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Chapter lll. Modular forms and representations of GL(2)

This essay will explain the relationship between classical automorphic forms and representa-
tions of GLa(R).
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1. Introduction

Let G = GL3 (R). I'll define here three equivalent spaces of functions on which G acts.

BASES. Let
9 ={(21,22) € C? ‘ 29 #0, IM(21/23) > 0} .

The group G acts on this through the standard left action:
a bl |= e bl |z
c d| |2 c d| |z

Qi (9) = { F holomorphic on £ | F(c{)=c*F(¢)forallc e Cc*}.

Define

The group G commutes with scalar multiplication, so acts on 2;” by the left regular action:
LyF(Q) = F(g7'Q).
UPPER HALF-PLANE. The map (21, 22) — z = z1/2 identifies the quotient £/C* with
H={zeC|m(z) > 0}.

The map taking z to (z, 1) is a section of the quotient projection. The image of the section is not
G-stable, but instead

[Z Z} ﬁ] ezt d) [(az+b){(cz+d) .
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The factor cz + d = j(g, 2) is called the automorphy factor. The equation above implies
immediately that

(n.1.1) Jlgh,2) = j(g,M(2))j(h, 2) .

and that G acts on H by fractional linear transformations. The projection is G-equivariant, and
the factor j(g, z) measures the extent to which the section is not G-stable. Equation (IIL.1.1) is
a kind of cocycle relation.

Suppose F' to lie in ©2;°($)). Define

f(2) = fr(z) = F(z,1),

F(g(z,1))=F(az+b,cz+d) = (cz + d)_kF(az +b/cz+d,1) = [f‘ [9]k](2)
if
(.1.2) [£|lglk] (2) = (g, 2) 7" £ (g(2)) -

This defines a right action of G on QY (H) = Q¥ (H), the space of holomorphic forms on .
Associated to it is a left action

Ligf = fllg™ k-

I must emphasize that the space doesn’t depend on k, but the action of G does.

The action is motivated by the observation that if w = f(z)dz is a holomorphic differential

form on H, then
det(g) dz

(cz+d)?"

In general, H is a G-homogeneous space, and the isotropy subgroup of i is the copy of C*
obtained from the embedding

Lyw(z) = f(9(2))

Lvoa+ib— [a b} .
b «a

The space €2} (#) is the space of holomorphic sections of an associated line bundle.

The map from F' to f has a simple inverse:
F(21,2) = 23 "F(21/2,1) = 23" f(21/ 22) .
THE GROUP. The space §) is a principal homogeneous G-space. For F'in in 2 ($)), define

P(g) =Pr(g9) = F(g(i,1)).
It is a smooth function on G. Since

u(a+bi)(i, 1) = (a+ bi)(i, 1),
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(IN.1.3) B(g-1(c)) = d(g9)c

for all cin C*.

How does holomorphicity relate to a condition on ®? The Lie algebra of GG acts on the right on
C*° (@), and contains the element

1 T
T4+ = [:Fi :Fl:| .

It will turn out, as we shall see soon, that holomorphicity on F translates to the condition
(In.1.4) R, ®=0.

Here R is the right regular representation. Thus if F'is in Q2 (§)) then ® will satisfy both (IIL.1.3)
and (II1.1.4) .
Let ©;°(G) be the space of all such functions.

I have defined maps from Q}’ to Q“(H) and to Q;’(G). There is also a map from Q’(H) to
Q¢ (G), taking f to
®(g) = f(9()i(g,1) 7"

Conversely, of course:

[+ iy) = Bp) it p:[g ﬂ.

There are maps between the three spaces I have just defined. We therefore have a diagram

Q9 —— Q(6)
Qr(H)

that is easily verified to be commutative. One of the principal results of this note is:

ll.1.5. Theorem. All maps in this diagram are isomorphisms, equivariant with respect to the
left regular representations.

The only non-trivial part of this the isomorphism of 2 ($)) with ©;(G). This requires looking
at the Lie algebra of GG more closely, which I'll do in the next section.
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2. Proof of the Theorem

Next, I'll show how to characterize the image of C ($)). with respect to ®. Before I state the
main result, I'll recall some elementary facts.

