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If G is a split reductive group and B a Borel subgroup then G is the disjoint union of the BwB as w ranges
over the Weyl group of a maximal torus in B. The closure of BwB is the union of certain double cosets

BxB, where the x that occur can be characterized in purely combinatorial terms. Somewhat surprisingly,

this combinatorial definition may be extended to define the Bruhat closure operation in any Coxeter group.

This essay will sketch this material, in so far as it is important in representation theory. The standard sources

are [Dixmier:1974], §§5.8–5.11 of [Humphreys:1990], and—particularly thorough—Chapter 2 of [Bjorner
Brenti:2005]. My approach is somewhat different, at least at the beginning. In the last section my treatment

is novel only in so far as it is accompanied by pictures that I believe make the argument clearer. But here,

too, I am largely following §7.7 of Dixmier’s book.

Contents

1. The closure of an element
2. Root reflections

3. The symmetric group
4. Structure of the graph

5. Maximal chains

6. References

1. The closure of an element

I recall first some basic facts I’ll need about Coxeter groups. Suppose (W, S) to be a Coxeter system with

Coxeter matrix (ms,t) (possibly with ms,t = ∞). It is the group defined by generators in S and relations

s2 = 1, (st)ms,t = 1 .

Let V = R
S with basis (αs). Define on V the inner product

αs •αt = − cos(π/ms,t) .

For each s let
ρs: v 7−→ v − 2(αs • v)αs .

be the orthogonal reflection in the hyperplane α • v = 0. The map s 7→ ρs extends to an embedding of W in

GL(V ). Let C be the open cone

C = {v ∈ V |αs • v > 0 for all s ∈ S}

and let C (called by some the Tits cone and by others the Vinberg cone ) be the interior of the union of the

closureswC as w ranges over W . The groupW acts discretely on C and C ∩C is a strict fundamental domain

for this action.
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The αs make up the set ∆ of simple roots of the system. The roots Σ of the system are the W transforms of

the αs. A root λ is said to be positive if λ > 0 on C, negative if λ < 0 on C. No root intersects the interior of

C, so all roots are one or the other. For w in W and λ > 0, wλ < 0 if and only if C and w−1C are on opposite
sides of the boundary of λ. Let Σ+ the set of positive roots.

For every root λ, let sλ be the orthogonal reflection in the hyperplane λ = 0. If λ = wαs with α = αs in ∆,
then sλ = wsαw−1.

A word in the alphabet S is the concatenation s1• . . . •sn of elements of S. For w in W , let ℓ(w) be the length
of the shortest word representing it (which is called a reduced word). Thus for s in S, ℓ(sw) = ℓ(w) ± 1.

The basic result relating the combinatorics and geometry of W is that if s lies in S then ℓ(sw) = ℓ(w) + 1 if

and only if w−1αs > 0. In this case, I’ll write sw > w. This is the simplest case of a more general fact. For
any w in W , let

Lw = {λ > 0 |w−1λ < 0} .

Then ℓ(xy) = ℓ(x) + ℓ(y) if and only if Lxy is the disjoint union of Lx and xLy . As one consequence of this,
together with the fact that Ls = {αs}, we have ℓ(w) = |Lw|.

For T ⊆ S let WT be the subgroup of W generated by T . It too is a Coxeter group, and the length functions
in WT and W = WS are the same.

Every w in W can be represented uniquely as xy with (a) x ∈ WT , (b) ty > y for all t in T , and (c)
ℓ(w) = ℓ(x) + ℓ(y).

If T = {s, t} and ms,t < ∞ then WT contains 2ms,t elements. All but one of them has a unique expression
as a word. The exception is the longest element, which is

wℓ,T = st . . . = ts . . . (ms,t terms on each side) .

This is called a braid relation . This longest element w is also singled out in WT by the conditions sw < w,
tw < w.

The following is a special case of a result of [Tits:1968].

1.1. Lemma. If
w = s1 . . . sn = t1 . . . tn

are two reduced expressions for w then onemay be obtained from the other by a sequence of braid relations.

