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Let
G = SL2(R)

K = SO(2)

H = {z | IM(z) > 0}
Γ = a proper discrete subgroup of G .

The group G acts by fractional linear transformations onH. The isotropy subgroup of i is K , so thatH may

be identified with G/K . The condition on Γ means that Γ\H is the union of a compact subset and a finite
number of parabolic domains.

What is a parabolic domain? Suppose q to be either ∞ or a real number, and let P = Pq be its stabilizer in
SL2(R). It will be a conjugate of P∞, the subgroup of upper triangular matrices. Let Nq be its unipotent

radical, which will be a conjugate of N = N∞, the subgroup of upper triangular unipotent matrices

ν(x) =

[
1 x
0 1

]
.

Let N(Z) be the subgroup of integral matrices.

The point q is called a cusp if Γ ∩ Nq is an infinite cyclic group, and in this case its stabilizer Pq is called a
cuspidal parabolic subgroup. For example, ∞ is a cusp of the group SL2(Z). Some conjugate of Γ ∩ Nq in

SL2(R) will be exactly N(Z), and the pull backs xq , yq of the functions x, y I call parabolic coordinates on

H associated to q. A parabolic domain associated to q is one of the regionsHq,Y where yq ≥ Y , or its image
in Γ\H. If Y ≫ 0 the projection from (Γ ∩ Pq)\Hq,Y to Γ\H is an embedding.

The standard example is Γ = SL2(Z). In this case the region

{z | IM(z) > 0, |z| ≥ 1, RE(z) ≤ 1/2}

is a fundamental domain for Γ. It is the union of the parabolic domains where IM(z) ≥ 1 and a small compact

subset. Suppose F to be a holomorphic automorphic form of weight k with respect to Γ. Then it is invariant
under translation by N(Z), so may be expressed as a convergent series

F (z) =
∑

n≥0

Fne2πinz =
∑

n≥0

Fne−2πny e2πinx .

The difference between F (z) and its constant term F0 is exponentially decreasing as a function of y.

This essay will be concerned with analogous properties for other smooth functions on arithmetic quotients

Γ\H, for an arbitrary proper subgroup Γ. The rough idea is that on a parabolic domain F (z) is asymptotic

to its constant term at the corresponding cusp. In analyzing this behaviour, one may as well assume that
the cusp is ∞ with stabilizer P = AN , and that Γ ∩ N = N(Z). The function F (z) may be expanded in a

Fourier series

F (x + iy) =
∑

Z
Fn(y)e2πinx
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with Fourier coefficients

Fn(y) =

∫ 1

0

F (x + iy)e−2πinx dx

that depend on y. There are several variations on the theme that F (z) ∼ F0(y) as y → ∞. One is that in

which F is an eigenfunction of the Laplacian ∆ of moderate growth as y → ∞ (it is a Maass form), another in

which F satisfies a certain somewhat technical condition of uniformmoderate growth. Yet another concerns
the Laplacian as an unbounded operator on L2(Γ\H).

The relationship between constant terms and asymptotic behaviour is fundamental in the theory of automor­
phic forms.
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1. Maass forms

The Laplacian onH has the formula

∆ = ∆H = y2

(
∂2

∂x2
+

∂2

∂y2

)

and is invariant under G. A Maass form on Γ\H is a smooth function F on Γ\H such that

• ∆F = γF for some scalar γ;
• F is of moderate growth at every cusp q:

F (xq + iyq) = O(yM
q )

for some M , as y → ∞.

The non­Euclidean Laplacian∆ is an elliptic differential operator. Solutions of an elliptic differential equation

with locally smooth coefficients are smooth, so F is necessarily a smooth function of z. Solutions of an elliptic
differential equation with analytic coefficients are real analytic, so that F is in fact real analytic. It is also true,

if not immediately apparent, that an equivalent definition of a Maass form is as an eigendistribution of ∆
that is tempered in some sense.

