
Last revised 1:56 p.m. April 16, 2020

Essays in analysis

Bill Casselman

University of British Columbia

cass@math.ubc.ca

Compact operators

This is a sequel to an introductory essay on Hilbert spaces. It deals specifically with compact operators and,

for the most part, follows [Reed­Simon:1972]. The only unusual feature is the exposition of the theorem in
[Duflo:1972] concerning the trace of integral operators as an integral over the diagonal. This is a basic result,

frequently referred to without clear justification.

Duflo’s own account, as pointed out to me by Chris Brislawn, contains a few small but confusing errors. In

fact, much of the literature on the subject is either inadequate to cover cases one needs or in error. The most

satisfactory current account of this theorem is probably that in [Brislawn:1991] (which extends earlier work of
his dealing with Rn, but it involves a number of techniques I am not familiar with (primarily, the application

of martingales to analysis). This is a project for the future.
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AllHilbert spaces in this essay are assumed to be separable, whichmeans theypossess countable orthonormal

bases.

1. The singular value decomposition

For any bounded operator T on a Hilbert space, define its conjugate transpose:

T ∗ = tT .

Here tT is the transpose with respect to linear duality, so T ∗ is that with respect to the Hermitian inner
product:

T (u) • v = u •T ∗(v) .

The operator T is unitary if and only if this is the same as T−1.

The principal result of this section is a generalization of a familiar result in linear algebra, which I recall here:

1.1. Proposition. If T is a non­singular finite­dimensional complex matrix, there exist unitary matrices U1

and U2 and a diagonal matrix D with positive entries such that T = U1DU2

This is called the singular value decomposition of T , and the eigenvalues ofD (its entries along the diagonal)

are called the singular values of T . Roughly speaking, the singular values of a matrix measure its size. In

particular, if λ1 ≥ λ2 ≥ . . . ≥ λn are the entries in D then λn ≤ ‖T ‖ ≤ λ1.
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An equivalent formulation is that T = US withU unitary and S positive definite Hermitian, sinceU1DU2 =
U1U2 ·U−1

2 DU2. It is not really necessary to restrict to non­singular T , as we shall see later, but it simplifies

the discussion.

Something similar is true for real matrices. In dimension 2, this says that if we define an ellipse to be a circle

scaled along perpendicular axes then any linear transformation takes a circle to an ellipse, and tells you that
to find the axes of the ellipse you should expect to find eigenvalues and eigenvectors.

Proof. If T = U1DU2 then since U−1 = U∗

T ∗ ·T = U−1
2 D U−1

1 ·U1DU2 = U−1
2 D2U2 .

Conversely, since the product T ∗ ·T is positive definite and Hermitian, we can find a unitary matrix U such

that
T ∗ ·T = U−1D2U ,

whereD is real, diagonal, with non­negative entries. Set S = U−1 DU . Then S is positive definite Hermitian

and:
T ∗ ·T = S2

S−1T ∗·TS−1 = I ,

which means that TS−1 = U
◦
is unitary, and then T = U

◦
S = U

◦
U−1DU .

This proof does not remain valid for infinite­dimensional vector spaces, since the eigenvalue decomposition

fails. That part of the argument is replaced by a suitable square root construction.

POSITIVE OPERATORS.Recall that anoperatorT is calledpositive (moreproperlynon­negative) ifTu •u ≥ 0
for all u in its domain.

1.2. Lemma. A positive bounded operator on a complex Hilbert space is self adjoint.

Proof. We want to show that Tu • v = u •Tv = Tv •u, or in other words

RE(Tu •v) = RE(Tv •u), IM(Tu •v) = −IM(Tv •u)

for all u, v. Since
T (u + v) • (u + v) − Tu •u − Tv • v = Tu • v + Tv •u ,

we know that Tu • v + Tv •u is real, which implies that IM(Tu •v) = −IM(Tv •u). But if we substitute iv
for v in this equation, we see that RE(Tu • v) = RE(Tv •u).

From now on, I’ll not distinguish real from complex, and assume without further mention that any
positive operator is bounded and self­adjoint as well as non­negative.

A BIT OF CALCULUS. I begin the construction of the singular value factorization of an arbitrary bounded

operator T : H1 → H2 by associating to it a positive operator |T | from H1 to itself through which it factors.
In the previous discussion, this is S. We can’t diagonalize an arbitrary positive operator, so we have to

modify the proof of the previous result—instead of diagonalizing T ∗ ·T and then taking the square root of
its diagonalization, we shall derive directly the square root of a positive operator. Towards this goal:

1.3. Lemma. The Taylor series of (1 − x)1/2 converges absolutely for all |x| ≤ 1.

Proof. Let α = 1/2. The series is

(1 − x)α = 1 +

∞
∑

m=1

cmxm = 1 − αz +
α(α − 1)

2
x2 − α(α − 1)(α − 2)

3!
x3 + · · · .
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The series converges for |x| < 1. For |x| = 1, all coefficients cm but c0 = 1 are negative, so

n
∑

1

|cm| = −
n

∑

1

cm

= lim
x→1−

−
n

∑

1

cmxm

≤ lim
x→1−

−
∞
∑

1

cmxm

= lim
x→1−

1 − (1 − x)α

= 1 .

This will be complemented by:

1.4. Lemma. Suppose
∑

ai and
∑

i bi to converge absolutely, with

Am =
∑

i≤m

|ai|, Bm =
∑

i≤m

|bi| .

If

cm =

n
∑

k=0

akbn−k

then
∣

∣

∣

∣

(

∑

i≤m

ai

)(

∑

j≤m

bj

)

−
(

∑

k≤2m

ck

)

∣

∣

∣

∣

≤ Am(B∞ − Bm) + (A∞ − Am)Bm + (A∞ − Am)(B∞ − Bm) .

Note that, at least formally,
∑

ck =
(

∑

ak

)(

∑

bk

)

.

I leave this as a straightforward exercise.

SQUARE ROOTS. The elementary calculus exercises we have just seen have an important consequence for

operators:

1.5. Lemma. If T is any positive operator, there exists a unique positive operator S such that S2 = T . Its
kernel is the same as that of T , and it commutes with any operator that commutes with T .