Proof. The proof is by induction on n. The cases n = 1 or 2 are trivial. So assume n > 1, and that

s1 . . . sn = t1 . . . tn

are reduced. If s1 = t1 we can cancel the common left factor and apply induction. Otherwise suppose
s = s1 6= t = t1, and in particular n > 1. Let

x = s2 . . . sn, y = t2 . . . tn .

Then sw < w so wαs < 0, and tw < w so wαt < 0. If we write w = uv with u ∈ Ws,t and v such that
vαs > 0, vαt > 0 then su < u, tu < u hence u = wℓ,s,t. We can write

w = sws,tz = twt,sz

where sws,t = twt,s = wℓ,s,t. Since sws,tz = ss2 . . . sn, we may cancel s and by induction obtain ws,tx from

s2 . . . sn by a sequence of braid relations. Similarly for wt,sz and t2 . . . tn. But then we can also obtain sws,tz
from twt,sz by a single braid relation, so the Lemma is proved. .
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If ω = s1• . . . •sn is a word in S, then I define the closure of ω to be the set of all words in the alphabet S that

can be expressed as concatenations of ordered subwords of ω—i.e. the words determined by deleting some

of its letters.

1.2. Proposition. If w in W is represented by the reduced word ω, then the image in W of the words in the
closure of ω depends only on w.

This is called the Bruhat closure w of w. Another way to phrase it is that the set of elements represented by
subexpressions of a given reduced expression in W does not depend on the particular reduced expression.

Proof. First suppose W to be generated by two elements s, t. Any reduced expression ω for an element w of

W is an alternating product of s and t. By deleting successively elements at one end or another, one obtains

all x with ℓ(x) < ℓ(w). Since all elements in the closure of ω other than w have smaller length, the closure
may be identified with all such x. Hence the Proposition is true in this case.

In general, by Lemma 1.1, it suffices to prove that the Proposition is true for two reduced expressions
interchanged by a braid relation. But this will follow from the simple case of the Proposition in which S has

two elements, which we have just seen.

What is not clear at the moment is that if x lies in y and y lies in z then x lies in z, since deleting a generator

might not leave behind a reduced expression.

Of course x ≤ y if and only if x−1 ≤ y−1. If W is finits and wℓ its longest element, then x → wℓx is an

involution reversing closures.

2. Root reflections

If r is a root reflection, so iswrw−1 . Ifw = urv then uv is what we get by deleting r. But uv = uru−1 ·urv =
uru−1w. Hence:

2.1. Proposition. If w = s1 . . . sn is an expression for w as product of elements in S, then

u = (s1 . . . si−1) · (si+1 . . . sn) = (s1 . . . si−1) · si · (si−1 . . . s1) · (s1 . . . sn)

is of the form rw where r is a reflection in W .

Consequently, an element of W obtained from w by deleting terms in one of its reduced expressions may be

expressed as a product rℓ . . . r1w where each ri is a reflection. As a partial converse:

2.2. Proposition. (Strong Exchange) Let w be in W , r = rλ a root reflection with λ > 0. Then ℓ(rw) < ℓ(w)
if and only if w−1λ < 0, and if w = s1 . . . sn then

rw = s1 . . . si−1 · si+1 . . . sn

for some intermediate si. If the expression for w is reduced, then si is unique.

Proof. Suppose the gallery C, s1C, . . . , wC crosses the hyperplane λ = 0 in a wall labeled si. Then

rw = s1 . . . ŝi . . . sn

for the usual geometric reasons, and ℓ(rw) < ℓ(w).
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C

wC

λ = 0

w = s2s1s3s2s3s1s3s2s1

C

wC

λ = 0

sλw = s2s1s3s2s3ŝ1s3s2s1

If we start with a reduced expression, the gallery crosses λ = 0 exactly once, guaranteeing uniqueness. If

w−1λ > 0, then w−1r−1λ < 0, so we can apply this argument to rwC.