What is the asymptotic behaviour of F near the cusps of Γ? As I have already mentioned in the Introduction,

conjugating Γ in SL2(R) if necessary, I may assume the cusp at hand is ∞ and that Γ ∩ N∞ = N(Z). In
addition, that F is invariant under all of Γ will play no role in the discussion to come. Therefore:

From now on, I assume only that F is an eigenfunction of ∆ on the

quotient (Γ ∩ P )\H with F (x + iy) = O(yM ) for some M , as y → ∞.

This hypothesis, for example, applies to holomorphic forms of even weight k > 0. What I am going to say is
trivial in this case, but it can serve as a simple model.

Since F is smooth, it may be expanded in a Fourier series

F (x + iy) =
∑∞

−∞
Fn(y)e2πinx
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with smooth Fourier coefficients

Fn(y) =

∫ 1

0

F (x + iy)e−2πinx dx .

If F is holomorphic, the condition of moderate growth implies that the expansion has no terms of negative
index and is therefore

F (z) =
∑

n≥0

Fne2πinz .

Since e2πinz = e2πinxe−2πny we have

∣∣F (z) − F0

∣∣ = O(e−2πy) (y → ∞) .

In this section and the next I’ll explain how this conclusion remains valid in general.

Since the Laplacian and N commute, the Fourier terms Fn(y) are also eigenfunctions of ∆. This means that

the coefficients Fn(y) satisfy an ordinary differential equation. The two cases in which n = 0 and n 6= 0 are
very different.

• n = 0. For the constant term F0 we get the differential equation

y2F ′′
0 = γF0 .

It is an Euler equation
D2F0 − DF0 − γF0 = 0

in which D is the multiplicatively invariant derivative y d/dy. This differential equation has a regular
singularity at ∞. The operator y d/dy is invariant on the multiplicative group of real numbers, which is

isomorphic to the additive group of real numbers via the exponential map y = ex. If I set Φ(x) = F (ex) then
Φ now satisfies the equation

Φ′′ − Φ′ − γΦ = 0 .

This equation has constant coefficients, and for all but one value of γ it will have as basis of solutions es1x

and es2x where the si are solutions of the equation

s2 − s − γ = 0, hence s =
1 ±

√
1 + 4γ

2
.

The exception is when γ = −1/4, when a basis of solutions is made up of ex/2 and xex/2. Thus, the solutions

of the original equations are the linear combinations of ys1 and ys2 as long as γ 6= −1/4. If γ = −1/4, on the
other hand, the solutions are linear combinations of y1/2 and y1/2 log y.

• n 6= 0. For the Fourier coefficient Fn(y) we get the differential equation

y2
(
F ′′

n − 4π2n2Fn

)
= γFn, F ′′

n −
(
4π2n2 + γ/y2

)
Fn = 0 ,

which has an irregular singularity at ∞. As y → ∞ this differential equation has as limit the constant
coefficient equation

F ′′ − 4π2n2F = 0 .

with solutions F (y) = e±2πny, so one might expect some similarity between the behaviour of Fn and of the

functions e±2πny . Since one of these grows exponentially and the other decreases, the following is plausible:

1.1. Proposition. The space of solutions of the equation

F ′′ − 4π2n2F = (γ/y2)F
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that are of moderate growth on (1,∞) has dimension one, and it has as basis the unique solution which is
asymptotic to e−2πny as y → ∞.

This will take some work to explain. First we simplify by a scale change. Let λ = 2π|n|, and then set

F (y) = W(λy) = W(2π|n|y). This gives us

F ′′(y) − 4π2n2F (y) = λ2W ′′(λy) − λ2W(2λy) ,

so that if we set x = λy we see thatW satisfies the differential equation

W ′′(x) −W(x) = (γ/x2)W ,

which is now independent of λ. According to the standard formula found in Theorem 4.7 of [Brauer­

Nohel:1967], there exist solutions of this equation with asymptotic series expansions

W(x) = e±x
(
1 +

c1

x
+

c2

x2
+ · · ·

)
,

which means that

W(x)/e±x −
(
1 +

c1

x
+

c2

x2
+ · · · + cn

xn

)
= O(x−n−1)

for each n as x → ∞.