Proof. It suffices to prove this for any multiple λT with λ > 0, so we may assume ‖T ‖ ≤ 1. But then for

‖u‖ = 1 we have by Cauchy­Schwartz

0 ≤ T (u) •u ≤ ‖T (u)‖ ‖u‖ ≤ u •u = 1

u •u ≥ (u − T (u)) •u ≥ 0

so that I − T is a positive operator and ‖I − T ‖ ≤ 1. According to Lemma 1.3, the series S for S =
(

I − (I − T )
)1/2

converges absolutely. Lemma 1.4 implies that S2 = T . It clearly commutes with anything
that commutes with T . Furthermore, if ‖u‖ = 1 then

Su •u = 1 +

∞
∑

1

cm(I − T )m(u) •u ≥ 0 ,
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so S is positive and therefore self­adjoint. This concludes the proof of existence.

I make the second claim formally:

1.6. Lemma. If S is a bounded operator with S2 = T , the kernel of S is the same as the kernel of T .

Proof of the Lemma. IfS(v) = 0 then of courseT (v) = 0. IfT (v) = S2(v) = 0 thenS2(v) • v = S(v) •S(v) =
0 so S(v) = 0.

Now for uniqueness. Since the convergence of the series for
√

T =
(

I − (I −T )
)1/2

is absolute, S commutes
with any operator that commutes with T . Suppose now that R2 = T for some possibly different positive

operator R. Then R commutes with T since

RT = R3 = TR ,

so R and S commute. According to the previous Lemma, the kernel of R is also the kernel of T , so R, S, T
all induce operators on Ker(T )⊥, and we may assume Ker(T ) = 0.

We want to show R = S, or equivalently R − S = 0. Since R2 − S2 = (R − S)(R + S) = 0, we know
that R − S = 0 on the range of R + S, so it suffices to show that the range of R + S is dense. But since

R + S is self­adjoint, the complement of its range is Ker(R + S). Since R and S are both positive and
Ker(R) = Ker(S) = 0, so is Ker(R + S) = 0.

If T is a bounded operator from H1 to H2, its adjoint T ∗ is a map from H2 to H1, and T ∗ ·T is a positive

operator from H1 to itself. Define

|T | =
√

T ∗·T .

It is positive, and if T : H → H is positive then |T | = T . It is an immediate consequence of the definition that

T (u) •T (u) = |T |(u) • |T |(u) .

From this follows directly:

1.7. Lemma. The kernel of |T | is the same as the kernel of T .

THE MAIN RESULT. We now construct the singular value decomposition of an arbitrary bounded operator.

A partial isometry is a bounded operator U satisfying the condition that ‖U(v)‖ = ‖v‖ on the perpendicular
complement of its kernel.

The factorization T = U |T | can also be written as T = U |T |U−1 ·U , and U |T |U−1 is also positive, so there
is a certain left­right symmetry.

1.8. Theorem. (Singular value decomposition) If T is an arbitrary bounded operator T : H1 → H2, there
exists a partial isometry U : H1 → H2 such that T = U · |T |. Then

(a) the partial isometry is unique if its kernel is required to be the kernel of T ;
(b) if H1 = H2, there exists a unique unitary U which restricts to the identity operator on the kernel of T .

Proof. Since |T | is self­adjoint, the closure of the range of |T | is the orthogonal complement of Ker(T ):

H1 = Ker(T ) ⊕ closure of the range of |T | .

In order to define U , it suffices to define it on each summand. On Ker |T | = KerT we choose it arbitrarily. If
T = U · |T | then U

(

|T |(v)
)

= T (v). This defines U on the range of |T |. Since T (v) •T (v) = |T |(v) • |T |(v),

the map U is an isometry on the range of |T |. It may hence be extended as one to its closure.
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2. Compact operators

There is one case in which the polar decomposition can be made rather explicit.

An operator T : H1 → H2 is said to be of finite rank if its image has finite dimension. The simplest such map

has rank one, and is of the form

u ⊗ v: w 7−→ (w • v)u (v ∈ H1, u ∈ H2) .

Any map of finite rank is a sum of maps of rank one, and if we apply the singular value decomposition

we may put it in a special form. Suppose T : H1 → H2 to be a continuous linear map of finite rank, with

T = U |T | (U a partial isometry). Here |T | is a positive, bounded, self­adjoint operator of finite rank. Its
kernel is the same as K = Ker(T ), and T takes the orthogonal complement K⊥ of K to itself. This space

is finite­dimensional, and hence there exists an orthonormal basis {vi} of K⊥ and eigenvalues λi > 0 such

that |T |(vi) = λivi. If ui = U(vi), the ui form an orthonormal set in H2 and

T : w 7−→
∑

λi(w • vi)ui .

Continuing this idea, suppose {λi} to be any bounded sequence of non­zero complex numbers, {ui} to be
an orthonormal subset of H1, {vi} to be one of H1. Then the formula

T : w 7−→
∑

λi(w • vi)ui

defines a bounded operator from H1 to H2, with bound equal to lim sup |λi|. We can read off the singular

value decomposition easily:

|T |: w 7−→
∑

|λi|(w • vi)vi, U : vi 7−→ (λi/|λi|)ui .

.

There is an important difference between sequences λi that converge to 0 and those that do not. It is those in
the first group that this essay is concerned with. What is the difference, exactly? Simplify things slightly by

assuming the λi to be a decreasing positive real sequence. If Tn is the operator

Tn: v =
∑

civi 7−→
∑

i≤n

ciλivi

then
∥

∥T (v) − Tn(v)
∥

∥

2 ≤ λ2
n+1

(

∑

i>n

|ci|2
)

≤ λ2
n+1‖v‖2

so that ‖T − Tn‖ ≤ λn+1. Therefore if λn → 0 the operator T is the limit in the norm topology of the

operators Tn, all of which have finite rank.