If r is not in S, the reduced expression s1 . . . ŝi . . . sn may collapse further, as it does in the diagrams above.

Set x ⇐ y if ℓ(x) < ℓ(y) and rx = y for some r in R, and define x ≤ y to mean we can reach y from x by 0 or
more such reflections. Since wr = wrw−1 · w, it doesn’t matter whether we use left or right multiplications

by reflections in this definition. This order is called the strong or Bruhat order . I define the Bruhat graph to

be that with elements of W as nodes and oriented edges x ⇐ y. The closure of y is the set of all x ≤ y, and
if x ≤ y the interval [x, y] is the set of w with x ≤ w ≤ y.

————————

Example. Let (W, S) be the dihedral group of order 8, with generators s, t. The following figure exhibits the

Bruhat graph, with the orientation of every edge x ⇒ y pointing down.

1

s

st

sts

stst = tsts

tst

ts

t

Here, x < y if and only if ℓ(x) < ℓ(y). All dihedral groups exhibit the same behaviour.

————————

Strong Exchange implies that if x = ry ⇐ y then a product expression for x may be obtained from a reduced

expression for y by a single deletion. Repeating:

2.3. Proposition. If x < y then a product expression for x may be obtained by making one or more deletions
in a reduced expression for y as a product of elements of S.

That expression may not be reduced. We shall see later that the converse is also true.
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3. The symmetric group

Let W be the symmetric groupSn, S the subset of n− 1 elementary transpositions interchanging i and i+1.
A permutation σ in Sn is often expressed by the array (σ(i)). The reflections in W are the involutions 〈i | j〉
that swap two integers i and j. Multiplying σ on the right by 〈i | j〉 swaps the elements in the ith and jth
places in the array of σ (some call it a place permutation ), whilemultiplying by it on the left swaps the entries

i and j in that array. I’ll represent permutations by permutationmatrices. In this scheme, a permutation is the
horizontal array of colums in a matrix, an array of basis vectors. In column i is the basis element σi = eσ(i).

Thus

[e2, e4, e1, e5, e3] · 〈3 | 4〉 = [e2, e4, e5, e1, e3], 〈3 | 4〉 · [e2, e4, e5, e1, e3] = [e2, e3, e5, e1, e4] .

This description is consistent with the fact that right multiplication affects columns, left multiplication affects

rows.

The length ℓ(σ) is the number of inversions in σ—the number of pairs (k, ℓ) with k < ℓ and σ(k) > σ(ℓ). It
can be calculated by the well known BubbleSort algorithm.

Thus σ ⇐ τ if τ is obtained from σ by swapping σp and σq , where p < q and σ(p) < σ(q). For example,

[e2, e4, e1, e5, e3] ≺ [e2, e4, e5 , e1, e3].

There is a simple criterion for determining whether σ ≤ τ or not. I imagine it is

explained in many places in the literature, but I expand upon the short discussion in
§3 of [Zhao:2007]. First of all, suppose σ to be in Sn. Associate to it the matrix n(σ)
with

nr,c = the number of nonzero entries in rows ≤ r, columns≤ c.

Thus in the figure at left σ = (e5, e4, e2, e1, e6, e3, e7) and n5,4 = 4.

Multiplying σ by 〈k | ℓ〉 amounts to swapping columns k and ℓ in its matrix. How does that affect n(σ)?

3.1. Lemma. Suppose
τ = σ · 〈k | ℓ〉

with k < ℓ, σ(k) < σ(ℓ). Only the entries ni,j(τ) for k ≤ j < ℓ, σ(k) ≤ i < σ(ℓ) are different from ni,j(σ),
and for these ni,j(τ) = ni,j(σ) − 1.

In other words, going up in the Bruhat order decrements by 1 the entries in a certain
rectangle in n(σ).

Proof. The figure at right should sufficiently explain why this is true.

If σ and τ are two permutations, define σ ≤∗ τ to mean that ni,j(τ) ≤ ni,j(σ) for all i, j.