COMPLEX ANALYSIS. A smooth C-valued function f = u(z,y) + iv(z,y) on an open subset
of C is holomorphic if and only if the real Jacobian matrix of f

ou Ou
dx dy
Qv o
or Oy

considered as a map from R? to itself lies in the image of C in My(R). (Since this image
generically coincides with the group of orientation-preserving similitudes, this means precisely
that it is conformal.) This condition is equivalent to the Cauchy-Riemann equations

ou  Ov ou v

or oy dy Oz
Holomorphicity may also be expressed by the single equation
of o 1[0 .0
£—0 where £—§<£+Za—y)

When f is holomorphic, its complex derivative is

of _1(fo _, 90
0z 2\ 0z Z@y '

The notation is designed so that for an arbitrary smooth function

_of . of
df = 8zd2+8§dz

where dz = dz + i dy.
LIE ALGEBRA AND HOLOMORPHY. Irecall that
1 T
SRR
Suppose f holomorphic on H, and set ® = &, so that ®(g) = f(g(i,1))j(g,7) .

lll.2.1. Lemma. In these circumstances

R, @r(p) = iy 222

if
|y = . )
p—[o 1}, z=x+1y.
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The proof will occupy the rest of this section.

The Lie algebra of G has as real basis:

10
=10 1)
1 0
““lo 1
_Jo -1
"Tlroo

0 1
"+~ 1o o

In addition, we shall find these useful:

10
1=[o o] =/Ma+0
p= (20— C) —i(2vs + k).
The significance of z and its conjugate = _ is that
[k,xq] = +2izy .

Associated to some of these are vector fields on H:

0
A, =—
t ox
0 0
Ay =12 — —.
K x8x+y8y

HOLOMORPHICITY CHARACTERIZED. Now for F' in C*°($)), define a function fr on the
upper half-plane H to be its restriction to its image in $):

fr(z) = F(z,1).
I now conclude the proof of the Lemma. Since x and ( are in the Lie algebra of ¢(C*):
R.F = —miF, R¢F =—mF.

But then . ‘
R, F(p) = (Rq — 2iR,, —iR:)F(p)

= (ZR,] — R —2iR,, — iR.)F(p)

— (2R, — 2iR,, +m — i(—mi))F(p)

= (ZR,] — 2iRV+)F(p)

Now I apply the basic formula Rx f(g) = [Lyx4-1.f](g) to get

(2R, — 2R, )F(p) = (2A,-1 — 2ihy, 1) F(p) .
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But 5 9
In=25: T3y
and
pop~ ' =yn —avy
SO
. 0 0
(2Apnp—1 = 2iAp, p-1)F(p) =2 a—f — 2iy a—f
_ of .of
=2 <8x 5 )
_of
—4ay 55 0

3. Modular forms

Suppose I' to be a proper subgroup of SLa(R). For convenience, I shall assume it to have
exactly one cusp, and that at co. I shall also assume I' N N (Z) to be N(Z).

A modular form of weight £ > 0 for I is a function on H of moderate growth—i.e. bounded
by some norm || z||N—such that f|[y]x = f for all  in T. Invariance with respect to I" and the
requirement of moderate growth imply that

f(Z) _ Z:;Ofn eQﬂ'inz ’

since |e?™ (W) = ¢=2™W Tt is called a cusp form iff, = 0, in which case f will be
exponentially decreasing at co.

Following the previous section with a slight twist, define the corresponding function on G =
GL; (R)

m/2
®r(9) = £(9(i) j(g.i)~™" det(g).
It is actually left-invariant under I' and again of moderate growth on GG. From the results of the
previous section:

lI.3.1. Theorem. The space of holomorphic forms of weight m for I is isomorphic to the space
of smooth (in fact, necessarily real analytic) functions ® on I'\G of moderate growth such that

(a) (gk) =" (k)®(g) for k in SOy,
(b) R, & =0;
(c) ®(gz) = ®(g) for z in the connected component of the center of G.

THE PETERSON METRIC. Suppose @ to satisfy the conditions of the Theorem. Then

[9(0)? = | F(g(i)) 2 = (.12 det(g) = |F(9(i)) 2 1v(g(6))*.

and for k in SO4
[@(gk)|* = |(g)|.
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But then
m drdy

/F SO / GO

If f is a cusp form, the function |f|? will be of rapid decrease at co. and the integral above
finite. Hence I have proved:

I1..3.2. Corollary. If f is a cusp form then ® lies in L*(T'\G).
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