The operators that possess this property are quite special. A bounded operator T from one Hilbert space to

another is called compact (for reasons that will become apparent in a moment) if for every ε > 0 there exists
an operator F of finite rank such that ‖T − F‖ < ε. The following is immediate:

2.1. Proposition. The subspace of compact operators is closed in the space of all bounded operators.

Here is another general fact about compact operators:

2.2. Proposition. If S is bounded and T compact then ST and TS are also compact.

Here, too, the proof is immediate.
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WHY ARE THEY CALLED COMPACT?. There is another useful way to characterize such operators, which

explains the terminology.

2.3. Theorem. A bounded linear operator is compact if and only if it takes bounded subsets into relatively
compact ones.

I recall that a set is called relatively compact if its closure is compact.

The proof requires a preliminary discussion of compactness. LetX be an arbitrary complete separable metric
space. (Separability means there exists a countable dense subset.) The classic theorem of Heine­Borel asserts

that there are two equivalent definitions of compactness of a subset K of X : (1) every covering of K by

open sets possesses a finite sub­covering; (2) every sequence of points in K contains a subsequence of points
converging to a point in K . Compact sets are closed.

But there is a third criterion. A set is called totally bounded if for any ε > 0 it may be covered by a finite set
of ε­balls.

2.4. Proposition. If X is a complete separable metric space, the following are equivalent conditions on a
subset K of X :

(a) every sequence of points in K contains a subsequence that converges to a point of X ;
(b) the subset K is relatively compact;
(c) the subset K is totally bounded.

Proof. (a) implies (b): Let yi be a sequence of points in K . For each of these, let xi be a point of K such that
|xi − yi| ≤ 1/i. By assumption, there exists a subsequence xij

converging to some y in X . The subsequence

yij
converges to the same point.

(b) implies (c): Immediate.

(c) implies (a): Let xi be any sequence of points in K . The set K can be covered by a finite number of balls
of radius 1, so one of them must contain an infinite subsequence of them. And so on for balls of radius 1/n
for all n > 1. In this way we get a Cauchy subsequence in K .

The last part of the proof uses the Axiom of Choice.

Now for the proof of Theorem 2.3. Suppose first that T : H1 → H2 is an operator of finite rank. Then the

image of any bounded subset of H1 is a bounded subset of the image of T , hence compact. Now suppose
that T is an arbitrary compact operator. For each ε > 0 we can find an operator F of finite rank such that

‖T − F‖ ≤ ε/2. It suffices to show that T takes B1 into a relatively compact subset. If X = B1 then in H2

the set F (X) may be covered by a finite number of balls Bε/2(xi) of radius ε/2. But then for any v in X we

know that

‖T (v) − F (v)‖ ≤ ε/2

and we also know that there exists xi with

‖F (v) − xi‖ ≤ ε/2 .

But then

‖T (v)− xi‖ ≤ ε

and hence T (X) is covered by the balls Bε(xi).

Conversely, suppose that the image of B1 is relatively compact in H2. Given ε > 0, the image T (B1) may
be covered by a finite collection of balls Bε/2(xi) for i = 0, . . . , n. Let Π be orthogonal projection onto the
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space spanned by the xi, and F the composition of T followed by Π. If v lies in B1 then there exists xi such

that ‖T (v) − xi‖ ≤ ε/2. Since orthogonal projection does not increase lengths

‖T (v) − xi‖ ≤ ε/2

‖Π(T (v)) − xi)‖ = ‖Π(T (v)) − Π(xi)‖
≤ ε/2

‖Π(T (v)) − T (v)‖ ≤ ‖Π(T (v)) − xi‖ + ‖xi − T (v)‖
≤ ε .

FREDHOLM THEORY. Let H be a Hibert space, L(H) the ring of bounded operators in H . Suppose D to be
an open subset of C, F (z) a function on D with values in the space L(H). It is called analytic if it may be

locally expanded in power series converging in the norm topology.

The following is a classic result.

2.5. Proposition. If T is a compact operator from a Hilbert space H to itself, the operator (I − zT )−1 is a
meromorphic function of z whose poles are the inverses of the non­zero eigenvalues of T . For each λ 6= 0
the subspace Hλ of vectors annihilated by some power of (T − λI) has finite dimension.

This last means that the filtration

Ker(T − λI) ⊆ Ker(T − λI)2 ⊆ Ker(T − λI)3 ⊆ . . .

is stable. One can deduce the nature of this filtration from the nature of the pole of (I − zT )−1 at 1/λ, but all
I’ll mention here is that T acts as a scalar on this space if and only if the pole is simple. You can get a good

idea of what happens by looking at finite matrices in Jordan form.

One important thing about the first assertion is that the poles of (I − zT )−1 have no accumulation point in

C.

Proof of the Proposition 2.5. Suppose T to be an arbitrary compact operator, and let C(z) = zT . Suppose for

the moment z0 to be any point of C. Choose r such that ‖C(z) − C(z0)‖ < 1/2 if |z − z0| < r, and choose
an operator F0 of finite rank such that

∥

∥C(z0) − F0

∥

∥ < 1/2. Set ∆(z) = C(z) − F0. Then
∥

∥∆(z)
∥

∥ < 1 for

|z − z0| < r and in that disc the operator I − ∆(z) is invertible since the series

I + ∆(z) + ∆(z)2 + · · ·

converges.

Now
I − C(z) = I − (C(z) − F0) − F0

= I − ∆(z) − F0

=
(

I − F0

(

I − ∆(z)
)−1)(

I − ∆(z)
)

=
(

I − G(z)
)(

I − ∆(z)
)

where

G(z) = F0

(

I − ∆(z)
)−1

.

We now require a Lemma.

2.6. Lemma. Suppose ϕ(z) to be a holomorphic family of bounded operators defined on the open region
D ⊆ C. Suppose F to be an operator of finite rank, and set

E(z) = F (ϕ(z)) .
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Suppose that there does not exist a vector v 6= 0 fixed by all E(z). Then the operator (I − E(z))−1 is
meromorphic on D and its poles are at the values of z for which E(z) has a non­trivial fixed vector. For any
z, the dimension of the space of vectors annihilated by some power of I − E(z) is finite.