Because of the growth condition on F as y → ∞, only the solution with leading term e−x is relevant here.
The coefficients ci of the formal series can be calculated by a recursion, but before doing that it is probably

easiest to make a slight change, settingW = e−xG. Then

W = e−xG

W ′ = −e−xG + e−xG′

W ′′ = G − e−xG′ + e−xG′′

W ′′ −W = e−xG′′ − e−xG′ ,

thus getting for G the differential equation

G′′ − G′ =
γ

x2
G .

Setting formally

G = 1 +
c1

x
+

c2

x2
+

c3

x3
+ · · · + cn

xn
+ · · ·

leads us to expansions

γG

x2
=

γ

x2
+

γc1

x3
+

γc2

x4
+ · · · + γcn−1

xn+1
+ · · ·

G′ = − c1

x2
− 2c2

x3
− 3c3

x4
− · · · − ncn

xn+1
+ · · ·

G′′ =
2c1

x3
+

3 ·2c2

x4
+ · · · + n(n − 1)cn−1

xn+1
+ · · · .

and recursion formulas

c1 = γ

n(n − 1)cn−1 + ncn = γ

cn =
γ − n(n − 1)

n
cn−1 (n ≥ 2) .
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The numerator here growsmore rapidly than the denominator, so the series certainly does not converge. The

functionsW are a variant of the Bessel functions called Whittaker functions.

In thenext section I’ll followChapter 5of [Coddington­Levinson:1955] in sketching theproof of the asymptotic

expansion. In the rest of this one I’ll just assume this to be so and prove:

1.2. Proposition. Suppose F to be an eigenfunction of ∆ on (Γ∩P )\H of moderate growth. Then as y → ∞
∣∣F (x + iy) − F0(y)

∣∣ ≪F e−2πy .

Here I use Serge Lang’s generalization of O­notation—≪F X means ≤ CX where C depends on F .

Proof. We start with
F (x + iy) − F0(y) =

∑

n6=0

e2πnixFn(y)

=
∑

n6=0

cne2πinxW(2π|n|y)

∣∣F (x + iy) − F0(y)
∣∣ ≤

∑

n6=0

∣∣cn

∣∣∣∣W(2π|n|y)
∣∣ .

Since for k > 0
∂kF (x + iy)

∂xk
=

∑

n6=0

(2πin)kcnW(2π|n|y)e2πinx

we have

cn(2πin)kW(2π|n|y) =

∫ 1

0

∂kF (x + iy)

∂xk
e−2πnix dx

cn =
1

(2πin)k

1

W(2π|n|y)

∫ 1

0

∂kF (x + iy)

∂xk
e−2πnix dx

for every k and y, as long asW(2π|n|y) 6= 0. But we also know thatW(t) ∼ e−t. Choose t0 large enough so
1/2 < W(t)/e−t < 2 for t > t0. Let y0 = t0/2π. Thus for y ≥ y0

cn =
1

(2πin)k

1

W(2π|n|y0)

∫ 1

0

∂kF (x + iy0)

∂xk
e−2πnix dx

|cn| ≤
2e2π|n|y0

|2πn|k
∫ 1

0

∣∣∣∣
∂kF (x + iy0)

∂xk

∣∣∣∣ dx

∑

n6=0

∣∣cn

∣∣∣∣W(2π|n|y)
∣∣ ≤ Ck

∑

n6=0

e−2π|n|(y−y0)

|n|k

≤ C∗
k e−2πy

( ∑

n>0

1

nk

)
.
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2. Asymptotic expansions of Whittaker functions

IfW ′′ −W = (γ/x2)W and W (x) = W(x/2) then

W ′′ − W

4
=

γ

x2
W .

The differential equation

W ′′ +

(
−1

4
+

k

x
+

1/4 − m2

x2

)
W = 0 .

is called the Whittaker equationwith parameters k, m. The equation for W in the previous section is a special
case where k = 0. In general, there is exactly one solution with an asymptotic expansion

W ∼ xke−x/2
(
1 +

c1

x
+

c2

x2
+ · · ·

)
.