3.2. Proposition. If σ, τ are two permutations in Sn, then σ ≤ τ if and only if σ ≤∗ τ .

Proof. Lemma 3.1 implies immediately that if σ < τ then σ ≤∗ τ .

Proving the other half of Proposition 3.2 is by induction on a certain measure of the difference between σ and

τ , which I’ll now define. Suppose σ and τ given in Sn. Let k be such that σ(i) = τ(i) for i < k, and then set

|τ − σ| =
{
|τk − σk| if k ≤ n

0 otherwise.

Thus |σ − τ | = 0 if and only if σ = τ .
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Now suppose that σ ≤∗ τ . If |τ − σ| = 0 there is nothing to prove. Otherwise, let k
be smallest with σk 6= τk. The assumption that σ ≤∗ τ implies that σk < τk.

In the following figures, the region is where σ = τ , σ is marked by , ρ by ,

and τ by . In the figurea t right, k = 3.

We shall find a permutation ρ with σ ⇐ ρ ≤∗ τ and apply the induction hypothesis.

For this, we must find ℓ > k such that (a) σ(k) < σ(ℓ) and set ρ = σ · 〈k | ℓ〉 so as to
have (b) ρ ≤∗ τ .

Since ρ(i) = σ(i) = τ(i) for i < k, one thing condition (b) require is that ρ(k) =
σ(ℓ) ≤ τ(k). That is to say, we want to choose ℓ so that (ℓ, σ(ℓ)) lies in the grey
region in the figure at right.

But in addition, Lemma3.1 andcondition (b) requires thatπi,j = ni,j(σ)−ni,j(τ) > 0
in the region k ≤ j < ℓ, σ(k) ≤ i < σ(ℓ), as at right. Why is it possible to find ℓ
satisfying this?

Since σ ≤∗ τ , wemust have the σentry in row τk to the right of column k. Therefore
the set of (i, j) in the region σ(k) < i ≤ τk, k < j with σi,j 6= 0 is not empty. Choose

ℓ the smallest value of j occurring.

By definition of ℓ, the only nonzero entry σi,j with σ(k) ≤ i < τ(k), k ≤ j < ℓ is at
the upper left corner. I claim that πi,j > 0 there, also. For if therewere some πi,j = 0
in that region, then πτ(k),j would be < 0, a contradiction.

But since this region includes the region σ(k) ≤ i < σ(ℓ), k ≤ j < ℓ, we are through.

This concludes the proof of Proposition 3.2.

Remark. Verifying the condition in this Proposition involves checking n2 items. I do not know if there is

a significantly more efficient test. There is, however, another test of roughly the same theoretical efficiency

that is in practice a bit faster, at least for small n. For σ in Sn and each k ≤ n let ((σ1, . . . , σk)) be the sorted
initial array of σ of length k. Then σ ≤ τ if and only if

((σ1, . . . , σk)) ≤ ((τ1, . . . , τk))

for each k, in the sense of termbyterm inequality. As explained in §2.6 of [BjornerBrenti:2005], there is a
generalization of this to arbitrary Coxeter groups due to Deodhar.



Bruhat closures 7

4. Structure of the graph

Multiplication by s is an involution of the group. How does this involution relate to the closure graph? Very
nicely. Multiplication takes takes edges to edges, if we neglect orientation, and in a very simple way:

4.1. Lemma. Suppose s in S, x ⇐ y. Then exactly one of the following occurs:

(a) sx = y, so that s reverses the edge in the strong Bruhat graph between them;
(b) s maps the edge x ⇐ y to the edge sx ⇐ sy.

In other words, applying s to the edge doesn’t reverse the orientation of the edge, unless it just exchanges its

endpoints.

Proof. Suppose x ⇐ y, say x = rλy with ℓ(x) < ℓ(y), λ > 0. If s = r thenmultiplication by s clearly reverses

this edge, so suppose s 6= r.

Since rλy < y, Proposition 2.2 implies that y−1λ < 0. But then

sx = srλy = ssλs · sy = ssλsy .