Proof. Suppose that the image of F is contained in the finite dimensional space U . Let u1, . . . , un be an

orthonormal basis of U , and extend it to an orthonormal basis (ui) of H . Since F has finite rank, we have

F =
∑

ui ⊗ vi

with
[u ⊗ v](w) = (w • v)u .

Then

[E(z)](w) = F
(

[ϕ(z)](w)
)

=
∑

(

[ϕ(z)](w) • vi

)

ui =
∑

(

w • [ϕ(z)]∗(vi)
)

ui .

Therefore if we set

ϕi,j(z) = uj • [ϕ(z)]∗(vi) = [ϕ(z)](uj) • vi

the matrix of I − E(z) with respect to the basis ui is



















1 − ϕ1,1(z) −ϕ1,2(z) . . . −ϕ1,n(z) −ϕ1,n+1(z) . . .
−ϕ2,1(z) 1 − ϕ2,2(z) . . . −ϕ2,n(z) −ϕ2,n+1(z) . . .

. . .
−ϕn,1(z) −ϕn,2(z) . . . 1 − ϕn,n(z) −ϕn,n+1(z) . . .

0 0 . . . 0 1 0 . . .
0 0 . . . 0 0 1 . . .

. . .



















This matrix has the form

I − E(z) =

[

In − Φ(z) N(z)
0 I

]

,

in which Φ(z) a holomorphic function taking values in the space of n×n complex matrices. Either det
(

In −
Φ(z)

)

is identically 0, or not. In the second case, one can solve explicitly for (In − E(z))−1 in terms of the

cofactor matrix of I − Φ(z). Its poles are where Φ(z) has eigenvalue 1. Also in this case we may write for

each n > 0

(In − E(z))n =

[ (

In − Φ(z)
)n

Nn(z)
0 I

]

which implies that the vectors annihilated by some power of (In − E(z)) are the same as those annihilated

by some power of In − Φ(z), which has finite dimension. This concludes the proof of the Lemma.

The operatorG(z) is of finite rank, since its image is contained in the image ofF0. Thus in the neighbourhood

of z0 the operator I − C(z) is invertible if and only if I − G(z) is. As for G(z), Lemma 2.6 shows that the

set of points where it is invertible is either discrete, or empty. Now since C(0) = I , I − C(z) is certainly

invertible in the neighbourhood of the origin, and hence by analytic continuation the operator
(

I −C(z)
)−1

is meromorphic with a discrete set of poles. This concludes the proof of the Theorem.

2.7. Corollary. If T is a compact operator from a Hilbert space to itself, then its spectrum σ(T ) is a discrete
set having no limit points except possibly 0.

2.8. Corollary. If T is a self­adjoint compact operator, then for any λ 6= 0 the eigenspace Hλ for T has finite
dimension.

2.9. Corollary. A self­adjoint operator T is compact if and only if there exists a complete orthonormal basis
vi of the subspace complementary to the kernel of T , and a sequence of real numbers λi 6= 0 with limit 0
such that Tvi = λivi.
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A CONVERSE. An argument in a previous subsection can be reversed:

2.10. Theorem. The operator T : H1 → H2 is compact if and only if there exist orthonormal sets {vi} in H1

and {ui} in H2 and a set of positive {λi}with λi → 0 such that

T (x) =
∑

λi(x • vi)ui .

Proof. We have seen at the beginning of this section that T is compact if such a sequence exists.

So now assume T compact. The proof of the formula for T is motivated by the singular value decomposition
in finite dimensions. If T = US with U unitary and S positive Hermitian with {vi} an orthonormal basis of

eigenvectors, then

S(u) =
∑

λi(u • vi) vi

T (u) = US(u) =
∑

λi(u • vi)U(vi)

=
∑

λi(u • vi)ui

(

ui = U(vi)
)

.

So now we continue. Since T is compact, so is T ∗ ·T . It is also positive. Therefore by Corollary 2.9 there

exists an eigenpair sequence {vi, µi} (i ≥ 1) with

T ∗·T (vi) = µi vi

and T ∗·T = 0 on the complement of the vi. Since µi > 0, we may define λi =
√

µi > 0. We have

w = w0 +
∑

i≥1

(w • vi) vi

for every w, where w0 lies in the kernel of T , hence

T (w) =
∑

i≥1

(w • vi)T (vi) .

Set ui = T (vi)/
√

λi. Then

ui •uj =
T (vi) •T (vj)

λiλj
=

T ∗T (vi) • vj

λiλj
=

λi

λj
(vi • vj)

so {vi} is an orthonormal basis for the complement of the kernel of T , and

T (w) =
∑

λi(w • vi)ui .

As for uniqueness, it is easy to see that any representation of this kind has to arise from the singular value

factorization.

The λi in this result are called (what else?) the singular values of T .
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3. Hilbert-Schmidt operators

3.1. Lemma. If T is a positive operator on the Hilbert space H the sum
∑

T (ui) •ui is independent of the
choice of orthonormal basis {ui}.
The terms are all non­negative. The sum might be infinite. Whether finite or infinite, it is called the trace of
T .

Proof. Let S = T 1/2. Suppose {ui} and {vi} to be two orthonormal bases.

∑

i

T (ui) •ui =
∑

i

∥

∥S(ui)
∥

∥

2

=
∑

i

(

∑

j

∣

∣S(ui) • vj

∣

∣

2
)

=
∑

i,j

∣

∣S(vj) •ui

∣

∣

2

=
∑

i

∥

∥S(vi)
∥

∥

2

=
∑

j

T (vj) • vj .

By analogy with what happens in finite dimensions, this sum is called trace(T ).

Each composite T ∗·T is positive. An operator T : H1 → H2 is called a Hilbert-Schmidt operator if

trace T ∗ ·T =
∑

∥

∥T (ui)
∥

∥

2
< ∞ .

for some—hence by the Lemma any—orthonormal basis {ui}.
Let I2 = I2(H1, H2) be the set of Hilbert­Schmidt operators from H1 to H2. Define on I2 the norm

‖T ‖2
2 = trace T ∗ ·T

3.2. Proposition. If T is any bounded operator then ‖T ‖ ≤ ‖T ‖2.

Proof. If u is a unit vector we may choose it to be the first element of a basis, so that ‖Tu‖2 ≤ ‖T ‖2
2. Thus

‖T ‖ ≤ ‖T ‖2.