This is designated Wk,m, the Whittaker function with parameters k, m. As explained in §16.2 of [Whittaker­

Watson:1952], Whittaker functions occur frequently—the error function, the incompleteGamma function, the
logarithmic integral, and Bessel functions all have simple expressions in terms of certainWhittaker functions.

What is important for our purposes is that they also occur as Fourier coefficients of automorphic forms on

arithmetic quotients and in the Whittaker models of representations of real groups of rank one. Because of
this, they play an important role in the zeta functions of automorphic representations.

The Whittaker equation may be transformed into a system of first order equations by the usual trick of
introducing a new dependent variable V = W ′. The system we get is

[
W
V

]′

=

[
0 1

1/4 − k/x − (1/4 − m2)/x2 0

] [
W
V

]
.

it is therefore a special case of a system

y′′ = A(z)y

in which A(z) has a convergent expansion

A(z) = A0 +
A1

z
+

A2

z2
+ · · ·

satisfying the condition that the eigenvalues of A0 are distinct. We shall now look at this more general

situation.

2.1. Proposition. Suppose

A(x) = A0 +
A1

x
+

A2

x2
+ · · ·

is a convergent expansion near∞, with the eigenvalues of A0 distinct. Then there exists a matrix solution of

F ′ = A(x)F

which has an asymptotic expansion of the form

F (x) ∼ F̂ (x) = P (x)xReΛx ,

where R and Λ are diagonal complex matrices, and P an asymptotic series in non­negative powers of 1/x.

Proof. I’ll follow Chapter 5 of [Coddington­Levinson:1955], in which a more general result about systems

F ′ = xrA(x) (r ∈ N)
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is treated. The proof comes in two steps, the first explaining how to find the components P (x), R, and Λ of

the formal solution, and the second explaining how to relate the formal solution to an asymptotic expansion.

First of all, wemay reduce to the case whereA0 is diagonal, replacing F (x) byEF (x) ifEA0E
−1 is diagonal,

since from F ′ = AF we deduce EF ′ = EAE−1 EF . If F (x) = P (x)xReΛx then

F ′(x) = P ′(x)xReΛx + (1/x)P (x)RxReΛx + P (x)xRΛ eΛx

so we must solve

P ′(z)zReΛx + (1/x)P (x)RzReΛx + P (x)zRΛeΛx = AP (x)zReΛx .

Since R, zR, and Λ are all diagonal, they commute, so we may cancel zReΛx, leading to the equation

P ′(x) + (1/x)P (x)R + P (x)Λ = A(x)P (x) .

We now equate coefficients of the powers of 1/x. The constant term gives us

P0Λ = A0

and we can set P0 = I , Λ = A0. Equating coefficients of 1/x gives us

R + P1A0 − A0P1 = A1 .

Now if B is any matrix and the diagonal entries of A0 are ai, then BA0 − A0B is a matrix with entries

Bi,j(aj − ai) .

In particular, its diagonal vanishes. I introduce notation—for any matrix M let M = D(M) + M∗, where
D(M) is the diagonal of M and M∗ is off­diagonal. So the equation above requires that R = D(A1) and that

(P1)i.j =
(A1)i,j

ai − aj

for i 6= j. It says nothing, however, about the diagonal D1 = D(P1), which will be determined only in the

next stage. Suppose that we are given inductively the off­diagonal P ∗
n−1 of Pn−1. Equating coefficients of

1/xn we get

−(n − 1)Pn−1 + Pn−1R + PnΛ − ΛPn = A1Pn−1 + · · · + An

= (R + A∗
1)Pn−1 + · · · + An

= RPn−1 + A∗
1Pn−1 + · · · + An .

This equation determines at once the diagonal of Pn−1 and the off­diagonal of Pn. This concludes the

construction of a formal solution.

I’ll not include here the proof that F̂ (x) is an asymptotic approximation to a fundamental solution to the
differential equation, except in the special case ofWhittaker’s equation with k = 0. Details are to be found in

§5.4 of [Coddington­Levinson:1955]. The example I shall look at closely has a few of the features to be found
in the general case.