Since r 6= s, sλ > 0, so that sx < sy if and only if (sy)−1sλ < 0. But

(sy)−1sλ = y−1λ < 0 .

Let me analyze the situation a bit more closely. Since sx = sry = srs · sy, it suffices to show that if s 6= r
then ℓ(sx) < ℓ(sy). (a) If sy > y then ℓ(sy) > ℓ(y) ≥ ℓ(sx), so this case is trivial. (b) If ℓ(sx) < ℓ(x) the

conclusion is also trivial. (c) If ℓ(x) < ℓ(y) − 1 then since ℓ(y) − ℓ(x) has to be odd, ℓ(x) ≤ ℓ(y) − 3, and
again ℓ(sx) < ℓ(sy) is easy. So it is the case sy < y, sx > x, ℓ(x) = ℓ(y)− 1, in other words the configuration

in the following diagram, that has to be ruled out.

x

y

r

sx

sy

This is useful to keep in mind.

The content of the Proposition is that multiplication by s preserves the links in the strong Bruhat graph, but
will reverse orientation in exactly one case, that of an edge between x and sx. There are thus essentially three

kinds of edgeswaps, given and edge x < y: (a) an edge reverses itself; (b) sx < y and sx < x; or (c) sx < x,
sy > y. All three cases occur already for dihedral groups:

1

s

st

sts

stst = tsts

tst

ts

t

1

s

st

sts

stst = tsts

tst

ts

t

1

s

st

sts

stst = tsts

tst

ts

t

4.2. Theorem. If sy < y then the set of x ≤ y is stable under multiplication by s.
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Proof. By induction on the length n of a chain

x = x0 ⇐ x1 ⇐ . . . ⇐ xn = y

of minimal length. The case n = 1 follows immediately from the Lemma. Otherwise, say n > 1. The cases

sx < x and sx = x1 are also immediate. Otherwise, sx > x, andwemay apply induction to see that sx1 < y.
But then the Lemma implies that sx < sx1, and we are again through.

4.3. Corollary. Suppose y = sx > x, and let

X = {z | z ≤ x}, Y = {z | z ≤ y} .

Then Y = X ∪ sX .

Of course these may overlap.

4.4. Corollary. Suppose x < y, with ℓ(y) − ℓ(x) = 2, sy < y. Either sx > x and [x, y] = {x, sx, sy, y} or
sx < x and the interval [x, y] is isomorphic to [sx, sy].

The diagrams above show that both possibilities can occur.

Proof. Since x < y, parity considerations require that the interval between x and y be filled with edges of

length 1. If [x, y] 6= {x, sx, sy, y} then there exists x < z < y with z 6= sx, z 6= sy. In this case the Proposition

implies that sx < sz < sy, and since sy < y we must have sx < x. In particular sx /∈ [x, y].

Now there is a further dichotomy: either sy ∈ [x, y] or not. In the second case, s is an isomorphism of [x, y]
with [sx, sy]. In the first case, the map z 7→ sz, sy 7→ x is an isomorphism of [x, y] with [sx, sy].

4.5. Corollary. Suppose x < y and ℓ(x) = ℓ(y) − 2. Then there exist exactly two w with x < w < y.

That is to say, the Bruhat interval [x, y] in this case is very simple.

Proof. By induction on ℓ(y). The minimum this can be is 2, in which case x = 1, y = st, and [x, y] =
{1, s, t, st}.

x

y

sxsy

r s

Otherwise, choose s with sy < y. If sx < x, then Corollary 4.4 tells us that [x, y] is isomorphic to [sx, sy],
and we apply induction. If sx > x the same result tells us [x, y] = {x, sx, sy, y}.

4.6. Corollary. If x is obtained from y by one or more deletions in a reduced word for y, then x < y.

Proof. What makes this not quite obvious is that one deletion might lead to a number of collapses of terms

in the product.