3.3. Proposition. The space I2 with the norm ‖T ‖2 is a Hilbert space, and if T is in I2 then ‖T ‖2 = ‖T ∗‖2.

Proof. It is immediate that ‖λT ‖2 = |λ| ‖T ‖2 and

‖S + T ‖2 ≤ ‖S‖2 + ‖T ‖2 ,

so the set I2 is a vector space.

Suppose {ui} and {vj} to be orthonormal bases of H1 and H2. If T is any bounded operator from H1 to H2

T (ui) =
∑

ti,jvj , ‖T (ui)‖2 =
∑

j

|ti,j |2

so that T is a Hilbert­Schmidt operator if and only if ‖T ‖2
2 =

∑

|ti,j |2 < ∞. Conversely, every such infinite
matrix (ti,j) corresponds to a unique Hilbert­Schmidt operator, and I2 is in fact isomorphic to the Hilbert
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space of all such infinite matrices. The adjoint T ∗ corresponds to the matrix which is the conjugate transpose

of that of T .

3.4. Theorem. AHilbert­Schmidt operator may be approximated in the I2 norm by operators of finite rank.

Proof. Let (ti,j) be thematrix corresponding to the Hilbert­Schmidt operator T . Thus
∑ |ti,j |2 < ∞. Choose

n so
∑

inf(i,j)>n |ti,j |2 < ε2. If F is the operator of finite rank whose matrix is the first n rows of the matrix

then ‖T − F‖2 < ε.

3.5. Corollary. Hilbert­Schmidt operators are compact.

Proof. Because ‖T ‖ ≤ ‖T ‖2.

3.6. Proposition. If S is an arbitrary bounded operator and T is Hilbert­Schmidt, then ST and TS are both
Hilbert­Schmidt.

In other words, the linear space of Hilbert­Schmidt operators is an ideal in the ring of bounded operators.

Proof. There are two situations to investigate:

H1
S−→ H2

T−→ H3

H1
T−→ H2

S−→ H3 .

On the one hand
∑

‖ST (ui)‖2 ≤ ‖S‖2
∑

‖T (ui)‖2 .

On the other, TS = (S∗T ∗)∗. Apply Proposition 3.3.

3.7. Proposition. The operator T is Hilbert­Schmidt if and only if there exist orthonormal sets {ui} and {vi}
and a sequence {λi}with

∑ |λi|2 < ∞ such that

Tw =
∑

λi(w·vi)ui .

The λi are the singular values of T .

Proof. Since
T (ui) =

∑

j

λj(ui •uj)vj . = λivi ‖T (ui)‖2 = λ2
i .

4. Example: differential operators on the circle

Now let H = L2(S), and identify S with R/Z. Set Dy = y′′. The eigenvalues of D are the µ with periodic
solutions y(x) to the equation y′′ = µy. The solutions of this equation on R are the linear combinations of eλx

and e−λx where λ2 = µ. These solutions will be periodic if and only if λ = 2πin, in which case µ = −4π2n2.

4.1. Proposition. Suppose µ 6= −4π2n2 for n in Z. Then D − µI is an isomorphism of the domain of D with
L2(S).

Proof. Suppose µ not to be one of these eigenvalues.

There are two ways to prove the Proposition.

The first in terms of Fourier series. If F is in L2(S) then

F (x) =
∑

Z
Fne2πinx, Fn = F • e2πinx .
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The map taking F to (Fn) is an isomorphism of L2(S)with L2(Z). Since (DF )n = −4π2n2Fn, the domain of

D is the subspace of those F such that n2Fn is square­integrable. The distribution (D−µI)F has coefficients

(−4π2n2 − µ)Fn, and under the assumption on µ none of the factors vanishes. The inverse of D − µI
therefore takes the function with Fourier coefficients Fn to that with coefficients Fn/(−4π2n2 − µ).

The second way to understand the inverse of D− µI is in terms of an integral operator. If Φ is a distribution
on S, its derivative is defined by the equation

〈Φ′, f〉 = −〈Φ, f ′〉 ,

leading to a formula for the second derivative

〈Φ′′, f〉 = 〈Φ, f ′′〉 ,

where in both cases f is an arbitrary smooth function on S. A fundamental solution ofD−µI is a distribution

Fy on S depending on the parameter y such that

(D − µI)Fy = δy .

This may be constructed explicitly, since the distribution equation amounts to the conditions that (a) F = Fy

is smooth and periodic on R of period 1 except at the points y + n, and (b) F is continuous at these points,

but F ′(y+) − F ′(y−) = 1. For any x in R let 〈x〉 = x − ⌊x⌋ be the fractional part of x. If we define

f(x) =
1

λ
· e

λ〈x〉 + e−λ〈x〉

eλ/2 − e−λ/2
,

then this function satisfies these conditions at the points in 1/2+ Z. Since D commutes with translations, we

set

Fy = f(y − 1/2) .

The formula

ϕ(x) =

∫ 1

0

ϕ(y)Fy(x) dy

defines the inverse to D − µI .

Now I want to look at a much more general situation, one in which nothing explicit can de done, but much

can be said in a general way. I’ll leave out details, since the subject of Sobolev spaces deserves, and gets, a

longer treatment elsewhere. Let
Lf = −d2f/dx2 + a(x)f

where the real function a(x) is smooth and periodic of order 2π, and hence L may be considered as an

operator on C∞
c (S), where S is the unit circle. This operator is symmetric and essentially self­adjoint. We

have
∫

S

Lf(x)f(x) dx =

∫

S

|f ′(x)|2 + a(x)|f(x)|2 dx .

Replacing L by L + pI if necessary, we may assume that L is a positive operator.

