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Aclassic result of [Tannaka:1939], in the formulation of [Chevalley:1946], asserts that every compact subgroup
of GLn(C) is the group of real points on an algebraic group defined over R. Chevalley introduced a more

algebraic approach to the topic, but his underlying argument is not so different from Tannaka’s. The literature

since then has followed one of two threads. One is algebraic (as in Chapter 9 of [Robert:1983]), inspired by
Grothendieck’s notion of Tannakian categories (as in [Grothendieck:1970]). The other is analytic (as in §XI.11
of [Yoshida:1965] or §30 of [Hewitt­Ross:1970]), and follows Tannaka’s original exposition more closely.

There is surprisingly little overlap between the two, and in fact neither group seems to be very aware of the
other. There is an account somewhere in between in [Bröcker­tom Dieck:1985], but nonetheless it looks to

me as if there were room for clarification. In this essay I shall offer a brief argument that takes advantage
of terminology and concepts that have been introduced since Chevalley’s book was written. The basic ideas

are still due to Chevalley.

I shall also explain several variants of this theorem, including the refinement of Chevalley that characterizes
precisely which real algebraic structure is constructed.

Throughout this essay, K will be a compact Lie group. All representations of K will be assumed to be
continuous homomorphisms into some GL(V ), with V finite­dimensional and complex. If V is a vector

space, V̂ will be its linear dual. If X is any topological sp[ace, C(X) will be the space of continuous
complex­valued functions on X .
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1. Preliminaries

Suppose H to be a closed subgroup of K . Suppose (π, V ) to be an irreducible representation of K . If v̂ lies

in V̂ H and v in V , the function

Fv̂⊗v(k) = 〈π̂(k)v̂, v〉

is a continuous function on K/H . According to Frobenius reciprocity, the map

(1.1) V̂ H ⊗ V −→ L2(K/H), v̂ ⊗ v 7−→ Fv̂⊗v

is a K­equivariant embedding (with K acting on the right factor). The following is well known.

1.2. Proposition. (Peter­Weyl) The space L2(K/H) is isomorphic to the Hilbert direct sum of the images of
these embeddings.

1.3. Corollary. The subgroup H is equal to K if and only if the only irreducible representation (π, V ) of K
such that V H 6= {0} is the trivial one.

Proof. If H 6= K , Urysohn’s Lemma asserts the existence of non­constant continuous functions on K/H .

Therefore H = K if and only if L2(K/H) = C.

Let C(K/H) be the subspace of C(K/H) spanned by the images of the maps (1.1). According to Proposition
1.2, it is dense in C(K).
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A K­finite function on K/H is one contained in a finite­dimensional K­stable subspace of C(K/H). All
functions in C(K/H) are clearly K­finite. In fact:

1.4. Lemma. The space C(K/H) is the space of all K­finite functions on K/H .

Take H to be {1}. If (π, V ) is an irreducible representation of K , the map defined by (1.1) embeds V̂ ⊗ V
equivariantly intoL2(K) as a representation ofK×K . ThenProposition 1.2 says thatL2(K) is the orthogonal
direct sum of such representations.

AnyK­finite function is certainlyH­finite. Restriction hence defines anH­equivariant linearmap from C(K)
to C(H).

1.5. Proposition. The canonical map from C(K) to C(H) is surjective, and an injection if and only if H = K .

Proof. The question comes down to: If (π, V ) is an irreducible representation of K , what is the restriction of

V̂ ⊗ V to H? Suppose the restriction of π to H is ⊕niρi, with each (ρi, Ui) an irreducible representation of
H . Then

V̂ ⊗ V = ⊕i,jÛi ⊗ Uj .

The map of matrix coefficients is compatible. So surjectivity follows from the fact that each (ρ, U) occurs in
the restriction to H of some representation of K . What about injectivity? Suppose the map is injective. If Ui

is not isomorphic to Uj , then the matrix coefficients of Ûi ⊗ Uj vanish. Therefore all ρi must be isomorphic.

There will be a kernel if its multiplicity is greater than one. Therefore under the assumption of injectivity,
every irreducible representation of K remains irreducible when restricted to H . However, according to

Corollary 1.3 if H 6= K there will exist non­trivial irreducible representations of K whose restriction to H
contains the trivial representation.