The proof is by induction on ℓ(y). Suppose y has the reduced word s1 . . . sn. Suppose first that s1 is not

one of the deleted items, so x = s1w and w is obtained from z = s2 . . . sn by one or more deletions. By the
induction hypothesis, w < z. Nowwe have y = s1z > z, x = s1w, with w < z. But then implies that x < y.

Otherwise, let z = s2 . . . sn, so y = s1z and x is obtained from z by deletions. By induction x < z and
x < z < s1z = y.

Combining this and Proposition 2.3:

4.7. Theorem. For x and y in W , x ≤ y if and only if x lies in the Bruhat closure of y.
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5. Maximal chains

There is one more thing to notice about the strong Bruhat graph of the dihedral group seen earlier. There is
some redundancy in it, in the sense that there are more links than necessary to describe the partial order. For

example, the reflection sts takes t to stst, so t ≤ stst. But this can be seen also by the chain ttsstsstst.
With the redundant links removed, the graph of the order looks like this:

1

s

st

sts

stst = tsts

tst

ts

t

It is easy to see for all dihedral groups that the Bruhat order is generated by pairs x = ry with ℓ(x) = ℓ(y)−1.
This is a general fact, and the second of the two most important results about Bruhat order.

Define x ≺ y to mean x = ry < y and ℓ(y) − ℓ(x) = 1.

5.1. Theorem. If x < y, then there exists a chain x = x0 ≺ x1 ≺ . . . ≺ xn = y.

This allows a very simple algorithmic description of closures. In the proof, I follow closely [Dixmier:1974],
pp. 250–252.

Proof. Wemay assume that x = ry < y. We proceed by induction on ℓ(y)+
(
ℓ(y)− ℓ(x)

)
. If ℓ(x) = ℓ(y)−1,

there is nothing to be proven. So we may assume ℓ(y) ≥ ℓ(x) + 3.

Choose s with sy < y. Then sx = sry = srs · sy and

ℓ(sx) < ℓ(x) + 1 ≤ ℓ(y) − 2 < ℓ(y) − 1 = ℓ(sy) .

So sx < sy. We may apply induction to get a chain from sx to sy:

sx = w0 < w1 < w2 < . . . < wn = sy < wn+1 = y

with (say) wi+1 = riwi. In particular, rn = s.

• If x < sx, we can just extend the chain to include x:

x < sx = w0 < w1 < w2 < . . . < wn = sy < wn+1 = y

• If x > sx and w1 = x, the chain we want is

x = w1 < w2 < . . . < wn = sy < wn+1 = y .

• Otherwise, sx < x and w1 6= x. The situation is indicated by this diagram:
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x

y

sx = w0

w1

sy below y

r0
s

Let t0 = sr0s. Since s 6= r0, we know that sw1 > w1 and that t0x = sw1, so we may fill in the diagram.

x

y = wn+1

sx = w0

w1

sy below y

r0

sw1

s

Since ℓ(y) − ℓ(x) ≥ 3, ℓ(sw1) = ℓ(x) + 1 < ℓ(y) − 1 = ℓ(sy).

The diagram is not deceptive. According to . since sy < s · sy implies that since w1 < sy we also have

sw1 < y. The proof can be concluded by induction. But I’ll continue the proof in a way that will suggest an

efficient algorithm.

We may keep on filling in as long as ri 6= s:
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x

y = wn+1

sx = w0

w1

w2

sy below y

r0

r1

sw1

sw2

s

We have rn = s; let i be least with ri = s. So then we get a chain

x < sw1 < sw2 < . . . < swi = wi+1 < wi+2 < . . . sy < y

If i = n, the picture is this:

x

y = wn+1

sx = w0

sy = wn

w1

w2

wn−1

r0

r1

sw1

sw2

sw1

sw2

swn−1

s

In this case, swn−1 < y by . But then x < sw1 < sw2 < . . . < swn−1 < y is the chain we want. Otherwise

i < n, and the picture is this:
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x

y = wn+1

sx = w0

w1

w2

wi

r0

r1

sw1

sw2

swi = wi+1

wi+2

sy = wn

s

s

In this case, the chain is indicated in the diagram.
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