2.2. Proposition. The differential equation

W ′′ − (1/4)W =
γ

x2
W
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has solutions with asymptotic expansions

W ∼ e±x/2
(
1 +

c1

x
+

c2

x2
+ · · ·

)

The solution asymptotic to e−x/2 is unique, but that asymptotic to ex/2 is not, since the sum of it and any
exponentially decreasing solution will have the same asymptotic behaviour.

Proof. The proof will make a couple of applications of the technique called ‘variation of constants’ in
elementary courses on differential equations. Suppose ϕ to be a function which (a) is on each of the positive

and negative axes a solution to the differential equation

W ′′ − (1/4)W = 0 ;

(b) is continuous at 0, but at 0 its first derivative jumps by 1. The first example we shall use is

ϕ(x) =

{
0 if x < 0;

2 sinh(x/2) otherwise.

Such a function is a solution of the distributional equation

ϕ′′ − ϕ/4 = δ0 .

Hence the function

F (x) = Ae−x/2 + Bex/2 +

∫ b

a

ϕ(x − s)G(s) ds = Ae−x/2 + Bex/2 + 2

∫ x

a

sinh

(
x − s

2

)
G(s) ds

is a solution of F ′′ − F/4 = G in the interval [a, b]. This can also be seen by applying the formula

H ′(x) = h(x, x) +

∫ x

a

∂h

∂x
(x, s) ds

if

H(x) =

∫ x

a

h(x, s) ds .

The first application of this idea will be to construct a solution asymptotic to e−x/2. More explicitly, it will
construct a solution of the integral equation

F (x) = e−x/2 − 2

∫ ∞

x

sinh

(
x − s

2

)
F (s)

s2
ds

for x > 0 by a sequence of approximate solutions. We set F0(x) = 0, and then in succession

Fn+1(x) = e−x/2 − 2

∫ ∞

x

sinh

(
x − s

2

)
Fn(s)

s2
ds .

Thus F1(x) = e−x/2. I shall now show that the sequence Fn(x) converges to a solution of the integral
equation F (x) e−x/2. By induction, I’ll assume Fn(x) ≤ e−x/2. This is an argument standard at the very

beginning of the theory of differential equations. We have

Fn+1(x) − Fn(x) = −2

∫ ∞

x

sinh

(
x − s

2

)
Fn(s) − Fn−1(s)

s2
ds
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which implies that
∣∣Fn+1(x) − Fn(x)

∣∣ ≤
∫ ∞

x

e
s−x
2 · |Fn(s) − Fn−1(s)|

s2
ds .

Thus

|F2(x) − F1(x)| ≤
∫ ∞

x

e
s−x
2 · e−s/2

s2
ds = e−x/2

∫ ∞

x

1

s2
ds =

e−x/2

x

and by induction one can prove that

∣∣Fn+1 − Fn(x)
∣∣ ≤ e−x/2

n! xn
,

leading to ∣∣F (x)
∣∣ ≤ e−x/2e1/x, F (x) ∼ e−x/2 .

Integration by parts will lead to a proof that the entire asymptotic series is valid.

The second application of the idea will use

ϕ(x) =

{
−ex/2 if x < 0;
−e−x/2 otherwise.

Again we start off with F0(x) = 0 and set

Fn+1(x) = ex/2 +

∫ ∞

1

ϕ(x − s)
Fn(s)

s2
ds .

Thus F1(x) = ex/2, and Fn(x) = O(e−x/2), as a similar argument will show. The sequence converges to a
solution of the integral equation

F (x) = ex/2 +

∫ ∞

1

ϕ(x − s)
F (s)

s2
ds

which is asymptotic to ex/2.

We shall see later that all partial derivatives of F also decrease exponentially.

Remark. Nicolas Templier has explained to me that the graph of the Whittaker function is really remarkable.
For reasons related to quantummechanics, the exponential drop­off as y → ∞ is extremely sudden. It is not

easy to draw this graph, although I believe standard computer packages do it.
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3. Uniform moderate growth

Continue to assume that Γ ∩ P = N(Z) is made up of integral horizontal translations z 7→ z + n or,
equivalently, that we have chosen parabolic coordinates (x, y) in the neighbourhood of the cusp fixed by P .