4.2. Proposition. The set of eigenvalues of L is infinite and discrete in R.

For m ≥ 0 the Sobolev space H m is that of f such that every dkf/dxk lies in L2(S) for all k ≤ m. Fourier
analysis tells us that this is the same as the distributions whose Fourier coefficients cℓ satisfy

∑

(

1 + |ℓ|2
)m/2|cℓ|2 < ∞ .
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This condition defines Hm for m < 0, too. Every Hm is contained in Hm−1, and this embedding is Hilbert­

Schmidt, since it is the composite of the operators

(cn) −→
(

1 + |n|
)

cn, (cn) −→ cn/
(

1 + |n|
)

,

The second isHilbert­Schmidt, andwe know that the composite of aHilbert­Schmidt operator and a bounded

operator is Hilbert­Schmidt.

Functions in Hm are in Cm−1, so the intersection of all Hm is C∞(S). Furthermore, H2 is the domain of both

y 7→ y′′ and L. Each of these takes Hm to Hm−2.

The operator I + L is in fact an isomorphism of Hk with Hk−2 for all k. Therefore (I + L)−1 is a compact
operator, and from this we deduce an orthogonal decomposition of L2 into finite­dimensional eigenspaces

of L. If ϕ is smooth and Lf = ϕ then f is also smooth. Hence all eigenfunctions are smooth.

5. Nuclear operators

An arbitrary bounded operator T on the Hilbert space H is said to be nuclear , or of trace class , if the trace

of |T | is finite—if
∑

|T |(ui) •ui =
∑

|T |1/2(ui) • |T |1/2(ui) < ∞

for one, hence by Lemma 3.1 all, orthonormal bases {ui}.
Let I1(H) be the set of nuclear operators from H to itself. We shall see later how to extend the trace function

to all of I1(H) (instead of just positive operators), but that will take some preparation.

5.1. Lemma. If T is a positive operator and U is a partial isometry then trace(U∗ TU) ≤ trace(T ). Equality
holds if U is unitary.

Proof. Choose a basis {ui} such that each ui is in either the kernel of U or its perpendicular complement.

The vectors U(ui) for ui in the complement may be extended to a full orthonormal basis {vi}. Then
∑

U∗ TU(ui) •ui =
∑

TU(ui) •U(ui) ≤
∑

T (vi) • vi = traceT .

If U is unitary, equality holds.

5.2. Proposition. The set of nuclear operators is a vector space. More precisely:

(a) if T is nuclear, so is λT ;
(b) if S and T are nuclear, so is S + T , and

trace |S + T | ≤ trace |S| + trace |T | .

Proof. Claim (a) is immediate, but (b) is a bit tricky (even in finite dimensions).

Suppose S and T to be in I1. Start with unitary singular­value decompositions:

S = U |S|
T = V |T |

S + T = W |S + T | ,

which are equivalent to

|S| = U∗ S

|T | = V ∗ T

|S + T | = W ∗ (S + T ) .
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Then for any u

u • |S + T |u = u •W ∗(S + T )(u)

≤
∣

∣u •W ∗ U |S|(u)
∣

∣ +
∣

∣u •W ∗ V |T |(u)
∣

∣

=
∣

∣ |S|1/2U∗ W (u) • |S|1/2(u)
∣

∣ +
∣

∣ |T |1/2V ∗ W (u) • |T |1/2(u)
∣

∣

≤
∥

∥ |S|1/2U∗ W (u)
∥

∥ ·
∥

∥ |S|1/2(u)
∥

∥ +
∥

∥ |T |1/2V ∗ W (u)
∥

∥ ·
∥

∥ |T |1/2(u)
∥

∥

and thus

∞
∑

1

ui • |S + T |(ui) ≤
n

∑

1

∥

∥ |S|1/2U∗ W (ui)
∥

∥ ·
∥

∥ |S|1/2(ui)
∥

∥

+

∞
∑

1

∥

∥ |T |1/2V ∗ W (ui)
∥

∥ ·
∥

∥ |T |1/2(ui)
∥

∥

≤
(

∞
∑

1

∥

∥ |S|1/2U∗ W (ui)
∥

∥

2
)1/2( ∞

∑

1

∥

∥ |S|1/2(ui)
∥

∥

2
)1/2

+
(

∞
∑

1

∥

∥ |T |1/2V ∗ W (ui)
∥

∥

2
)1/2( ∞

∑

1

∥

∥ |T |1/2(ui)
∥

∥

2
)1/2

=
(

∞
∑

1

∥

∥ |S|1/2(ui)
∥

∥

2
)1/2( ∞

∑

1

∥

∥ |S|1/2(ui)
∥

∥

2
)1/2

+
(

∞
∑

1

∥

∥ |T |1/2(ui)
∥

∥

2
)1/2( ∞

∑

1

∥

∥ |T |1/2(ui)
∥

∥

2
)1/2

=
(

∞
∑

1

∥

∥ |S|1/2(ui)
∥

∥

2
)

+
(

∞
∑

1

∥

∥ |T |1/2(ui)
∥

∥

2

= trace |S| + trace |T | .

5.3. Lemma. Every bounded linear operator from a Hilbert space to itself is a linear combination of four
unitary operators.

Proof. If T is any bounded operator, The operators A = T + T ∗ and B = i(T − T ∗) are self­adjoint, and

T = (1/2)A − (i/2)B .

So to prove the theorem, we may suppose T to be self­adjoint and ‖T ‖ ≤ 1. Then

T = (1/2)
(

T + i
√

I − T 2
)

+ (1/2)
(

T − i
√

I − T 2
)

,

and each of these terms is unitary since

(

T ± i
√

I − T 2
)∗

= T ∓ i
√

I − T 2,
(

T ± i
√

I − T 2
)(

T ∓ i
√

I − T 2
)

= I .

5.4. Proposition. If S is bounded and T in I1 then ST and TS are also in I1, and traceST = traceTS.
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Proof. By Lemma 5.3 we may assume T unitary. Let {ui} be an orthonormal basis {vi = T (ui)} another.

traceST =
∑

ST (ui) •ui

=
∑

ST (ui) •T ∗ T (ui)

=
∑

S(vi) •T ∗(vi)

=
∑

TS(vi) • vi

= traceTS .

