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Chapter III. Modular forms and representations of GL(2)

This essay will explain the relationship between classical automorphic forms and representa
tions of GL2(R).
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1. Introduction

Let G = GL+

2 (R). I’ll define here three equivalent spaces of functions on which G acts.

BASES. Let

H =
{

(z1, z2) ∈ C
2
∣

∣ z2 6= 0, IM(z1/z2) > 0
}

.

The group G acts on this through the standard left action:

[

a b
c d

]

:

[

z1
z2

]

7−→

[

a b
c d

] [

z1
z2

]

.

Define

Ωω
k (H) =

{

F holomorphic on H
∣

∣F (cζ) = c−kF (ζ) for all c ∈ C
×
}

.

The group G commutes with scalar multiplication, so acts on Ωω
k by the left regular action:

LgF (ζ) = F (g−1ζ) .

UPPER HALF-PLANE. The map (z1, z2) 7→ z = z1/z2 identifies the quotient H/C× with

H = {z ∈ C | IM(z) > 0} .

The map taking z to (z, 1) is a section of the quotient projection. The image of the section is not
Gstable, but instead

[

a b
c d

] [

z
1

]

= (cz + d)

[

(az + b)/(cz + d)
1

]

.
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The factor cz + d = j(g, z) is called the automorphy factor. The equation above implies
immediately that

(III.1.1) j(gh, z) = j(g, h(z))j(h, z) .

and that G acts on H by fractional linear transformations. The projection is Gequivariant, and
the factor j(g, z) measures the extent to which the section is not Gstable. Equation (III.1.1) is

a kind of cocycle relation.

Suppose F to lie in Ωω
k (H). Define

f(z) = fF (z) = F (z, 1) ,

If g =

[

a b
c d

]

then

F (g(z, 1)) = F (az + b, cz + d) = (cz + d)−kF (az + b/cz + d, 1) = [f
∣

∣[g]k](z)

if

(III.1.2)
[

f
∣

∣[g]k
]

(z) = j(g, z)−kf(g(z)) .

This defines a right action of G on Ωω
k (H) = Ωω(H), the space of holomorphic forms on H.

Associated to it is a left action
Lk,gf = f

∣

∣[g−1]k .

I must emphasize that the space doesn’t depend on k, but the action of G does.

The action is motivated by the observation that if ω = f(z)dz is a holomorphic differential
form on H, then

L∗
gω(z) = f(g(z))

det(g) dz

(cz + d)2
.

In general, H is a Ghomogeneous space, and the isotropy subgroup of i is the copy of C×

obtained from the embedding

ι: a+ ib 7−→

[

a −b
b a

]

.

The space Ωω
k (H) is the space of holomorphic sections of an associated line bundle.

The map from F to f has a simple inverse:

F (z1, z2) = z−k
2 F (z1/z2, 1) = z−k

2 f(z1/z2) .

THE GROUP. The space H is a principal homogeneous Gspace. For F in in Ωω
k (H), define

Φ(g) = ΦF (g) = F (g(i, 1)) .

It is a smooth function on G. Since

ι(a+ bi)(i, 1) = (a+ bi)(i, 1) ,
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(III.1.3) Φ(g · ι(c)) = Φ(g)c−k

for all c in C×.

How does holomorphicity relate to a condition on Φ? The Lie algebra of G acts on the right on
C∞(G), and contains the element

x± =

[

1 ∓i
∓i ∓1

]

.

It will turn out, as we shall see soon, that holomorphicity on F translates to the condition

(III.1.4) Rx+
Φ = 0 .

Here R is the right regular representation. Thus if F is inΩω
k (H) then Φ will satisfy both (III.1.3)

and (III.1.4) .
Let Ωω

k (G) be the space of all such functions.

I have defined maps from Ωω
k to Ωω(H) and to Ωω

k (G). There is also a map from Ωω
k (H) to

Ωω
k (G), taking f to

Φ(g) = f(g(i))j(g, i)−k .

Conversely, of course:

f(x+ iy) = Φ(p) if p =

[

y x
0 1

]

.

There are maps between the three spaces I have just defined. We therefore have a diagram

Ωω

k
(H) Ωω

k
(G)

Ωω

k
(H)

that is easily verified to be commutative. One of the principal results of this note is:

III.1.5. Theorem. All maps in this diagram are isomorphisms, equivariant with respect to the
left regular representations.

The only nontrivial part of this the isomorphism of Ωω
k (H) with Ωω

k (G). This requires looking

at the Lie algebra of G more closely, which I’ll do in the next section.
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2. Proof of the Theorem

Next, I’ll show how to characterize the image of Cω
m(H). with respect to Φ. Before I state the

main result, I’ll recall some elementary facts.

COMPLEX ANALYSIS. A smooth Cvalued function f = u(x, y) + iv(x, y) on an open subset

of C is holomorphic if and only if the real Jacobian matrix of f







∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y







considered as a map from R2 to itself lies in the image of C in M2(R). (Since this image

generically coincides with the group of orientationpreserving similitudes, this means precisely

that it is conformal.) This condition is equivalent to the CauchyRiemann equations

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −

∂v

∂x
.