If F is a smooth function onH invariant under the subgroup Γ ∩ N , it can be expressed in a Fourier series

F (x + iy) =
∞∑

−∞

Fn(y)e2πinx .

The main result of the previous sections is that if F is a Maass form then F (z) − F0(y) is exponentially
decreasing as y → ∞. This a special case of a more fundamental if also somewhat weaker result, which is

one of the basic tools in analysis on arithmetic quotients.

On G = SL2(R) define the norm
‖g‖ = sup‖v‖=1‖g(v)‖

(with v in R2). Thus

‖g‖ = sup |x|, 1/|x| if g =

[
x 0
0 1/x

]
.

Define
‖g‖Γ\G = infγ‖γg‖

on Γ\G. It is easy to see (and is a well known result in reduction theory) that on any parabolic domain

associated to the cusp q we have
‖g‖ ≍ ‖g‖Γ\G ≍ √

yq .

Asmooth functionF onΓ\G is said to be ofmoderate growth if there existsN > 0 such thatF (g) = O(‖g‖N),
and of uniform moderate growth if F is smooth and there exists N > 0 with RXF = O(‖g‖N) for all X in
U(g). (The uniformity is thatN does not depend on X .) Let Aumg(Γ\G) be the space of functions of uniform
moderate growth on Γ\G. It is stable under the right regular representation of G. Since functions on Γ\H
may be identified with functions on Γ\G, we may also speak of Aumg(Γ\H).

The constant term at the cusp q of a function F on Γ\G is the function

Fq(g) =

∫

Γ∩Nq\Nq

F (ng) dn .

It is a function on (Γ ∩ Pq)Nq\G.

3.1. Proposition. Suppose F to lie in Aumg(Γ\G), and assume that ∞ is a cusp of Γ. The difference
F (g) − F0(g) is O(y−M ) for all M , as y → ∞.

Here the equation g(i) = x + iy defines y.

Proof. As I have already mentioned, there is a technical difficulty. A function F on H may be identified

with functions on G/K , but RXF may not be K­invariant. However, since H may also be identified with

P/(K ∩ P ) and P →֒ G, we may obtain functions onH by restriction to P of functions on G.

I combine this with a simple observation about the action of RX in terms of operators LX : For F on G and
X in U(g)

RXF (g) = LAd(g)XF (g) .

In particular, if

g = p =

[
t x
0 1/t

]
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and

X =

[
0 1
0 0

]

then RXF (p) = Lt2X(p), which may be identified with y∂F/∂x if F is a function on H and p(i) = x + iy.
By Proposition 1.9, ‖g‖Γ\G ≍ y on the parabolic domain. So we suppose now that RXkF (p) ≤ CkδP (p)N

for all k. From
F (z) − F0(y) =

∑

n6=0

Fn(y)e2πinx

we obtain for every k > 0

RXkF =
∑

n6=0

(2πiyn)kFn(y)e2πinx

Fn(y) =
1

(2πiny)k

∫ 1

0

RXkF (x + iy) dx

∣∣Fn(y)
∣∣ ≤ 1

|2πny|k
∫ 1

0

Ck|y|N dx

∣∣F (z) − F0(y)
∣∣ ≤ C∗

k

yk−N

( ∑

n>0

1

nk

)
.

Because we can transform any cusp to∞, this result implies:

3.2. Proposition. If F lies in Aumg(Γ\H), the difference between F and its constant term at any cusp is
rapidly decreasing in the neighbourhood of that cusp.

4. The Hecke algebra

The relationship between the result in the previous section and Proposition 1.2 may not be apparent, since
it is not obvious that a Maass form lies in Aumg(Γ\H). In this section, I’ll sketch the proof that it does, but

postpone details.

Themost important point can be formulated roughly by saying that allMaass formswith the same eigenvalue
are in some sense all incarnations of the same one.