5.5. Proposition. Any operator of trace class is Hilbert­Schmidt.

Proof. If T is of trace class then so are |T | and, by Proposition 5.4, |T |2. But trace |T |2 =
∑ ‖T (ui)‖2.

5.6. Corollary. Every operator of trace class is compact. A compact operator is in I1 if and only if
∑

λi < ∞,
where the λi are its singular values.

Proof. The first part follows from the previous two results. For the last part, if T then so is |T | = U∗ T , and
its canonical expansion is

|T |u =
∑

λi(u •ui)ui .

But then
∑ |T |ui •ui =

∑

λi.

Define the norm on I1:

‖T ‖1 =
∑

λi

where the λi are the singular values of T .

5.7. Proposition. The space I1 together with the norm ‖T ‖1 is a Banach space, and ‖T ‖ ≤ ‖T ‖1. The
operators of finite rank are dense in this Banach space.

Proof. Exercise.

5.8. Proposition. If T is in I1, the sum

traceT =
∑

T (ui) •ui

converges absolutely and is independent of the orthonormal basis {ui}.
Proof. Write the unitary singular value decomposition T = U |T |U∗ · U . Then S = U |T |U∗ is positive and

self­adjoint, and also in I2. Also, S1/2 and S1/2U are in I2. Hence

|T (ui) •ui| =
∣

∣|S|1/2U(ui) •S1/2(ui)
∣

∣ ≤ ‖S1/2U(ui)‖ ‖S1/2(ui)‖

and

∑

|T (ui) •ui| ≤
∑

‖S1/2U(ui)‖ ‖S1/2(ui)‖ ≤
(

∑

‖S1/2U(ui)‖2
)1/2( ∑

‖S1/2(ui)‖2
)1/2

so the sum converges absolutely.
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Independence is formal:
∑

i

T (ui) •ui =
∑

i

T
(

∑

j

(ui • vj)vj

)

•ui

=
∑

i,j

(vj •ui)(T (vj) •ui)

=
∑

j

T (vj) •

(

∑

i

(vj •ui)ui

)

=
∑

j

T (vj) • vj .

This concludes the proof of the Proposition.

5.9. Theorem. An operator is in I1 if and only if it factors as the composite of twoHilbert­Schmidt operators.

Proof. From Proposition 5.4 and the singular value decomposition.

5.10. Corollary. For a bounded operator S, traceS∗ = traceS.

Proof. This is immediate.

The following is also a corollary of the previous result.

5.11. Theorem. The operator T is of trace class if and only if there exist orthonormal sets ui, vi with

T (x) =
∑

i

λi(x • vi)ui ,

in which
∑ |λi| < ∞. In this case its trace is

∑

λi(ui • vi) .

6. Integral operators and traces

One commonly encountered example of a Hilbert­Schmidt operator is an integral operator defined by a

kernel function.

Suppose (M, dx) to be a measure space such that L2(M) is separable. For example, M could be a locally
compact space with countable basis, dx a Baire measure, which I’ll eventually assume to be the case. Let

K(x, y) be an L2 function on M × M . Then the integral formally defined as

[TKf ](x) =

∫

M

K(x, y)f(y) dy

determines a bounded operator TK from L2(M) to itself. More precisely, it is defined by Riesz’ Lemma

(identifying a Hilbert space with its conjugate dual) and the equation

[TKf ] • g =

∫

M

K(x, y)f(y)g(x) dxdy

for every g in L2(M).
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6.1. Proposition. A bounded linear operator T on L2(M) is Hilbert­Schmidt if and only if T = TK for some
K in L2(M × M). Furthermore,

‖TK‖2
2 =

∫

M×M

∣

∣K(x, y)
∣

∣

2
dx dy .

Proof. Let {ui} be an orthonormal basis of L2(M). Then the products ui,j(x, y) = ui(x)uj(y) are an

orthonormal basis of L2(M × M) (§II.4 of [Reed­Simon:1973]). We may therefore express

K =
∑

i,j
ci,jui,j .

We have

traceT ∗
KTK =

∑

|ci,j |2 = ‖K‖2
2 .

Thus K 7→ TK is an isometric embedding of L2(M × M) into I2. It has closed range. But the finite rank

operators are contained in it and are dense in I2.

If K is a function on the product of a finite set S with itself, TK may be identified with a finite matrix, and

the trace of TK is the sum
∑

K(s, s) of its diagonal entries. There are many generalizations of this in the

literature. Most have rather restrictive hypotheses, and and not all are correct. One whose hypothesis is
fairly simple and whose proof is not too complicated can be found in [Duflo:1972]:

6.2. Theorem. Suppose K(x, y) to be a continuous square­integrable kernel function on some σ­compact
space M with a Baire measure dx whose support is all of X . If TK is of trace class, then the restriction of K
to the diagonal is integrable and the trace of TK is

∫

M

K(x, x) dx .

In practice, the hypothesis comes easily—for example, when TK is the product of two Hilbert­Schmidt
operators. In certain circumstances the hypothesis can be simplified—ifK is continuous and TK is a positive

operator, it will be automatically of trace class if its integral over the diagonal is finite. This does not seem to

be all that useful.

The proof can be motivated by an argument that will play an important role later on. Suppose that (a) the

functions ui making up an orthonormal basis of L2(M) are continuous on M , and (b) K is defined by an
abolutely and uniformly converging sum

(6.3) K(x, y) =
∑

λiui(x)vi(y) .

Thsi kernel is therefore manifestly continuous. The operator TK takes

w −→
∑

λi(w • vi)ui

and its trace is
∑

λi(ui • vi) =
∑

λi

∫

M

ui(x)vi(x) dx .

But the assumption about convergence allows us to interchange sum and integral to get this equal to

∫

M

∑

λi ·ui(x)vi(x) dx =

∫

M

K(x, x) dx .
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The point of the proof is to make this argument valid. The problem is that neither (a) nor (b) is valid. The

convergence in (6.3) is only in the L2­norm, and in addition the ui, vi are not necessarily continuous.

The proof of the theorem that I’ll present will follow Duflo’s argument closely, and will be in several steps.

