|^2 \, dg = \int_{\Gamma \setminus \mathcal{H}} |f(z)|^2 \operatorname{IM}(z)^m \, \frac{dx \, dy}{y^2}$$

If *f* is a cusp form, the function $|f|^2$ will be of rapid decrease at ∞ . and the integral above finite. Hence I have proved:

III.3.2. Corollary. If *f* is a cusp form then Φ_f lies in $L^2(\Gamma \setminus G)$.

4. References

1. Adolph Hurwitz, 'Grundlagen einer independenten Theorie der elliptischen Modulfunctionen und Theorie der Multiplicatorgleichungen erster Stufe', *Mathematische Annalen* **18** (1881), 528–592.

2. J-P. Serre, Cours d'Arithmétique, Presses Universitaires de France 1970.