Suppose for the moment that (π, V ) is any continuous representation of G on a topological vector space
V . I’ll not spell out precisely what this means, but under a weak assumption on V (local convexity, quasi­

completeness) one can then define for every f in C∞
c (G) the operator

π(f) =

∫

G

f(g)π(g) dg

if one is given a Haar measure on G. It is characterized by the condition that if v̂ is a continuous linear
function on V then

〈v̂, π(f)v〉 =

∫

G

f(g)〈v̂, π(g)v〉 dg

which makes sense because the integrand is a continuous function on G of compact support. In many cases,

including the one we are about to see, the integral may be defined directly. The Hecke algebra H(G//K) ofG
with respect to K is that of all smooth compactly supported functions on G that are right­ and left­invariant

with respect to K . Operators π(f) for f in the Hecke algebra take V K into itself.
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A function on H may be identified with one on G/K , that is to say a function on G fixed by K . Right

convolution by functions in the Hecke algebra

RfF (g) =

∫

G

f(x)F (gx) dx

may therefore be identifiedwith operators on the space of functions onH. The reason I am introducing these

notions is:

4.1. Proposition. If f is in H(G//K) and F a continuous function of moderate growth on Γ\H then RfF
lies in Aumg(Γ\H).

This is complemented by:

4.2. Proposition. Every Maass form on Γ can be expressed as RfF for some f in H(G//K) and F a Maass
form on Γ\H.

As a consequence, we get a weak version of Proposition 1.2 in which exponential is replaced by polynomial
decay.

I’l try to sketch why these are true, but in the opposite order.

Proof of Proposition 4.2. This is a basic result of the representation theory of G. I’ll explain later on what is

going on, but let me try to give a rough idea here.

For each s in C define the character χs of P by the formula

χs:

[
t x
0 1/t

]
7−→ |t|s .

and
Inds =

{
f ∈ C∞(G, C)

∣∣ f(pg) = χs+1(p)f(g) for all p ∈ P, g ∈ G
}

.

Because G = PK and P ∩ P = ±I , its restriction to K is C∞(K/{±I}), and hence the subspace IndK
s has

dimension 1. Also, the subspace of K­finite functions in Is, on which the Lie algebra g acts, is a direct sum

of one­dimensional eigenspaces on which K acts by an evenpower of the character

ε:

[
c −s
s c

]
7−→ c + is .

The Hecke algebra H(G//K) acts by scalars on this, giving rise to a homomorphism ϕs from H(G//K) to
C. The Casimir element of U(g) acts on this by a scalar λs = s2 − 1. The main theorem of the subject is that

if (π, V ) is any smooth representation of G with V K finite­dimensional, and on which C acts by λs, then the
Hecke algebra acts by ϕs. We can find functions in H(G//K) approximating the Dirac δ at i, and therefore

for any s we can find f in the Hecke algebra for which ϕs(f) 6= 0. Since the space of Maass forms for a given
eigenvalue qualifies, we can find a function in the Hecke algebra that acts as the identity on it.

Proof of Proposition 4.1. This is more straightforward. For any smooth representation π of G

π(g)π(f)v = π(g)

∫

G

f(x)π(x)v dx = π(Lgf)v

so π(X)π(f) = π(LXf) and

RXRfF (g) =

∫

G

[LXf ](x)F (xg) dx
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But If F (x) = O(‖x‖Γ\G then

RXRfF (g) =

∫

G

[LXf ](x)F (gx) dx

∣∣RXRfF (g)
∣∣ ≤

∫

G

∣∣[LXf ](x)
∣∣ ‖g‖M‖x‖M dx

= ‖g‖M

∫

G

∣∣LXf(x)
∣∣ ‖x‖M dx .

4.3. Corollary. Maass forms lie in Aumg(Γ\G).

Remark. A second proof is possible. If ∆F = λF and F is of moderate growth, then for some fixed M all
∆nF are O(yM ). The space of all functions that are O(‖g‖M

Γ\G) is a Banach space, so by a little known result

of Langlands’ Ph. D. thesis (explained relatively well in §4 of Chapter 1 of [Robinson:1991]), we also have all

RXF in this space.
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