In this first version of this essay I’ll quote without proof a couple of basic results in measure theory that are

needed. In a later version I hope to include them in an appendix.

6.4. Lemma. (Riesz) If the sequence fn converges in Lp­norm (p ≥ 1) to f then there exists a subsequence
which converges pointwise to f almost everywhere.

This result is well known, but my source for it is the undated article by Péter Medvegyev in the reference list

(Propositions 4 and 6).

6.5. Corollary. In the same circumstances, if the sequence fn is monotonic then it converges almost every­
where.

6.6. Lemma. (Egoroff) Suppose the sequence of measurable functions fn to converge almost everywhere
locally to f . Then for every compact subset Ω of M and ε > 0 there exists a compact set X ⊆ Ω such that (a)
meas(Ω − X) < ε; (b) the restriction of each fn to X is continuous; (c) the sequence fn converges uniformly
on X to f (which is consequently continuous).

This form of Egoroff’s theorem is to be found in §IV.5.4 of [Bourbaki:2007].
So now I begin the proof proper of Theorem 6.2.

Step 1. The starting point is the defining formula

(6.7) [TKf ] • g =

∫

M

K(x, y)f(y)g(x) dxdy .

By assumption and Theorem 5.11, there exist orthonormal bases {ui} and {vi} and a sequence λi such that

∑

|λi| < ∞

TKf =
∑

i
λi(f • vi)ui

traceK =
∑

λi(ui • vi) .

Step 2. Since
∑

∫

M

|λi| |ui(x)|2 dx =
∑

|λi| < ∞
∑

∫

M

|λi| |vi(x)|2 dx =
∑

|λi| < ∞ ,

the two series

(6.8)
∑

|λi| |ui(x)|2,
∑

|λi| |vi(x)|2

converge in L1 norm, say to U(x), V (x).

Corollary 6.5 implies that the sequences

Un(x) =
∑n

1
|λi| |ui(x)|2, Vn(x) =

∑n

1
|λi| |vi(x)|2

converge pointwise to U(x), V (x) a. e..
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Lemma 6.6 implies that for every compact Ω ⊆ M and ε > 0 there exists a compact X ⊂ Ω such that (a)

meas(Ω−X) < ε; (b) all ui, vi are continuous on X ; (c) both the sequencesUn(x), Vn(x) converge uniformly

there.

Step 3. Now choose an increasing sequence of compact subsets Ωn whose union is M , and for each n a

sequence of compact subsets Xm
n ⊆ Ωn verifying the properties above with ε = 1/m.

For each n let

Xn =

n
⋃

k=1

Xn
k ⊆ Ωn, X =

⋃

Xn .

Each Xn is compact; Xn ⊆ Xn+1; the restrictions of ui, vi to Xn are continuous; the series (6.8) converge

uniformly on Xn; and M − X has measure 0. Because of the assumption on the support of dx, we may also
assume that the support of dx on Xn is Xn.

By Cauchy­Schwarz

(

∑

|λi||ui(x)| |vi(y)|
)2

≤
(

∑

|λi||ui(x)|2
)(

∑

|λi||vi(y)|2
)

.

The series on the left therefore converges uniformly on Xn ×Xn. For (x, y) in X ×X , define the continuous

kernel

K•(x, y) =
∑

λiui(x)vi(y) .

The formal argument presented earlier may now be applied to K•, whose trace may now be evaluated as

∑

λi(ui • vi) =
∑

λi

∫

ui(x)vi(x) dx ,

since
∑

|λi|
∫

|ui(x)||vi(x)| dx < ∞ .

Step 4. Fubini’s Theorem allows us to interchange sum and integral to deduce that

∫

|K•(x, x)| dx ≤
∑

|λi|
∫

|ui(x)||vi(x)| dx < ∞

and

traceK• =

∫

K•(x, x) dx .

On the other hand

(6.9)

∫

K•(x, y)f(x)g(y) dx dy = [TKf ] • g .

Step 5. Comparing (6.7) with (6.9) , we deduce that the functions

K(x, y), K•(x, y)

are almost everywhere equal on X ×X . They are also continuous, so that the set on which they differ is both
open and of measure 0. By assumption on the support of dx on Xn, this open set must be empty.

Remark. Themost interesting applications of Duflo’s theorem these days are probably to automorphic forms,
which is what Duflo had in mind. An early example can be found in [Duflo­Labesse:1971]. At the bottom

of p. 225 in this paper the authors simply refer to a manuscript of Bourbaki—unpublished then and still
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unpublished now—for the result above. This is presumably the same thing that Duflo refers to as the origin

of his theorem.

More examples are in Arthur’s development of the Selberg trace formula. There, one wants an expression for

the trace of convolution operator Rf (f in C∞
c (G)) on L2

cusp(Γ\G). It is relatively easy to verify that it is the

composite of twoHilbert­Schmidt operators, and that its kernel is continuous. Arthur’s proof (Theorem 3.9 in
[Arthur:1970]) demonstrates these points, but then to apply his version of an integral formula requires some

extra work. His argument has something in common with that of Duflo, but is more elementary because
his hypotheses are stronger. In subsequent accounts of the Arthur­Selberg trace formula the formula for the

trace as an integral over the diagonal is always, as far as I know, passed over in an almost inaudible mumble.

Remark. There is a satisfying—close to definitive—generalization of Duflo’s (or Bourbaki’s) theorem to be
found in the paper [Brislawn:1991]. This paper is a sequel to [Brislawn:1988] and [Brislawn:1990]. In the

earlier papers he applies themaximal functions of Hardy­Littlewood to obtain new and strong results for Rn.
But the natural development of the results of Hardy and Littlewood incorporates a regularization process

involving martingales to make sense of the diagonal integral for any trace class kernel. In this last paper he

does not even assume that the space on which measures exist is locally compact, but implies Duflo’s result
easily if it is. Martingales are a powerful tool, and I wish that there existed a self­contained account sufficient

to justify Brislawn’s argument.

I should mention that Brislawn helped me to decipher Duflo’s paper, which is somewhat elliptic and in

addition contains a few confusing typographical slips.
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