The representation ofK onL2(K) is faithful, so the intersection of all the kernels of irreducible representations
of K is {1}.

On the other hand, since K is a Lie group there exists a neighbourhood of the identity in K in which {1}
is the only subgroup. Therefore a decreasing sequence of closed subgroups in K is stationary. (This is not
true of all compact groups, for example the p­adic integers Zp = lim

←−
Z/pn and other p­adic analytic groups.)

Combining this observation with that in the previous paragraph:

1.6. Lemma. There exists a faithful finite­dimensional representation of K .

The groupK may, and subsequentlywill, be thus identifiedwith a closed subgroup of someGL(V ), in which
V is a complex vector space of finite dimension. Choosing a suitable coordinate system, I shall assume that

K ⊆ U(n) ⊂ GLn(C) .

Remark. In this discussion, it need only be assumed that K does not possess arbitrarily small subgroups. It

will follow from subsequent discussion that it is then necessarily a Lie group.

The space C(K) is a ring because the product ofmatrix coefficients is thematrix coefficient of a tensor product.

The Peter­Weyl theorem implies that it is the same as the K­finite functions in L2(K), and also the same as

the ring referred to the .

The space C(K) is stable under conjugation, and there is an interesting observation in connection with this.

If V is any vector space over C, its conjugate vector space V is the same space, but with a conjugate scalar
multiplication. If v 7→ c · v is that on V , that on V is

v 7→ c◦v = c · v .

Hermitian forms u • v on V are equivalent to linear maps V × V → C.

Suppose (π, V ) to be a representation of K over C. Since

[π(k)](c◦v) = [π(k)](c · v) = c · [π(k)](v) = c◦[π(k)](v) ,

we obtain thus a conjugate representation π. Given a basis of V , if π(k) is represented by the matrix (xi,j)
then π(k) is represented by the matrix (xi,j).
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2. Defining the algebraic group

The group GLn(C) may be identified with the algebraic variety

{(x, y) ∈Mn(C)×Mn(C) |x · ty = 1} .

The Stone­Weierstrass approximation theorem asserts that the polynomials in the matrix entries xi,j , yi,j and
their conjugates are dense in C(K). They clearly lie in C(K), and therefore span C(K).

If S in any set in Cn, let IS be the ideal of all polynomials in C[x1, . . . , xn] vanishing on S. Let A(K) be
the quotient of C[x, y] by the ideal IK of polynomials that vanish on K . Since K ⊆ U(n) and y = tx−1, the

restrictions to K of conjugates of the xi,j are the same as the yi,j . Therefore:

2.1. Proposition. The canonical homomorphism from A(K) to C(K) is an isomorphism.

If S is any subset of Cn, let S∗ of S is the set of all x in Cn such that P (x) = 0 for all P in IS . It is the closure

of S in the Zariski topology.

2.2. Lemma. The Zariski closure of a group is also a group.

Proof. This is elementary, but I copy here an elegant note byMatt Samuel on math.stackexchange.com. Let

G be the original group. If g, h lie in G∗, let U be a neighborhood of gh. Since multiplication is continuous,

there exist neighborhoods A of g and B of h such that AB ⊆ U . Since both A and B contain elements of G,
so must U . Therefore gh lies in G∗. Since inversion is a homeomorphism, if U is a neighborhood of g then

U−1 is a neighborhood of g−1, and since the former neighborhood contains an element of G, so does the

latter. Then g−1 lies in G∗.

Now let K∗ be the Zariski closure of K in GLn(C). The previous result implies immediately:

2.3. Proposition. The Zariski closure K∗ is an algebraic subgroup of GLn(C).

2.4. Lemma. The group K∗ is stable under the anti­holomorphic involution x 7→ tx−1.

Proof. By assumption, x = tx−1 for x in K . Therefore if P (x, y) = 0 for all (x, y) in K , so is P (tx−1, ty−1).