Holomorphicity may also be expressed by the single equation

∂f

∂z
= 0 where

∂

∂z
=

1

2

(

∂

∂x
+ i

∂

∂y

)

.

When f is holomorphic, its complex derivative is

∂f

∂z
=

1

2

(

∂

∂x
− i

∂

∂y

)

.

The notation is designed so that for an arbitrary smooth function

df =
∂f

∂z
dz +

∂f

∂z
dz

where dz = dx+ i dy.

LIE ALGEBRA AND HOLOMORPHY. I recall that

x± =

[

1 ∓i
∓i ∓1

]

.

Suppose f holomorphic on H, and set Φ = Φf , so that Φ(g) = f(g(i, 1))j(g, i)−k.

III.2.1. Lemma. In these circumstances

Rx+
ΦF (p) = −4iy

∂f(z)

∂z

if

p =

[

y x
0 1

]

, z = x+ iy .
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The proof will occupy the rest of this section.

The Lie algebra of G has as real basis:

ζ =

[

1 0
0 1

]

α =

[

1 0
0 −1

]

κ =

[

0 −1
1 0

]

ν+=

[

0 1
0 0

]

In addition, we shall find these useful:

η =

[

1 0
0 0

]

= (1/2)(α+ ζ)

x+= (2η − ζ)− i(2ν+ + κ) .

The significance of x+ and its conjugate x− is that

[κ, x±] = ±2ix± .

Associated to some of these are vector fields on H:

Λν+
=

∂

∂x

Λη = x
∂

∂x
+ y

∂

∂y
.

HOLOMORPHICITY CHARACTERIZED. Now for F in C∞(H), define a function fF on the
upper halfplane H to be its restriction to its image in H:

fF (z) = F (z, 1) .

I now conclude the proof of the Lemma. Since κ and ζ are in the Lie algebra of ι(C×):

RκF = −miF, RζF = −mF .

But then
Rx+

F (p) = (Rα − 2iRν+
− iRκ)F (p)

= (2Rη −Rζ − 2iRν+
− iRκ)F (p)

= (2Rη − 2iRν+
+m− i(−mi))F (p)

= (2Rη − 2iRν+
)F (p)

Now I apply the basic formula RXf(g) = [LgXg−1f ](g) to get

(2Rη − 2iRν+
)F (p) = (2Λpηp−1 − 2iΛpν+p−1)F (p) .



Chapter III. Modular forms and representations of GL(2) 6

But

Lη = x
∂

∂x
+ y

∂

∂y

and
pηp−1 = yη − xν+

so

(2Λpηp−1 − 2iΛpν+p−1)F (p) = 2y
∂f

∂y
− 2iy

∂f

∂x

= −2iy

(

∂f

∂x
+ i

∂f

∂y

)

= −4iy
∂f

∂z
.

3. Modular forms

Suppose Γ to be a proper subgroup of SL2(R). For convenience, I shall assume it to have
exactly one cusp, and that at ∞. I shall also assume Γ ∩N(Z) to be N(Z).

A modular form of weight k > 0 for Γ is a function on H of moderate growth—i.e. bounded

by some norm ‖z‖N—such that f |[γ]k = f for all γ in Γ. Invariance with respect to Γ and the
requirement of moderate growth imply that

f(z) =
∑∞

n=0
fn e

2πinz ,

since |e2πin(x+iy)| = e−2πny . It is called a cusp form iff0 = 0, in which case f will be

exponentially decreasing at ∞.

Following the previous section with a slight twist, define the corresponding function on G =
GL+

2 (R)

Φf (g) = f
(

g(i)
)

j(g, i)−m
m/2

det(g) .

It is actually leftinvariant under Γ and again of moderate growth on G. From the results of the

previous section:

III.3.1. Theorem. The space of holomorphic forms of weight m for Γ is isomorphic to the space
of smooth (in fact, necessarily real analytic) functions Φ on Γ\G of moderate growth such that

(a) Φ(gk) = ε−m(k)Φ(g) for k in SO2;
(b) Rx+

Φ = 0;
(c) Φ(gz) = Φ(g) for z in the connected component of the center of G.

THE PETERSON METRIC. Suppose Φ to satisfy the conditions of the Theorem. Then

|Φ(g)|2 = |f(g(i))|2 = |j(g, i)|−2k
k

det(g) = |f(g(i))|2 IM(g(i))k ,

and for k in SO2

|Φ(gk)|2 = |Φ(g)|2 .
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But then
∫

Γ\G

|Φ(g)|2 dg =

∫

Γ\H

|f(z)|2 IM(z)m
dx dy

y2

If f is a cusp form, the function |f |2 will be of rapid decrease at ∞. and the integral above
finite. Hence I have proved:

III.3.2. Corollary. If f is a cusp form then Φf lies in L2(Γ\G).
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