According to the theory of Galois descent, this involution defines a unique algebraic group K over R such
that K∗ = K (C). The following is Chevalley’s formulation of ‘Tannaka duality’:

2.5. Theorem. The embedding of K into K (R) is a bijection.

Proof. The group K (R) is the subgroup of K (C) on which x = tx−1. It is therefore contained in U(n), and
must be compact. The Theorem now follows from this:

2.6. Lemma. The group K is maximal compact in K (C).

Proof. Suppose G to be compact in K (C), containing K . The earlier discussion applies to G as well as K , so
that A(K) is isomorphic to C(G) as well as C(K). Apply Proposition 1.5.

Remark. Tannaka duality is just the observation that evaluating the matrix coefficients of K at points of
K establishes a bijection between K and the conjugation­invariant homomorphisms from the affine ring to

C—i.e. that K is the real spectrum of the affine ring. Analysts seem to find this a sort of miracle.

3. Chevalley’s characterization

The immediate consequence of Theorem 2.5 is that K is the group of R­rational points on a real algebraic

variety. In general there will exist many real algebraic varieties with this property. For example, if K = {1}
in R× it is the group of rational points on all the varieties xn = 1 with n odd. But the variety K is rather
special. Here is one simple characterization due to Chevalley:

3.1. Theorem. The group K = K (R) meets all the connected components of/ K (C), and the product map is
a bijection of K (R)× exp(ik) with K (C).

This is from §IX of Chapter VII of [Chevalley:1946]. It has consequences I’ll specify later.
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I’ll deduce this theorem from the more precise result that Chevalley proved. I start with a special case:

3.2. Lemma. Every g inGLn can be factored uniquely as k·swith k inU(n) and s a positive definiteHermitian
matrix.

This is compatible with the Theorem since every positive definite Hermitian matrix is of the form exp(y)
with y Hermitian, or y = ix with x skew­Hermitian, hence in the Lie algebra of U(n).

Proof. This is a well known exercise in many undergraduate classes. For every matrix x let x∗ = tx. If

g = k · s, then g∗ = s∗ · k∗ = s · k−1 and g∗g = s2. This suggests the reverse step. The matrix g∗g will

be positive definite Hermitian, so we may write it as s2 with s also positive definite Hermitian. The matrix
k = gs−1 will then be unitary.

According to Lemma 2.4 the group K (C) is stable under the involution x 7→ x∗. The following is therefore
applicable:

3.3. Proposition. Suppose G to be an algebraic subgroup of GLn(C) stable under the involution x 7→ x∗. If/
g = k · s according to the previous Lemma, then both k and s lie in G.

Proof. As in an earlier remark, g∗g = s2, hence all s2k lie in G. We can express s = xρx−1 with x in U(n)
and ρ positive diagonal. The same hypotheses apply to x−1Gx, so we may assume that all ρ2k lie in G.

Write ρ = exp(r). If P is a polynomial vanishing on G then P (2kr) = 0 for all k. But this means that

the polynomial P (tr) in the variable t has an infinite number of roots, hence must vanish identically. Thus
ρ = exp(r) also lies in G.

Now to finish the proof of Chevalley’s theorem. This proposition says that the map from K (R) × exp(ik) to
K (C) is surjective. But because of Lemma 3.2 it is also injective.

Remark. Suppose G to be an algebraic group defined over R, and let gR be its real Lie algebra. Following
loosely a suggestion of [Deligne:1972], I’ll call a real algebraic groupG strictly compact if (a) G(R) is compact

and (b) the product map from G(R) × exp(igR) to G(C) is a bijection. Theorem 3.1 thus asserts that K
is strictly compact. [Mostow:1955] proves that if G(R) meets every component of G(C) then it is strictly
compact. [Deligne:1972] proves that any algebraic subgroup of a strictly compact group is also strictly

compact.

Remark. [Robert:1983] characterizes a compact group in terms of the tensor category of all of its finite­

dimensional representations. This is in fact very close to Tannaka’s original result! The account of Tannaka’s

theorem in Chapter IX of [Chevalley:1946] is very clear.

Remark. The algebraic group K is completely defined by its affine ring A(K), which is the same as C(K).
This depend only on the compact group. Therefore homomorphisms of algebraic groups are the same as
those of the underlying compact groups:

Hom(K, L) = Hom(K , L) .

Remark. There is a well known converse to the main result of this essays—every complex reductive group
possesses a compact form defined over R. If G is connected this can be constructed explicitly from its root

datum, and [Mostow:1955] reduces the general case to this one.
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